linux_old1/include/linux/workqueue.h

475 lines
15 KiB
C
Raw Normal View History

/*
* workqueue.h --- work queue handling for Linux.
*/
#ifndef _LINUX_WORKQUEUE_H
#define _LINUX_WORKQUEUE_H
#include <linux/timer.h>
#include <linux/linkage.h>
#include <linux/bitops.h>
#include <linux/lockdep.h>
#include <linux/threads.h>
#include <linux/atomic.h>
struct workqueue_struct;
2006-11-22 22:55:48 +08:00
struct work_struct;
typedef void (*work_func_t)(struct work_struct *work);
void delayed_work_timer_fn(unsigned long __data);
/*
* The first word is the work queue pointer and the flags rolled into
* one
*/
#define work_data_bits(work) ((unsigned long *)(&(work)->data))
enum {
WORK_STRUCT_PENDING_BIT = 0, /* work item is pending execution */
WORK_STRUCT_DELAYED_BIT = 1, /* work item is delayed */
WORK_STRUCT_CWQ_BIT = 2, /* data points to cwq */
WORK_STRUCT_LINKED_BIT = 3, /* next work is linked to this one */
#ifdef CONFIG_DEBUG_OBJECTS_WORK
WORK_STRUCT_STATIC_BIT = 4, /* static initializer (debugobjects) */
WORK_STRUCT_COLOR_SHIFT = 5, /* color for workqueue flushing */
#else
WORK_STRUCT_COLOR_SHIFT = 4, /* color for workqueue flushing */
#endif
workqueue: reimplement workqueue flushing using color coded works Reimplement workqueue flushing using color coded works. wq has the current work color which is painted on the works being issued via cwqs. Flushing a workqueue is achieved by advancing the current work colors of cwqs and waiting for all the works which have any of the previous colors to drain. Currently there are 16 possible colors, one is reserved for no color and 15 colors are useable allowing 14 concurrent flushes. When color space gets full, flush attempts are batched up and processed together when color frees up, so even with many concurrent flushers, the new implementation won't build up huge queue of flushers which has to be processed one after another. Only works which are queued via __queue_work() are colored. Works which are directly put on queue using insert_work() use NO_COLOR and don't participate in workqueue flushing. Currently only works used for work-specific flush fall in this category. This new implementation leaves only cleanup_workqueue_thread() as the user of flush_cpu_workqueue(). Just make its users use flush_workqueue() and kthread_stop() directly and kill cleanup_workqueue_thread(). As workqueue flushing doesn't use barrier request anymore, the comment describing the complex synchronization around it in cleanup_workqueue_thread() is removed together with the function. This new implementation is to allow having and sharing multiple workers per cpu. Please note that one more bit is reserved for a future work flag by this patch. This is to avoid shifting bits and updating comments later. Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 16:07:11 +08:00
WORK_STRUCT_COLOR_BITS = 4,
WORK_STRUCT_PENDING = 1 << WORK_STRUCT_PENDING_BIT,
WORK_STRUCT_DELAYED = 1 << WORK_STRUCT_DELAYED_BIT,
WORK_STRUCT_CWQ = 1 << WORK_STRUCT_CWQ_BIT,
WORK_STRUCT_LINKED = 1 << WORK_STRUCT_LINKED_BIT,
#ifdef CONFIG_DEBUG_OBJECTS_WORK
WORK_STRUCT_STATIC = 1 << WORK_STRUCT_STATIC_BIT,
#else
WORK_STRUCT_STATIC = 0,
#endif
workqueue: reimplement workqueue flushing using color coded works Reimplement workqueue flushing using color coded works. wq has the current work color which is painted on the works being issued via cwqs. Flushing a workqueue is achieved by advancing the current work colors of cwqs and waiting for all the works which have any of the previous colors to drain. Currently there are 16 possible colors, one is reserved for no color and 15 colors are useable allowing 14 concurrent flushes. When color space gets full, flush attempts are batched up and processed together when color frees up, so even with many concurrent flushers, the new implementation won't build up huge queue of flushers which has to be processed one after another. Only works which are queued via __queue_work() are colored. Works which are directly put on queue using insert_work() use NO_COLOR and don't participate in workqueue flushing. Currently only works used for work-specific flush fall in this category. This new implementation leaves only cleanup_workqueue_thread() as the user of flush_cpu_workqueue(). Just make its users use flush_workqueue() and kthread_stop() directly and kill cleanup_workqueue_thread(). As workqueue flushing doesn't use barrier request anymore, the comment describing the complex synchronization around it in cleanup_workqueue_thread() is removed together with the function. This new implementation is to allow having and sharing multiple workers per cpu. Please note that one more bit is reserved for a future work flag by this patch. This is to avoid shifting bits and updating comments later. Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 16:07:11 +08:00
/*
* The last color is no color used for works which don't
* participate in workqueue flushing.
*/
WORK_NR_COLORS = (1 << WORK_STRUCT_COLOR_BITS) - 1,
WORK_NO_COLOR = WORK_NR_COLORS,
/* special cpu IDs */
WORK_CPU_UNBOUND = NR_CPUS,
WORK_CPU_NONE = NR_CPUS + 1,
WORK_CPU_LAST = WORK_CPU_NONE,
workqueue: reimplement workqueue flushing using color coded works Reimplement workqueue flushing using color coded works. wq has the current work color which is painted on the works being issued via cwqs. Flushing a workqueue is achieved by advancing the current work colors of cwqs and waiting for all the works which have any of the previous colors to drain. Currently there are 16 possible colors, one is reserved for no color and 15 colors are useable allowing 14 concurrent flushes. When color space gets full, flush attempts are batched up and processed together when color frees up, so even with many concurrent flushers, the new implementation won't build up huge queue of flushers which has to be processed one after another. Only works which are queued via __queue_work() are colored. Works which are directly put on queue using insert_work() use NO_COLOR and don't participate in workqueue flushing. Currently only works used for work-specific flush fall in this category. This new implementation leaves only cleanup_workqueue_thread() as the user of flush_cpu_workqueue(). Just make its users use flush_workqueue() and kthread_stop() directly and kill cleanup_workqueue_thread(). As workqueue flushing doesn't use barrier request anymore, the comment describing the complex synchronization around it in cleanup_workqueue_thread() is removed together with the function. This new implementation is to allow having and sharing multiple workers per cpu. Please note that one more bit is reserved for a future work flag by this patch. This is to avoid shifting bits and updating comments later. Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 16:07:11 +08:00
/*
* Reserve 7 bits off of cwq pointer w/ debugobjects turned
* off. This makes cwqs aligned to 256 bytes and allows 15
* workqueue flush colors.
workqueue: reimplement workqueue flushing using color coded works Reimplement workqueue flushing using color coded works. wq has the current work color which is painted on the works being issued via cwqs. Flushing a workqueue is achieved by advancing the current work colors of cwqs and waiting for all the works which have any of the previous colors to drain. Currently there are 16 possible colors, one is reserved for no color and 15 colors are useable allowing 14 concurrent flushes. When color space gets full, flush attempts are batched up and processed together when color frees up, so even with many concurrent flushers, the new implementation won't build up huge queue of flushers which has to be processed one after another. Only works which are queued via __queue_work() are colored. Works which are directly put on queue using insert_work() use NO_COLOR and don't participate in workqueue flushing. Currently only works used for work-specific flush fall in this category. This new implementation leaves only cleanup_workqueue_thread() as the user of flush_cpu_workqueue(). Just make its users use flush_workqueue() and kthread_stop() directly and kill cleanup_workqueue_thread(). As workqueue flushing doesn't use barrier request anymore, the comment describing the complex synchronization around it in cleanup_workqueue_thread() is removed together with the function. This new implementation is to allow having and sharing multiple workers per cpu. Please note that one more bit is reserved for a future work flag by this patch. This is to avoid shifting bits and updating comments later. Signed-off-by: Tejun Heo <tj@kernel.org>
2010-06-29 16:07:11 +08:00
*/
WORK_STRUCT_FLAG_BITS = WORK_STRUCT_COLOR_SHIFT +
WORK_STRUCT_COLOR_BITS,
/* data contains off-queue information when !WORK_STRUCT_CWQ */
WORK_OFFQ_FLAG_BASE = WORK_STRUCT_FLAG_BITS,
workqueue: mark a work item being canceled as such There can be two reasons try_to_grab_pending() can fail with -EAGAIN. One is when someone else is queueing or deqeueing the work item. With the previous patches, it is guaranteed that PENDING and queued state will soon agree making it safe to busy-retry in this case. The other is if multiple __cancel_work_timer() invocations are racing one another. __cancel_work_timer() grabs PENDING and then waits for running instances of the target work item on all CPUs while holding PENDING and !queued. try_to_grab_pending() invoked from another task will keep returning -EAGAIN while the current owner is waiting. Not distinguishing the two cases is okay because __cancel_work_timer() is the only user of try_to_grab_pending() and it invokes wait_on_work() whenever grabbing fails. For the first case, busy looping should be fine but wait_on_work() doesn't cause any critical problem. For the latter case, the new contender usually waits for the same condition as the current owner, so no unnecessarily extended busy-looping happens. Combined, these make __cancel_work_timer() technically correct even without irq protection while grabbing PENDING or distinguishing the two different cases. While the current code is technically correct, not distinguishing the two cases makes it difficult to use try_to_grab_pending() for other purposes than canceling because it's impossible to tell whether it's safe to busy-retry grabbing. This patch adds a mechanism to mark a work item being canceled. try_to_grab_pending() now disables irq on success and returns -EAGAIN to indicate that grabbing failed but PENDING and queued states are gonna agree soon and it's safe to busy-loop. It returns -ENOENT if the work item is being canceled and it may stay PENDING && !queued for arbitrary amount of time. __cancel_work_timer() is modified to mark the work canceling with WORK_OFFQ_CANCELING after grabbing PENDING, thus making try_to_grab_pending() fail with -ENOENT instead of -EAGAIN. Also, it invokes wait_on_work() iff grabbing failed with -ENOENT. This isn't necessary for correctness but makes it consistent with other future users of try_to_grab_pending(). v2: try_to_grab_pending() was testing preempt_count() to ensure that the caller has disabled preemption. This triggers spuriously if !CONFIG_PREEMPT_COUNT. Use preemptible() instead. Reported by Fengguang Wu. v3: Updated so that try_to_grab_pending() disables irq on success rather than requiring preemption disabled by the caller. This makes busy-looping easier and will allow try_to_grap_pending() to be used from bh/irq contexts. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Fengguang Wu <fengguang.wu@intel.com>
2012-08-04 01:30:46 +08:00
WORK_OFFQ_CANCELING = (1 << WORK_OFFQ_FLAG_BASE),
WORK_OFFQ_FLAG_BITS = 1,
WORK_OFFQ_CPU_SHIFT = WORK_OFFQ_FLAG_BASE + WORK_OFFQ_FLAG_BITS,
/* convenience constants */
WORK_STRUCT_FLAG_MASK = (1UL << WORK_STRUCT_FLAG_BITS) - 1,
WORK_STRUCT_WQ_DATA_MASK = ~WORK_STRUCT_FLAG_MASK,
WORK_STRUCT_NO_CPU = (unsigned long)WORK_CPU_NONE << WORK_OFFQ_CPU_SHIFT,
/* bit mask for work_busy() return values */
WORK_BUSY_PENDING = 1 << 0,
WORK_BUSY_RUNNING = 1 << 1,
};
struct work_struct {
atomic_long_t data;
struct list_head entry;
work_func_t func;
#ifdef CONFIG_LOCKDEP
struct lockdep_map lockdep_map;
#endif
};
#define WORK_DATA_INIT() ATOMIC_LONG_INIT(WORK_STRUCT_NO_CPU)
#define WORK_DATA_STATIC_INIT() \
ATOMIC_LONG_INIT(WORK_STRUCT_NO_CPU | WORK_STRUCT_STATIC)
struct delayed_work {
struct work_struct work;
struct timer_list timer;
int cpu;
};
static inline struct delayed_work *to_delayed_work(struct work_struct *work)
{
return container_of(work, struct delayed_work, work);
}
struct execute_work {
struct work_struct work;
};
#ifdef CONFIG_LOCKDEP
/*
* NB: because we have to copy the lockdep_map, setting _key
* here is required, otherwise it could get initialised to the
* copy of the lockdep_map!
*/
#define __WORK_INIT_LOCKDEP_MAP(n, k) \
.lockdep_map = STATIC_LOCKDEP_MAP_INIT(n, k),
#else
#define __WORK_INIT_LOCKDEP_MAP(n, k)
#endif
#define __WORK_INITIALIZER(n, f) { \
.data = WORK_DATA_STATIC_INIT(), \
.entry = { &(n).entry, &(n).entry }, \
.func = (f), \
__WORK_INIT_LOCKDEP_MAP(#n, &(n)) \
2006-11-22 22:55:48 +08:00
}
#define __DELAYED_WORK_INITIALIZER(n, f, tflags) { \
.work = __WORK_INITIALIZER((n).work, (f)), \
.timer = __TIMER_INITIALIZER(delayed_work_timer_fn, \
0, (unsigned long)&(n), \
(tflags) | TIMER_IRQSAFE), \
}
#define DECLARE_WORK(n, f) \
2006-11-22 22:55:48 +08:00
struct work_struct n = __WORK_INITIALIZER(n, f)
#define DECLARE_DELAYED_WORK(n, f) \
struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, 0)
2006-11-22 22:55:48 +08:00
#define DECLARE_DEFERRABLE_WORK(n, f) \
struct delayed_work n = __DELAYED_WORK_INITIALIZER(n, f, TIMER_DEFERRABLE)
/*
2006-11-22 22:55:48 +08:00
* initialize a work item's function pointer
*/
#define PREPARE_WORK(_work, _func) \
do { \
(_work)->func = (_func); \
} while (0)
#define PREPARE_DELAYED_WORK(_work, _func) \
2006-11-22 22:55:48 +08:00
PREPARE_WORK(&(_work)->work, (_func))
#ifdef CONFIG_DEBUG_OBJECTS_WORK
extern void __init_work(struct work_struct *work, int onstack);
extern void destroy_work_on_stack(struct work_struct *work);
static inline unsigned int work_static(struct work_struct *work)
{
return *work_data_bits(work) & WORK_STRUCT_STATIC;
}
#else
static inline void __init_work(struct work_struct *work, int onstack) { }
static inline void destroy_work_on_stack(struct work_struct *work) { }
static inline unsigned int work_static(struct work_struct *work) { return 0; }
#endif
/*
* initialize all of a work item in one go
*
* NOTE! No point in using "atomic_long_set()": using a direct
* assignment of the work data initializer allows the compiler
* to generate better code.
*/
#ifdef CONFIG_LOCKDEP
#define __INIT_WORK(_work, _func, _onstack) \
2006-11-22 22:55:48 +08:00
do { \
static struct lock_class_key __key; \
\
__init_work((_work), _onstack); \
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
lockdep_init_map(&(_work)->lockdep_map, #_work, &__key, 0); \
2006-11-22 22:55:48 +08:00
INIT_LIST_HEAD(&(_work)->entry); \
PREPARE_WORK((_work), (_func)); \
} while (0)
#else
#define __INIT_WORK(_work, _func, _onstack) \
do { \
__init_work((_work), _onstack); \
(_work)->data = (atomic_long_t) WORK_DATA_INIT(); \
INIT_LIST_HEAD(&(_work)->entry); \
PREPARE_WORK((_work), (_func)); \
} while (0)
#endif
2006-11-22 22:55:48 +08:00
#define INIT_WORK(_work, _func) \
do { \
__INIT_WORK((_work), (_func), 0); \
} while (0)
#define INIT_WORK_ONSTACK(_work, _func) \
do { \
__INIT_WORK((_work), (_func), 1); \
} while (0)
#define __INIT_DELAYED_WORK(_work, _func, _tflags) \
do { \
INIT_WORK(&(_work)->work, (_func)); \
__setup_timer(&(_work)->timer, delayed_work_timer_fn, \
(unsigned long)(_work), \
(_tflags) | TIMER_IRQSAFE); \
} while (0)
#define __INIT_DELAYED_WORK_ONSTACK(_work, _func, _tflags) \
do { \
INIT_WORK_ONSTACK(&(_work)->work, (_func)); \
__setup_timer_on_stack(&(_work)->timer, \
delayed_work_timer_fn, \
(unsigned long)(_work), \
(_tflags) | TIMER_IRQSAFE); \
} while (0)
#define INIT_DELAYED_WORK(_work, _func) \
__INIT_DELAYED_WORK(_work, _func, 0)
#define INIT_DELAYED_WORK_ONSTACK(_work, _func) \
__INIT_DELAYED_WORK_ONSTACK(_work, _func, 0)
#define INIT_DEFERRABLE_WORK(_work, _func) \
__INIT_DELAYED_WORK(_work, _func, TIMER_DEFERRABLE)
#define INIT_DEFERRABLE_WORK_ONSTACK(_work, _func) \
__INIT_DELAYED_WORK_ONSTACK(_work, _func, TIMER_DEFERRABLE)
/**
* work_pending - Find out whether a work item is currently pending
* @work: The work item in question
*/
#define work_pending(work) \
test_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
/**
* delayed_work_pending - Find out whether a delayable work item is currently
* pending
* @work: The work item in question
*/
#define delayed_work_pending(w) \
work_pending(&(w)->work)
2006-11-22 22:55:48 +08:00
/**
* work_clear_pending - for internal use only, mark a work item as not pending
* @work: The work item in question
2006-11-22 22:55:48 +08:00
*/
#define work_clear_pending(work) \
clear_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))
2006-11-22 22:55:48 +08:00
/*
* Workqueue flags and constants. For details, please refer to
* Documentation/workqueue.txt.
*/
enum {
WQ_NON_REENTRANT = 1 << 0, /* guarantee non-reentrance */
WQ_UNBOUND = 1 << 1, /* not bound to any cpu */
WQ_FREEZABLE = 1 << 2, /* freeze during suspend */
WQ_MEM_RECLAIM = 1 << 3, /* may be used for memory reclaim */
WQ_HIGHPRI = 1 << 4, /* high priority */
WQ_CPU_INTENSIVE = 1 << 5, /* cpu instensive workqueue */
WQ_DRAINING = 1 << 6, /* internal: workqueue is draining */
WQ_RESCUER = 1 << 7, /* internal: workqueue has rescuer */
WQ_MAX_ACTIVE = 512, /* I like 512, better ideas? */
WQ_MAX_UNBOUND_PER_CPU = 4, /* 4 * #cpus for unbound wq */
WQ_DFL_ACTIVE = WQ_MAX_ACTIVE / 2,
};
/* unbound wq's aren't per-cpu, scale max_active according to #cpus */
#define WQ_UNBOUND_MAX_ACTIVE \
max_t(int, WQ_MAX_ACTIVE, num_possible_cpus() * WQ_MAX_UNBOUND_PER_CPU)
2006-11-22 22:55:48 +08:00
/*
* System-wide workqueues which are always present.
*
* system_wq is the one used by schedule[_delayed]_work[_on]().
* Multi-CPU multi-threaded. There are users which expect relatively
* short queue flush time. Don't queue works which can run for too
* long.
*
* system_long_wq is similar to system_wq but may host long running
* works. Queue flushing might take relatively long.
*
* system_unbound_wq is unbound workqueue. Workers are not bound to
* any specific CPU, not concurrency managed, and all queued works are
* executed immediately as long as max_active limit is not reached and
* resources are available.
*
* system_freezable_wq is equivalent to system_wq except that it's
* freezable.
*/
extern struct workqueue_struct *system_wq;
extern struct workqueue_struct *system_long_wq;
extern struct workqueue_struct *system_unbound_wq;
extern struct workqueue_struct *system_freezable_wq;
static inline struct workqueue_struct * __deprecated __system_nrt_wq(void)
{
return system_wq;
}
static inline struct workqueue_struct * __deprecated __system_nrt_freezable_wq(void)
{
return system_freezable_wq;
}
/* equivlalent to system_wq and system_freezable_wq, deprecated */
#define system_nrt_wq __system_nrt_wq()
#define system_nrt_freezable_wq __system_nrt_freezable_wq()
extern struct workqueue_struct *
__alloc_workqueue_key(const char *fmt, unsigned int flags, int max_active,
struct lock_class_key *key, const char *lock_name, ...) __printf(1, 6);
/**
* alloc_workqueue - allocate a workqueue
* @fmt: printf format for the name of the workqueue
* @flags: WQ_* flags
* @max_active: max in-flight work items, 0 for default
* @args: args for @fmt
*
* Allocate a workqueue with the specified parameters. For detailed
* information on WQ_* flags, please refer to Documentation/workqueue.txt.
*
* The __lock_name macro dance is to guarantee that single lock_class_key
* doesn't end up with different namesm, which isn't allowed by lockdep.
*
* RETURNS:
* Pointer to the allocated workqueue on success, %NULL on failure.
*/
#ifdef CONFIG_LOCKDEP
#define alloc_workqueue(fmt, flags, max_active, args...) \
({ \
static struct lock_class_key __key; \
const char *__lock_name; \
\
if (__builtin_constant_p(fmt)) \
__lock_name = (fmt); \
else \
__lock_name = #fmt; \
\
__alloc_workqueue_key((fmt), (flags), (max_active), \
&__key, __lock_name, ##args); \
})
#else
#define alloc_workqueue(fmt, flags, max_active, args...) \
__alloc_workqueue_key((fmt), (flags), (max_active), \
NULL, NULL, ##args)
#endif
/**
* alloc_ordered_workqueue - allocate an ordered workqueue
* @fmt: printf format for the name of the workqueue
* @flags: WQ_* flags (only WQ_FREEZABLE and WQ_MEM_RECLAIM are meaningful)
* @args: args for @fmt
*
* Allocate an ordered workqueue. An ordered workqueue executes at
* most one work item at any given time in the queued order. They are
* implemented as unbound workqueues with @max_active of one.
*
* RETURNS:
* Pointer to the allocated workqueue on success, %NULL on failure.
*/
#define alloc_ordered_workqueue(fmt, flags, args...) \
alloc_workqueue(fmt, WQ_UNBOUND | (flags), 1, ##args)
#define create_workqueue(name) \
alloc_workqueue((name), WQ_MEM_RECLAIM, 1)
#define create_freezable_workqueue(name) \
alloc_workqueue((name), WQ_FREEZABLE | WQ_UNBOUND | WQ_MEM_RECLAIM, 1)
#define create_singlethread_workqueue(name) \
alloc_workqueue((name), WQ_UNBOUND | WQ_MEM_RECLAIM, 1)
extern void destroy_workqueue(struct workqueue_struct *wq);
extern bool queue_work_on(int cpu, struct workqueue_struct *wq,
struct work_struct *work);
extern bool queue_work(struct workqueue_struct *wq, struct work_struct *work);
extern bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *work, unsigned long delay);
extern bool queue_delayed_work(struct workqueue_struct *wq,
struct delayed_work *work, unsigned long delay);
extern bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay);
extern bool mod_delayed_work(struct workqueue_struct *wq,
struct delayed_work *dwork, unsigned long delay);
extern void flush_workqueue(struct workqueue_struct *wq);
extern void drain_workqueue(struct workqueue_struct *wq);
extern void flush_scheduled_work(void);
extern bool schedule_work_on(int cpu, struct work_struct *work);
extern bool schedule_work(struct work_struct *work);
extern bool schedule_delayed_work_on(int cpu, struct delayed_work *work,
unsigned long delay);
extern bool schedule_delayed_work(struct delayed_work *work,
unsigned long delay);
2006-11-22 22:55:48 +08:00
extern int schedule_on_each_cpu(work_func_t func);
extern int keventd_up(void);
2006-11-22 22:55:48 +08:00
int execute_in_process_context(work_func_t fn, struct execute_work *);
extern bool flush_work(struct work_struct *work);
extern bool cancel_work_sync(struct work_struct *work);
extern bool flush_delayed_work(struct delayed_work *dwork);
extern bool cancel_delayed_work(struct delayed_work *dwork);
extern bool cancel_delayed_work_sync(struct delayed_work *dwork);
extern void workqueue_set_max_active(struct workqueue_struct *wq,
int max_active);
extern bool workqueue_congested(unsigned int cpu, struct workqueue_struct *wq);
extern unsigned int work_cpu(struct work_struct *work);
extern unsigned int work_busy(struct work_struct *work);
/*
* Like above, but uses del_timer() instead of del_timer_sync(). This means,
* if it returns 0 the timer function may be running and the queueing is in
* progress.
*/
static inline bool __deprecated __cancel_delayed_work(struct delayed_work *work)
{
bool ret;
ret = del_timer(&work->timer);
if (ret)
work_clear_pending(&work->work);
return ret;
}
/* used to be different but now identical to flush_work(), deprecated */
workqueue: deprecate flush[_delayed]_work_sync() flush[_delayed]_work_sync() are now spurious. Mark them deprecated and convert all users to flush[_delayed]_work(). If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant and the regular flushes guarantee that the work item is not pending or running on any CPU on return, so there's no reason to use the sync flushes at all and they're going away. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ian Campbell <ian.campbell@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mattia Dongili <malattia@linux.it> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Bryan Wu <bryan.wu@canonical.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-wireless@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: Sangbeom Kim <sbkim73@samsung.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Avi Kivity <avi@redhat.com>
2012-08-21 05:51:24 +08:00
static inline bool __deprecated flush_work_sync(struct work_struct *work)
{
return flush_work(work);
}
/* used to be different but now identical to flush_delayed_work(), deprecated */
workqueue: deprecate flush[_delayed]_work_sync() flush[_delayed]_work_sync() are now spurious. Mark them deprecated and convert all users to flush[_delayed]_work(). If you're cc'd and wondering what's going on: Now all workqueues are non-reentrant and the regular flushes guarantee that the work item is not pending or running on any CPU on return, so there's no reason to use the sync flushes at all and they're going away. This patch doesn't make any functional difference. Signed-off-by: Tejun Heo <tj@kernel.org> Cc: Russell King <linux@arm.linux.org.uk> Cc: Paul Mundt <lethal@linux-sh.org> Cc: Ian Campbell <ian.campbell@citrix.com> Cc: Jens Axboe <axboe@kernel.dk> Cc: Mattia Dongili <malattia@linux.it> Cc: Kent Yoder <key@linux.vnet.ibm.com> Cc: David Airlie <airlied@linux.ie> Cc: Jiri Kosina <jkosina@suse.cz> Cc: Karsten Keil <isdn@linux-pingi.de> Cc: Bryan Wu <bryan.wu@canonical.com> Cc: Benjamin Herrenschmidt <benh@kernel.crashing.org> Cc: Alasdair Kergon <agk@redhat.com> Cc: Mauro Carvalho Chehab <mchehab@infradead.org> Cc: Florian Tobias Schandinat <FlorianSchandinat@gmx.de> Cc: David Woodhouse <dwmw2@infradead.org> Cc: "David S. Miller" <davem@davemloft.net> Cc: linux-wireless@vger.kernel.org Cc: Anton Vorontsov <cbou@mail.ru> Cc: Sangbeom Kim <sbkim73@samsung.com> Cc: "James E.J. Bottomley" <James.Bottomley@HansenPartnership.com> Cc: Greg Kroah-Hartman <gregkh@linuxfoundation.org> Cc: Eric Van Hensbergen <ericvh@gmail.com> Cc: Takashi Iwai <tiwai@suse.de> Cc: Steven Whitehouse <swhiteho@redhat.com> Cc: Petr Vandrovec <petr@vandrovec.name> Cc: Mark Fasheh <mfasheh@suse.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Avi Kivity <avi@redhat.com>
2012-08-21 05:51:24 +08:00
static inline bool __deprecated flush_delayed_work_sync(struct delayed_work *dwork)
{
return flush_delayed_work(dwork);
}
#ifndef CONFIG_SMP
static inline long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
{
return fn(arg);
}
#else
long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg);
#endif /* CONFIG_SMP */
#ifdef CONFIG_FREEZER
extern void freeze_workqueues_begin(void);
extern bool freeze_workqueues_busy(void);
extern void thaw_workqueues(void);
#endif /* CONFIG_FREEZER */
#endif