linux_old1/drivers/scsi/mpt3sas/mpt3sas_base.c

5034 lines
140 KiB
C
Raw Normal View History

/*
* This is the Fusion MPT base driver providing common API layer interface
* for access to MPT (Message Passing Technology) firmware.
*
* This code is based on drivers/scsi/mpt3sas/mpt3sas_base.c
* Copyright (C) 2012-2014 LSI Corporation
* Copyright (C) 2013-2014 Avago Technologies
* (mailto: MPT-FusionLinux.pdl@avagotech.com)
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* NO WARRANTY
* THE PROGRAM IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR
* CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED INCLUDING, WITHOUT
* LIMITATION, ANY WARRANTIES OR CONDITIONS OF TITLE, NON-INFRINGEMENT,
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Each Recipient is
* solely responsible for determining the appropriateness of using and
* distributing the Program and assumes all risks associated with its
* exercise of rights under this Agreement, including but not limited to
* the risks and costs of program errors, damage to or loss of data,
* programs or equipment, and unavailability or interruption of operations.
* DISCLAIMER OF LIABILITY
* NEITHER RECIPIENT NOR ANY CONTRIBUTORS SHALL HAVE ANY LIABILITY FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
* TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
* USE OR DISTRIBUTION OF THE PROGRAM OR THE EXERCISE OF ANY RIGHTS GRANTED
* HEREUNDER, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGES
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
* USA.
*/
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/init.h>
#include <linux/slab.h>
#include <linux/types.h>
#include <linux/pci.h>
#include <linux/kdev_t.h>
#include <linux/blkdev.h>
#include <linux/delay.h>
#include <linux/interrupt.h>
#include <linux/dma-mapping.h>
#include <linux/io.h>
#include <linux/time.h>
#include <linux/kthread.h>
#include <linux/aer.h>
#include "mpt3sas_base.h"
static MPT_CALLBACK mpt_callbacks[MPT_MAX_CALLBACKS];
#define FAULT_POLLING_INTERVAL 1000 /* in milliseconds */
/* maximum controller queue depth */
#define MAX_HBA_QUEUE_DEPTH 30000
#define MAX_CHAIN_DEPTH 100000
static int max_queue_depth = -1;
module_param(max_queue_depth, int, 0);
MODULE_PARM_DESC(max_queue_depth, " max controller queue depth ");
static int max_sgl_entries = -1;
module_param(max_sgl_entries, int, 0);
MODULE_PARM_DESC(max_sgl_entries, " max sg entries ");
static int msix_disable = -1;
module_param(msix_disable, int, 0);
MODULE_PARM_DESC(msix_disable, " disable msix routed interrupts (default=0)");
static int max_msix_vectors = 8;
module_param(max_msix_vectors, int, 0);
MODULE_PARM_DESC(max_msix_vectors,
" max msix vectors - (default=8)");
static int mpt3sas_fwfault_debug;
MODULE_PARM_DESC(mpt3sas_fwfault_debug,
" enable detection of firmware fault and halt firmware - (default=0)");
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag);
/**
* _scsih_set_fwfault_debug - global setting of ioc->fwfault_debug.
*
*/
static int
_scsih_set_fwfault_debug(const char *val, struct kernel_param *kp)
{
int ret = param_set_int(val, kp);
struct MPT3SAS_ADAPTER *ioc;
if (ret)
return ret;
pr_info("setting fwfault_debug(%d)\n", mpt3sas_fwfault_debug);
list_for_each_entry(ioc, &mpt3sas_ioc_list, list)
ioc->fwfault_debug = mpt3sas_fwfault_debug;
return 0;
}
module_param_call(mpt3sas_fwfault_debug, _scsih_set_fwfault_debug,
param_get_int, &mpt3sas_fwfault_debug, 0644);
/**
* mpt3sas_remove_dead_ioc_func - kthread context to remove dead ioc
* @arg: input argument, used to derive ioc
*
* Return 0 if controller is removed from pci subsystem.
* Return -1 for other case.
*/
static int mpt3sas_remove_dead_ioc_func(void *arg)
{
struct MPT3SAS_ADAPTER *ioc = (struct MPT3SAS_ADAPTER *)arg;
struct pci_dev *pdev;
if ((ioc == NULL))
return -1;
pdev = ioc->pdev;
if ((pdev == NULL))
return -1;
pci_stop_and_remove_bus_device_locked(pdev);
return 0;
}
/**
* _base_fault_reset_work - workq handling ioc fault conditions
* @work: input argument, used to derive ioc
* Context: sleep.
*
* Return nothing.
*/
static void
_base_fault_reset_work(struct work_struct *work)
{
struct MPT3SAS_ADAPTER *ioc =
container_of(work, struct MPT3SAS_ADAPTER, fault_reset_work.work);
unsigned long flags;
u32 doorbell;
int rc;
struct task_struct *p;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->shost_recovery)
goto rearm_timer;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_MASK) {
pr_err(MPT3SAS_FMT "SAS host is non-operational !!!!\n",
ioc->name);
/*
* Call _scsih_flush_pending_cmds callback so that we flush all
* pending commands back to OS. This call is required to aovid
* deadlock at block layer. Dead IOC will fail to do diag reset,
* and this call is safe since dead ioc will never return any
* command back from HW.
*/
ioc->schedule_dead_ioc_flush_running_cmds(ioc);
/*
* Set remove_host flag early since kernel thread will
* take some time to execute.
*/
ioc->remove_host = 1;
/*Remove the Dead Host */
p = kthread_run(mpt3sas_remove_dead_ioc_func, ioc,
"mpt3sas_dead_ioc_%d", ioc->id);
if (IS_ERR(p))
pr_err(MPT3SAS_FMT
"%s: Running mpt3sas_dead_ioc thread failed !!!!\n",
ioc->name, __func__);
else
pr_err(MPT3SAS_FMT
"%s: Running mpt3sas_dead_ioc thread success !!!!\n",
ioc->name, __func__);
return; /* don't rearm timer */
}
if ((doorbell & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL) {
rc = mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
pr_warn(MPT3SAS_FMT "%s: hard reset: %s\n", ioc->name,
__func__, (rc == 0) ? "success" : "failed");
doorbell = mpt3sas_base_get_iocstate(ioc, 0);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
mpt3sas_base_fault_info(ioc, doorbell &
MPI2_DOORBELL_DATA_MASK);
if (rc && (doorbell & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_OPERATIONAL)
return; /* don't rearm timer */
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
rearm_timer:
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_start_watchdog - start the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_start_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
if (ioc->fault_reset_work_q)
return;
/* initialize fault polling */
INIT_DELAYED_WORK(&ioc->fault_reset_work, _base_fault_reset_work);
snprintf(ioc->fault_reset_work_q_name,
sizeof(ioc->fault_reset_work_q_name), "poll_%d_status", ioc->id);
ioc->fault_reset_work_q =
create_singlethread_workqueue(ioc->fault_reset_work_q_name);
if (!ioc->fault_reset_work_q) {
pr_err(MPT3SAS_FMT "%s: failed (line=%d)\n",
ioc->name, __func__, __LINE__);
return;
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
if (ioc->fault_reset_work_q)
queue_delayed_work(ioc->fault_reset_work_q,
&ioc->fault_reset_work,
msecs_to_jiffies(FAULT_POLLING_INTERVAL));
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
}
/**
* mpt3sas_base_stop_watchdog - stop the fault_reset_work_q
* @ioc: per adapter object
* Context: sleep.
*
* Return nothing.
*/
void
mpt3sas_base_stop_watchdog(struct MPT3SAS_ADAPTER *ioc)
{
unsigned long flags;
struct workqueue_struct *wq;
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
wq = ioc->fault_reset_work_q;
ioc->fault_reset_work_q = NULL;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if (wq) {
if (!cancel_delayed_work_sync(&ioc->fault_reset_work))
flush_workqueue(wq);
destroy_workqueue(wq);
}
}
/**
* mpt3sas_base_fault_info - verbose translation of firmware FAULT code
* @ioc: per adapter object
* @fault_code: fault code
*
* Return nothing.
*/
void
mpt3sas_base_fault_info(struct MPT3SAS_ADAPTER *ioc , u16 fault_code)
{
pr_err(MPT3SAS_FMT "fault_state(0x%04x)!\n",
ioc->name, fault_code);
}
/**
* mpt3sas_halt_firmware - halt's mpt controller firmware
* @ioc: per adapter object
*
* For debugging timeout related issues. Writing 0xCOFFEE00
* to the doorbell register will halt controller firmware. With
* the purpose to stop both driver and firmware, the enduser can
* obtain a ring buffer from controller UART.
*/
void
mpt3sas_halt_firmware(struct MPT3SAS_ADAPTER *ioc)
{
u32 doorbell;
if (!ioc->fwfault_debug)
return;
dump_stack();
doorbell = readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
mpt3sas_base_fault_info(ioc , doorbell);
else {
writel(0xC0FFEE00, &ioc->chip->Doorbell);
pr_err(MPT3SAS_FMT "Firmware is halted due to command timeout\n",
ioc->name);
}
if (ioc->fwfault_debug == 2)
for (;;)
;
else
panic("panic in %s\n", __func__);
}
#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
/**
* _base_sas_ioc_info - verbose translation of the ioc status
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
* @request_hdr: request mf
*
* Return nothing.
*/
static void
_base_sas_ioc_info(struct MPT3SAS_ADAPTER *ioc, MPI2DefaultReply_t *mpi_reply,
MPI2RequestHeader_t *request_hdr)
{
u16 ioc_status = le16_to_cpu(mpi_reply->IOCStatus) &
MPI2_IOCSTATUS_MASK;
char *desc = NULL;
u16 frame_sz;
char *func_str = NULL;
/* SCSI_IO, RAID_PASS are handled from _scsih_scsi_ioc_info */
if (request_hdr->Function == MPI2_FUNCTION_SCSI_IO_REQUEST ||
request_hdr->Function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH ||
request_hdr->Function == MPI2_FUNCTION_EVENT_NOTIFICATION)
return;
if (ioc_status == MPI2_IOCSTATUS_CONFIG_INVALID_PAGE)
return;
switch (ioc_status) {
/****************************************************************************
* Common IOCStatus values for all replies
****************************************************************************/
case MPI2_IOCSTATUS_INVALID_FUNCTION:
desc = "invalid function";
break;
case MPI2_IOCSTATUS_BUSY:
desc = "busy";
break;
case MPI2_IOCSTATUS_INVALID_SGL:
desc = "invalid sgl";
break;
case MPI2_IOCSTATUS_INTERNAL_ERROR:
desc = "internal error";
break;
case MPI2_IOCSTATUS_INVALID_VPID:
desc = "invalid vpid";
break;
case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES:
desc = "insufficient resources";
break;
case MPI2_IOCSTATUS_INVALID_FIELD:
desc = "invalid field";
break;
case MPI2_IOCSTATUS_INVALID_STATE:
desc = "invalid state";
break;
case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED:
desc = "op state not supported";
break;
/****************************************************************************
* Config IOCStatus values
****************************************************************************/
case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION:
desc = "config invalid action";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE:
desc = "config invalid type";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE:
desc = "config invalid page";
break;
case MPI2_IOCSTATUS_CONFIG_INVALID_DATA:
desc = "config invalid data";
break;
case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS:
desc = "config no defaults";
break;
case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT:
desc = "config cant commit";
break;
/****************************************************************************
* SCSI IO Reply
****************************************************************************/
case MPI2_IOCSTATUS_SCSI_RECOVERED_ERROR:
case MPI2_IOCSTATUS_SCSI_INVALID_DEVHANDLE:
case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE:
case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN:
case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN:
case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR:
case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR:
case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED:
case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH:
case MPI2_IOCSTATUS_SCSI_TASK_MGMT_FAILED:
case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED:
case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED:
break;
/****************************************************************************
* For use by SCSI Initiator and SCSI Target end-to-end data protection
****************************************************************************/
case MPI2_IOCSTATUS_EEDP_GUARD_ERROR:
desc = "eedp guard error";
break;
case MPI2_IOCSTATUS_EEDP_REF_TAG_ERROR:
desc = "eedp ref tag error";
break;
case MPI2_IOCSTATUS_EEDP_APP_TAG_ERROR:
desc = "eedp app tag error";
break;
/****************************************************************************
* SCSI Target values
****************************************************************************/
case MPI2_IOCSTATUS_TARGET_INVALID_IO_INDEX:
desc = "target invalid io index";
break;
case MPI2_IOCSTATUS_TARGET_ABORTED:
desc = "target aborted";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONN_RETRYABLE:
desc = "target no conn retryable";
break;
case MPI2_IOCSTATUS_TARGET_NO_CONNECTION:
desc = "target no connection";
break;
case MPI2_IOCSTATUS_TARGET_XFER_COUNT_MISMATCH:
desc = "target xfer count mismatch";
break;
case MPI2_IOCSTATUS_TARGET_DATA_OFFSET_ERROR:
desc = "target data offset error";
break;
case MPI2_IOCSTATUS_TARGET_TOO_MUCH_WRITE_DATA:
desc = "target too much write data";
break;
case MPI2_IOCSTATUS_TARGET_IU_TOO_SHORT:
desc = "target iu too short";
break;
case MPI2_IOCSTATUS_TARGET_ACK_NAK_TIMEOUT:
desc = "target ack nak timeout";
break;
case MPI2_IOCSTATUS_TARGET_NAK_RECEIVED:
desc = "target nak received";
break;
/****************************************************************************
* Serial Attached SCSI values
****************************************************************************/
case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED:
desc = "smp request failed";
break;
case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN:
desc = "smp data overrun";
break;
/****************************************************************************
* Diagnostic Buffer Post / Diagnostic Release values
****************************************************************************/
case MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED:
desc = "diagnostic released";
break;
default:
break;
}
if (!desc)
return;
switch (request_hdr->Function) {
case MPI2_FUNCTION_CONFIG:
frame_sz = sizeof(Mpi2ConfigRequest_t) + ioc->sge_size;
func_str = "config_page";
break;
case MPI2_FUNCTION_SCSI_TASK_MGMT:
frame_sz = sizeof(Mpi2SCSITaskManagementRequest_t);
func_str = "task_mgmt";
break;
case MPI2_FUNCTION_SAS_IO_UNIT_CONTROL:
frame_sz = sizeof(Mpi2SasIoUnitControlRequest_t);
func_str = "sas_iounit_ctl";
break;
case MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR:
frame_sz = sizeof(Mpi2SepRequest_t);
func_str = "enclosure";
break;
case MPI2_FUNCTION_IOC_INIT:
frame_sz = sizeof(Mpi2IOCInitRequest_t);
func_str = "ioc_init";
break;
case MPI2_FUNCTION_PORT_ENABLE:
frame_sz = sizeof(Mpi2PortEnableRequest_t);
func_str = "port_enable";
break;
case MPI2_FUNCTION_SMP_PASSTHROUGH:
frame_sz = sizeof(Mpi2SmpPassthroughRequest_t) + ioc->sge_size;
func_str = "smp_passthru";
break;
default:
frame_sz = 32;
func_str = "unknown";
break;
}
pr_warn(MPT3SAS_FMT "ioc_status: %s(0x%04x), request(0x%p),(%s)\n",
ioc->name, desc, ioc_status, request_hdr, func_str);
_debug_dump_mf(request_hdr, frame_sz/4);
}
/**
* _base_display_event_data - verbose translation of firmware asyn events
* @ioc: per adapter object
* @mpi_reply: reply mf payload returned from firmware
*
* Return nothing.
*/
static void
_base_display_event_data(struct MPT3SAS_ADAPTER *ioc,
Mpi2EventNotificationReply_t *mpi_reply)
{
char *desc = NULL;
u16 event;
if (!(ioc->logging_level & MPT_DEBUG_EVENTS))
return;
event = le16_to_cpu(mpi_reply->Event);
switch (event) {
case MPI2_EVENT_LOG_DATA:
desc = "Log Data";
break;
case MPI2_EVENT_STATE_CHANGE:
desc = "Status Change";
break;
case MPI2_EVENT_HARD_RESET_RECEIVED:
desc = "Hard Reset Received";
break;
case MPI2_EVENT_EVENT_CHANGE:
desc = "Event Change";
break;
case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE:
desc = "Device Status Change";
break;
case MPI2_EVENT_IR_OPERATION_STATUS:
desc = "IR Operation Status";
break;
case MPI2_EVENT_SAS_DISCOVERY:
{
Mpi2EventDataSasDiscovery_t *event_data =
(Mpi2EventDataSasDiscovery_t *)mpi_reply->EventData;
pr_info(MPT3SAS_FMT "Discovery: (%s)", ioc->name,
(event_data->ReasonCode == MPI2_EVENT_SAS_DISC_RC_STARTED) ?
"start" : "stop");
if (event_data->DiscoveryStatus)
pr_info("discovery_status(0x%08x)",
le32_to_cpu(event_data->DiscoveryStatus));
pr_info("\n");
return;
}
case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE:
desc = "SAS Broadcast Primitive";
break;
case MPI2_EVENT_SAS_INIT_DEVICE_STATUS_CHANGE:
desc = "SAS Init Device Status Change";
break;
case MPI2_EVENT_SAS_INIT_TABLE_OVERFLOW:
desc = "SAS Init Table Overflow";
break;
case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST:
desc = "SAS Topology Change List";
break;
case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE:
desc = "SAS Enclosure Device Status Change";
break;
case MPI2_EVENT_IR_VOLUME:
desc = "IR Volume";
break;
case MPI2_EVENT_IR_PHYSICAL_DISK:
desc = "IR Physical Disk";
break;
case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST:
desc = "IR Configuration Change List";
break;
case MPI2_EVENT_LOG_ENTRY_ADDED:
desc = "Log Entry Added";
break;
case MPI2_EVENT_TEMP_THRESHOLD:
desc = "Temperature Threshold";
break;
}
if (!desc)
return;
pr_info(MPT3SAS_FMT "%s\n", ioc->name, desc);
}
#endif
/**
* _base_sas_log_info - verbose translation of firmware log info
* @ioc: per adapter object
* @log_info: log info
*
* Return nothing.
*/
static void
_base_sas_log_info(struct MPT3SAS_ADAPTER *ioc , u32 log_info)
{
union loginfo_type {
u32 loginfo;
struct {
u32 subcode:16;
u32 code:8;
u32 originator:4;
u32 bus_type:4;
} dw;
};
union loginfo_type sas_loginfo;
char *originator_str = NULL;
sas_loginfo.loginfo = log_info;
if (sas_loginfo.dw.bus_type != 3 /*SAS*/)
return;
/* each nexus loss loginfo */
if (log_info == 0x31170000)
return;
/* eat the loginfos associated with task aborts */
if (ioc->ignore_loginfos && (log_info == 0x30050000 || log_info ==
0x31140000 || log_info == 0x31130000))
return;
switch (sas_loginfo.dw.originator) {
case 0:
originator_str = "IOP";
break;
case 1:
originator_str = "PL";
break;
case 2:
originator_str = "IR";
break;
}
pr_warn(MPT3SAS_FMT
"log_info(0x%08x): originator(%s), code(0x%02x), sub_code(0x%04x)\n",
ioc->name, log_info,
originator_str, sas_loginfo.dw.code,
sas_loginfo.dw.subcode);
}
/**
* _base_display_reply_info -
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return nothing.
*/
static void
_base_display_reply_info(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
u32 loginfo = 0;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (unlikely(!mpi_reply)) {
pr_err(MPT3SAS_FMT "mpi_reply not valid at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
return;
}
ioc_status = le16_to_cpu(mpi_reply->IOCStatus);
#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
if ((ioc_status & MPI2_IOCSTATUS_MASK) &&
(ioc->logging_level & MPT_DEBUG_REPLY)) {
_base_sas_ioc_info(ioc , mpi_reply,
mpt3sas_base_get_msg_frame(ioc, smid));
}
#endif
if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) {
loginfo = le32_to_cpu(mpi_reply->IOCLogInfo);
_base_sas_log_info(ioc, loginfo);
}
if (ioc_status || loginfo) {
ioc_status &= MPI2_IOCSTATUS_MASK;
mpt3sas_trigger_mpi(ioc, ioc_status, loginfo);
}
}
/**
* mpt3sas_base_done - base internal command completion routine
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_base_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (mpi_reply && mpi_reply->Function == MPI2_FUNCTION_EVENT_ACK)
return 1;
if (ioc->base_cmds.status == MPT3_CMD_NOT_USED)
return 1;
ioc->base_cmds.status |= MPT3_CMD_COMPLETE;
if (mpi_reply) {
ioc->base_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->base_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
}
ioc->base_cmds.status &= ~MPT3_CMD_PENDING;
complete(&ioc->base_cmds.done);
return 1;
}
/**
* _base_async_event - main callback handler for firmware asyn events
* @ioc: per adapter object
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
static u8
_base_async_event(struct MPT3SAS_ADAPTER *ioc, u8 msix_index, u32 reply)
{
Mpi2EventNotificationReply_t *mpi_reply;
Mpi2EventAckRequest_t *ack_request;
u16 smid;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_EVENT_NOTIFICATION)
return 1;
#ifdef CONFIG_SCSI_MPT3SAS_LOGGING
_base_display_event_data(ioc, mpi_reply);
#endif
if (!(mpi_reply->AckRequired & MPI2_EVENT_NOTIFICATION_ACK_REQUIRED))
goto out;
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
goto out;
}
ack_request = mpt3sas_base_get_msg_frame(ioc, smid);
memset(ack_request, 0, sizeof(Mpi2EventAckRequest_t));
ack_request->Function = MPI2_FUNCTION_EVENT_ACK;
ack_request->Event = mpi_reply->Event;
ack_request->EventContext = mpi_reply->EventContext;
ack_request->VF_ID = 0; /* TODO */
ack_request->VP_ID = 0;
mpt3sas_base_put_smid_default(ioc, smid);
out:
/* scsih callback handler */
mpt3sas_scsih_event_callback(ioc, msix_index, reply);
/* ctl callback handler */
mpt3sas_ctl_event_callback(ioc, msix_index, reply);
return 1;
}
/**
* _base_get_cb_idx - obtain the callback index
* @ioc: per adapter object
* @smid: system request message index
*
* Return callback index.
*/
static u8
_base_get_cb_idx(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
int i;
u8 cb_idx;
if (smid < ioc->hi_priority_smid) {
i = smid - 1;
cb_idx = ioc->scsi_lookup[i].cb_idx;
} else if (smid < ioc->internal_smid) {
i = smid - ioc->hi_priority_smid;
cb_idx = ioc->hpr_lookup[i].cb_idx;
} else if (smid <= ioc->hba_queue_depth) {
i = smid - ioc->internal_smid;
cb_idx = ioc->internal_lookup[i].cb_idx;
} else
cb_idx = 0xFF;
return cb_idx;
}
/**
* _base_mask_interrupts - disable interrupts
* @ioc: per adapter object
*
* Disabling ResetIRQ, Reply and Doorbell Interrupts
*
* Return nothing.
*/
static void
_base_mask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
ioc->mask_interrupts = 1;
him_register = readl(&ioc->chip->HostInterruptMask);
him_register |= MPI2_HIM_DIM + MPI2_HIM_RIM + MPI2_HIM_RESET_IRQ_MASK;
writel(him_register, &ioc->chip->HostInterruptMask);
readl(&ioc->chip->HostInterruptMask);
}
/**
* _base_unmask_interrupts - enable interrupts
* @ioc: per adapter object
*
* Enabling only Reply Interrupts
*
* Return nothing.
*/
static void
_base_unmask_interrupts(struct MPT3SAS_ADAPTER *ioc)
{
u32 him_register;
him_register = readl(&ioc->chip->HostInterruptMask);
him_register &= ~MPI2_HIM_RIM;
writel(him_register, &ioc->chip->HostInterruptMask);
ioc->mask_interrupts = 0;
}
union reply_descriptor {
u64 word;
struct {
u32 low;
u32 high;
} u;
};
/**
* _base_interrupt - MPT adapter (IOC) specific interrupt handler.
* @irq: irq number (not used)
* @bus_id: bus identifier cookie == pointer to MPT_ADAPTER structure
* @r: pt_regs pointer (not used)
*
* Return IRQ_HANDLE if processed, else IRQ_NONE.
*/
static irqreturn_t
_base_interrupt(int irq, void *bus_id)
{
struct adapter_reply_queue *reply_q = bus_id;
union reply_descriptor rd;
u32 completed_cmds;
u8 request_desript_type;
u16 smid;
u8 cb_idx;
u32 reply;
u8 msix_index = reply_q->msix_index;
struct MPT3SAS_ADAPTER *ioc = reply_q->ioc;
Mpi2ReplyDescriptorsUnion_t *rpf;
u8 rc;
if (ioc->mask_interrupts)
return IRQ_NONE;
if (!atomic_add_unless(&reply_q->busy, 1, 1))
return IRQ_NONE;
rpf = &reply_q->reply_post_free[reply_q->reply_post_host_index];
request_desript_type = rpf->Default.ReplyFlags
& MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED) {
atomic_dec(&reply_q->busy);
return IRQ_NONE;
}
completed_cmds = 0;
cb_idx = 0xFF;
do {
rd.word = le64_to_cpu(rpf->Words);
if (rd.u.low == UINT_MAX || rd.u.high == UINT_MAX)
goto out;
reply = 0;
smid = le16_to_cpu(rpf->Default.DescriptorTypeDependent1);
if (request_desript_type ==
MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS ||
request_desript_type ==
MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, 0);
if (rc)
mpt3sas_base_free_smid(ioc, smid);
}
} else if (request_desript_type ==
MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) {
reply = le32_to_cpu(
rpf->AddressReply.ReplyFrameAddress);
if (reply > ioc->reply_dma_max_address ||
reply < ioc->reply_dma_min_address)
reply = 0;
if (smid) {
cb_idx = _base_get_cb_idx(ioc, smid);
if ((likely(cb_idx < MPT_MAX_CALLBACKS)) &&
(likely(mpt_callbacks[cb_idx] != NULL))) {
rc = mpt_callbacks[cb_idx](ioc, smid,
msix_index, reply);
if (reply)
_base_display_reply_info(ioc,
smid, msix_index, reply);
if (rc)
mpt3sas_base_free_smid(ioc,
smid);
}
} else {
_base_async_event(ioc, msix_index, reply);
}
/* reply free queue handling */
if (reply) {
ioc->reply_free_host_index =
(ioc->reply_free_host_index ==
(ioc->reply_free_queue_depth - 1)) ?
0 : ioc->reply_free_host_index + 1;
ioc->reply_free[ioc->reply_free_host_index] =
cpu_to_le32(reply);
wmb();
writel(ioc->reply_free_host_index,
&ioc->chip->ReplyFreeHostIndex);
}
}
rpf->Words = cpu_to_le64(ULLONG_MAX);
reply_q->reply_post_host_index =
(reply_q->reply_post_host_index ==
(ioc->reply_post_queue_depth - 1)) ? 0 :
reply_q->reply_post_host_index + 1;
request_desript_type =
reply_q->reply_post_free[reply_q->reply_post_host_index].
Default.ReplyFlags & MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK;
completed_cmds++;
if (request_desript_type == MPI2_RPY_DESCRIPT_FLAGS_UNUSED)
goto out;
if (!reply_q->reply_post_host_index)
rpf = reply_q->reply_post_free;
else
rpf++;
} while (1);
out:
if (!completed_cmds) {
atomic_dec(&reply_q->busy);
return IRQ_NONE;
}
wmb();
writel(reply_q->reply_post_host_index | (msix_index <<
MPI2_RPHI_MSIX_INDEX_SHIFT), &ioc->chip->ReplyPostHostIndex);
atomic_dec(&reply_q->busy);
return IRQ_HANDLED;
}
/**
* _base_is_controller_msix_enabled - is controller support muli-reply queues
* @ioc: per adapter object
*
*/
static inline int
_base_is_controller_msix_enabled(struct MPT3SAS_ADAPTER *ioc)
{
return (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_MSI_X_INDEX) && ioc->msix_enable;
}
/**
* mpt3sas_base_flush_reply_queues - flushing the MSIX reply queues
* @ioc: per adapter object
* Context: ISR conext
*
* Called when a Task Management request has completed. We want
* to flush the other reply queues so all the outstanding IO has been
* completed back to OS before we process the TM completetion.
*
* Return nothing.
*/
void
mpt3sas_base_flush_reply_queues(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q;
/* If MSIX capability is turned off
* then multi-queues are not enabled
*/
if (!_base_is_controller_msix_enabled(ioc))
return;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
if (ioc->shost_recovery)
return;
/* TMs are on msix_index == 0 */
if (reply_q->msix_index == 0)
continue;
_base_interrupt(reply_q->vector, (void *)reply_q);
}
}
/**
* mpt3sas_base_release_callback_handler - clear interrupt callback handler
* @cb_idx: callback index
*
* Return nothing.
*/
void
mpt3sas_base_release_callback_handler(u8 cb_idx)
{
mpt_callbacks[cb_idx] = NULL;
}
/**
* mpt3sas_base_register_callback_handler - obtain index for the interrupt callback handler
* @cb_func: callback function
*
* Returns cb_func.
*/
u8
mpt3sas_base_register_callback_handler(MPT_CALLBACK cb_func)
{
u8 cb_idx;
for (cb_idx = MPT_MAX_CALLBACKS-1; cb_idx; cb_idx--)
if (mpt_callbacks[cb_idx] == NULL)
break;
mpt_callbacks[cb_idx] = cb_func;
return cb_idx;
}
/**
* mpt3sas_base_initialize_callback_handler - initialize the interrupt callback handler
*
* Return nothing.
*/
void
mpt3sas_base_initialize_callback_handler(void)
{
u8 cb_idx;
for (cb_idx = 0; cb_idx < MPT_MAX_CALLBACKS; cb_idx++)
mpt3sas_base_release_callback_handler(cb_idx);
}
/**
* _base_build_zero_len_sge - build zero length sg entry
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u32 flags_length = (u32)((MPI2_SGE_FLAGS_LAST_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_END_OF_LIST |
MPI2_SGE_FLAGS_SIMPLE_ELEMENT) <<
MPI2_SGE_FLAGS_SHIFT);
ioc->base_add_sg_single(paddr, flags_length, -1);
}
/**
* _base_add_sg_single_32 - Place a simple 32 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_32(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple32_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_32_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le32(dma_addr);
}
/**
* _base_add_sg_single_64 - Place a simple 64 bit SGE at address pAddr.
* @paddr: virtual address for SGE
* @flags_length: SGE flags and data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_64(void *paddr, u32 flags_length, dma_addr_t dma_addr)
{
Mpi2SGESimple64_t *sgel = paddr;
flags_length |= (MPI2_SGE_FLAGS_64_BIT_ADDRESSING |
MPI2_SGE_FLAGS_SYSTEM_ADDRESS) << MPI2_SGE_FLAGS_SHIFT;
sgel->FlagsLength = cpu_to_le32(flags_length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_get_chain_buffer_tracker - obtain chain tracker
* @ioc: per adapter object
* @smid: smid associated to an IO request
*
* Returns chain tracker(from ioc->free_chain_list)
*/
static struct chain_tracker *
_base_get_chain_buffer_tracker(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
struct chain_tracker *chain_req;
unsigned long flags;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->free_chain_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
dfailprintk(ioc, pr_warn(MPT3SAS_FMT
"chain buffers not available\n", ioc->name));
return NULL;
}
chain_req = list_entry(ioc->free_chain_list.next,
struct chain_tracker, tracker_list);
list_del_init(&chain_req->tracker_list);
list_add_tail(&chain_req->tracker_list,
&ioc->scsi_lookup[smid - 1].chain_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return chain_req;
}
/**
* _base_build_sg - build generic sg
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u32 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_END_OF_BUFFER | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
/* incr sgel */
psge += ioc->sge_size;
/* READ sgel last */
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST | MPI2_SGE_FLAGS_HOST_TO_IOC);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_out_sz, data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = (MPI2_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_SGE_FLAGS_LAST_ELEMENT | MPI2_SGE_FLAGS_END_OF_BUFFER |
MPI2_SGE_FLAGS_END_OF_LIST);
sgl_flags = sgl_flags << MPI2_SGE_FLAGS_SHIFT;
ioc->base_add_sg_single(psge, sgl_flags |
data_in_sz, data_in_dma);
}
}
/* IEEE format sgls */
/**
* _base_add_sg_single_ieee - add sg element for IEEE format
* @paddr: virtual address for SGE
* @flags: SGE flags
* @chain_offset: number of 128 byte elements from start of segment
* @length: data transfer length
* @dma_addr: Physical address
*
* Return nothing.
*/
static void
_base_add_sg_single_ieee(void *paddr, u8 flags, u8 chain_offset, u32 length,
dma_addr_t dma_addr)
{
Mpi25IeeeSgeChain64_t *sgel = paddr;
sgel->Flags = flags;
sgel->NextChainOffset = chain_offset;
sgel->Length = cpu_to_le32(length);
sgel->Address = cpu_to_le64(dma_addr);
}
/**
* _base_build_zero_len_sge_ieee - build zero length sg entry for IEEE format
* @ioc: per adapter object
* @paddr: virtual address for SGE
*
* Create a zero length scatter gather entry to insure the IOCs hardware has
* something to use if the target device goes brain dead and tries
* to send data even when none is asked for.
*
* Return nothing.
*/
static void
_base_build_zero_len_sge_ieee(struct MPT3SAS_ADAPTER *ioc, void *paddr)
{
u8 sgl_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST);
_base_add_sg_single_ieee(paddr, sgl_flags, 0, 0, -1);
}
/**
* _base_build_sg_scmd_ieee - main sg creation routine for IEEE format
* @ioc: per adapter object
* @scmd: scsi command
* @smid: system request message index
* Context: none.
*
* The main routine that builds scatter gather table from a given
* scsi request sent via the .queuecommand main handler.
*
* Returns 0 success, anything else error
*/
static int
_base_build_sg_scmd_ieee(struct MPT3SAS_ADAPTER *ioc,
struct scsi_cmnd *scmd, u16 smid)
{
Mpi2SCSIIORequest_t *mpi_request;
dma_addr_t chain_dma;
struct scatterlist *sg_scmd;
void *sg_local, *chain;
u32 chain_offset;
u32 chain_length;
int sges_left;
u32 sges_in_segment;
u8 simple_sgl_flags;
u8 simple_sgl_flags_last;
u8 chain_sgl_flags;
struct chain_tracker *chain_req;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
/* init scatter gather flags */
simple_sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
simple_sgl_flags_last = simple_sgl_flags |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
chain_sgl_flags = MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
sg_scmd = scsi_sglist(scmd);
sges_left = scsi_dma_map(scmd);
if (!sges_left) {
sdev_printk(KERN_ERR, scmd->device,
"pci_map_sg failed: request for %d bytes!\n",
scsi_bufflen(scmd));
return -ENOMEM;
}
sg_local = &mpi_request->SGL;
sges_in_segment = (ioc->request_sz -
offsetof(Mpi2SCSIIORequest_t, SGL))/ioc->sge_size_ieee;
if (sges_left <= sges_in_segment)
goto fill_in_last_segment;
mpi_request->ChainOffset = (sges_in_segment - 1 /* chain element */) +
(offsetof(Mpi2SCSIIORequest_t, SGL)/ioc->sge_size_ieee);
/* fill in main message segment when there is a chain following */
while (sges_in_segment > 1) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
/* initializing the pointers */
chain_req = _base_get_chain_buffer_tracker(ioc, smid);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
do {
sges_in_segment = (sges_left <=
ioc->max_sges_in_chain_message) ? sges_left :
ioc->max_sges_in_chain_message;
chain_offset = (sges_left == sges_in_segment) ?
0 : sges_in_segment;
chain_length = sges_in_segment * ioc->sge_size_ieee;
if (chain_offset)
chain_length += ioc->sge_size_ieee;
_base_add_sg_single_ieee(sg_local, chain_sgl_flags,
chain_offset, chain_length, chain_dma);
sg_local = chain;
if (!chain_offset)
goto fill_in_last_segment;
/* fill in chain segments */
while (sges_in_segment) {
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
sges_in_segment--;
}
chain_req = _base_get_chain_buffer_tracker(ioc, smid);
if (!chain_req)
return -1;
chain = chain_req->chain_buffer;
chain_dma = chain_req->chain_buffer_dma;
} while (1);
fill_in_last_segment:
/* fill the last segment */
while (sges_left) {
if (sges_left == 1)
_base_add_sg_single_ieee(sg_local,
simple_sgl_flags_last, 0, sg_dma_len(sg_scmd),
sg_dma_address(sg_scmd));
else
_base_add_sg_single_ieee(sg_local, simple_sgl_flags, 0,
sg_dma_len(sg_scmd), sg_dma_address(sg_scmd));
sg_scmd = sg_next(sg_scmd);
sg_local += ioc->sge_size_ieee;
sges_left--;
}
return 0;
}
/**
* _base_build_sg_ieee - build generic sg for IEEE format
* @ioc: per adapter object
* @psge: virtual address for SGE
* @data_out_dma: physical address for WRITES
* @data_out_sz: data xfer size for WRITES
* @data_in_dma: physical address for READS
* @data_in_sz: data xfer size for READS
*
* Return nothing.
*/
static void
_base_build_sg_ieee(struct MPT3SAS_ADAPTER *ioc, void *psge,
dma_addr_t data_out_dma, size_t data_out_sz, dma_addr_t data_in_dma,
size_t data_in_sz)
{
u8 sgl_flags;
if (!data_out_sz && !data_in_sz) {
_base_build_zero_len_sge_ieee(ioc, psge);
return;
}
if (data_out_sz && data_in_sz) {
/* WRITE sgel first */
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
/* incr sgel */
psge += ioc->sge_size_ieee;
/* READ sgel last */
sgl_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
} else if (data_out_sz) /* WRITE */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_out_sz,
data_out_dma);
} else if (data_in_sz) /* READ */ {
sgl_flags = MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT |
MPI25_IEEE_SGE_FLAGS_END_OF_LIST |
MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR;
_base_add_sg_single_ieee(psge, sgl_flags, 0, data_in_sz,
data_in_dma);
}
}
#define convert_to_kb(x) ((x) << (PAGE_SHIFT - 10))
/**
* _base_config_dma_addressing - set dma addressing
* @ioc: per adapter object
* @pdev: PCI device struct
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_config_dma_addressing(struct MPT3SAS_ADAPTER *ioc, struct pci_dev *pdev)
{
struct sysinfo s;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
u64 consistent_dma_mask;
if (ioc->dma_mask)
consistent_dma_mask = DMA_BIT_MASK(64);
else
consistent_dma_mask = DMA_BIT_MASK(32);
if (sizeof(dma_addr_t) > 4) {
const uint64_t required_mask =
dma_get_required_mask(&pdev->dev);
if ((required_mask > DMA_BIT_MASK(32)) &&
!pci_set_dma_mask(pdev, DMA_BIT_MASK(64)) &&
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
!pci_set_consistent_dma_mask(pdev, consistent_dma_mask)) {
ioc->base_add_sg_single = &_base_add_sg_single_64;
ioc->sge_size = sizeof(Mpi2SGESimple64_t);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
ioc->dma_mask = 64;
goto out;
}
}
if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))
&& !pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32))) {
ioc->base_add_sg_single = &_base_add_sg_single_32;
ioc->sge_size = sizeof(Mpi2SGESimple32_t);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
ioc->dma_mask = 32;
} else
return -ENODEV;
out:
si_meminfo(&s);
pr_info(MPT3SAS_FMT
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
"%d BIT PCI BUS DMA ADDRESSING SUPPORTED, total mem (%ld kB)\n",
ioc->name, ioc->dma_mask, convert_to_kb(s.totalram));
return 0;
}
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
static int
_base_change_consistent_dma_mask(struct MPT3SAS_ADAPTER *ioc,
struct pci_dev *pdev)
{
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64))) {
if (pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32)))
return -ENODEV;
}
return 0;
}
/**
* _base_check_enable_msix - checks MSIX capabable.
* @ioc: per adapter object
*
* Check to see if card is capable of MSIX, and set number
* of available msix vectors
*/
static int
_base_check_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
int base;
u16 message_control;
base = pci_find_capability(ioc->pdev, PCI_CAP_ID_MSIX);
if (!base) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT "msix not supported\n",
ioc->name));
return -EINVAL;
}
/* get msix vector count */
pci_read_config_word(ioc->pdev, base + 2, &message_control);
ioc->msix_vector_count = (message_control & 0x3FF) + 1;
if (ioc->msix_vector_count > 8)
ioc->msix_vector_count = 8;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"msix is supported, vector_count(%d)\n",
ioc->name, ioc->msix_vector_count));
return 0;
}
/**
* _base_free_irq - free irq
* @ioc: per adapter object
*
* Freeing respective reply_queue from the list.
*/
static void
_base_free_irq(struct MPT3SAS_ADAPTER *ioc)
{
struct adapter_reply_queue *reply_q, *next;
if (list_empty(&ioc->reply_queue_list))
return;
list_for_each_entry_safe(reply_q, next, &ioc->reply_queue_list, list) {
list_del(&reply_q->list);
irq_set_affinity_hint(reply_q->vector, NULL);
free_cpumask_var(reply_q->affinity_hint);
synchronize_irq(reply_q->vector);
free_irq(reply_q->vector, reply_q);
kfree(reply_q);
}
}
/**
* _base_request_irq - request irq
* @ioc: per adapter object
* @index: msix index into vector table
* @vector: irq vector
*
* Inserting respective reply_queue into the list.
*/
static int
_base_request_irq(struct MPT3SAS_ADAPTER *ioc, u8 index, u32 vector)
{
struct adapter_reply_queue *reply_q;
int r;
reply_q = kzalloc(sizeof(struct adapter_reply_queue), GFP_KERNEL);
if (!reply_q) {
pr_err(MPT3SAS_FMT "unable to allocate memory %d!\n",
ioc->name, (int)sizeof(struct adapter_reply_queue));
return -ENOMEM;
}
reply_q->ioc = ioc;
reply_q->msix_index = index;
reply_q->vector = vector;
if (!alloc_cpumask_var(&reply_q->affinity_hint, GFP_KERNEL))
return -ENOMEM;
cpumask_clear(reply_q->affinity_hint);
atomic_set(&reply_q->busy, 0);
if (ioc->msix_enable)
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d-msix%d",
MPT3SAS_DRIVER_NAME, ioc->id, index);
else
snprintf(reply_q->name, MPT_NAME_LENGTH, "%s%d",
MPT3SAS_DRIVER_NAME, ioc->id);
r = request_irq(vector, _base_interrupt, IRQF_SHARED, reply_q->name,
reply_q);
if (r) {
pr_err(MPT3SAS_FMT "unable to allocate interrupt %d!\n",
reply_q->name, vector);
kfree(reply_q);
return -EBUSY;
}
INIT_LIST_HEAD(&reply_q->list);
list_add_tail(&reply_q->list, &ioc->reply_queue_list);
return 0;
}
/**
* _base_assign_reply_queues - assigning msix index for each cpu
* @ioc: per adapter object
*
* The enduser would need to set the affinity via /proc/irq/#/smp_affinity
*
* It would nice if we could call irq_set_affinity, however it is not
* an exported symbol
*/
static void
_base_assign_reply_queues(struct MPT3SAS_ADAPTER *ioc)
{
unsigned int cpu, nr_cpus, nr_msix, index = 0;
struct adapter_reply_queue *reply_q;
if (!_base_is_controller_msix_enabled(ioc))
return;
memset(ioc->cpu_msix_table, 0, ioc->cpu_msix_table_sz);
nr_cpus = num_online_cpus();
nr_msix = ioc->reply_queue_count = min(ioc->reply_queue_count,
ioc->facts.MaxMSIxVectors);
if (!nr_msix)
return;
cpu = cpumask_first(cpu_online_mask);
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
unsigned int i, group = nr_cpus / nr_msix;
if (cpu >= nr_cpus)
break;
if (index < nr_cpus % nr_msix)
group++;
for (i = 0 ; i < group ; i++) {
ioc->cpu_msix_table[cpu] = index;
cpumask_or(reply_q->affinity_hint,
reply_q->affinity_hint, get_cpu_mask(cpu));
cpu = cpumask_next(cpu, cpu_online_mask);
}
if (irq_set_affinity_hint(reply_q->vector,
reply_q->affinity_hint))
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"error setting affinity hint for irq vector %d\n",
ioc->name, reply_q->vector));
index++;
}
}
/**
* _base_disable_msix - disables msix
* @ioc: per adapter object
*
*/
static void
_base_disable_msix(struct MPT3SAS_ADAPTER *ioc)
{
if (!ioc->msix_enable)
return;
pci_disable_msix(ioc->pdev);
ioc->msix_enable = 0;
}
/**
* _base_enable_msix - enables msix, failback to io_apic
* @ioc: per adapter object
*
*/
static int
_base_enable_msix(struct MPT3SAS_ADAPTER *ioc)
{
struct msix_entry *entries, *a;
int r;
int i;
u8 try_msix = 0;
if (msix_disable == -1 || msix_disable == 0)
try_msix = 1;
if (!try_msix)
goto try_ioapic;
if (_base_check_enable_msix(ioc) != 0)
goto try_ioapic;
ioc->reply_queue_count = min_t(int, ioc->cpu_count,
ioc->msix_vector_count);
printk(MPT3SAS_FMT "MSI-X vectors supported: %d, no of cores"
": %d, max_msix_vectors: %d\n", ioc->name, ioc->msix_vector_count,
ioc->cpu_count, max_msix_vectors);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
if (!ioc->rdpq_array_enable && max_msix_vectors == -1)
max_msix_vectors = 8;
if (max_msix_vectors > 0) {
ioc->reply_queue_count = min_t(int, max_msix_vectors,
ioc->reply_queue_count);
ioc->msix_vector_count = ioc->reply_queue_count;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
} else if (max_msix_vectors == 0)
goto try_ioapic;
entries = kcalloc(ioc->reply_queue_count, sizeof(struct msix_entry),
GFP_KERNEL);
if (!entries) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"kcalloc failed @ at %s:%d/%s() !!!\n",
ioc->name, __FILE__, __LINE__, __func__));
goto try_ioapic;
}
for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++)
a->entry = i;
r = pci_enable_msix_exact(ioc->pdev, entries, ioc->reply_queue_count);
if (r) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"pci_enable_msix_exact failed (r=%d) !!!\n",
ioc->name, r));
kfree(entries);
goto try_ioapic;
}
ioc->msix_enable = 1;
for (i = 0, a = entries; i < ioc->reply_queue_count; i++, a++) {
r = _base_request_irq(ioc, i, a->vector);
if (r) {
_base_free_irq(ioc);
_base_disable_msix(ioc);
kfree(entries);
goto try_ioapic;
}
}
kfree(entries);
return 0;
/* failback to io_apic interrupt routing */
try_ioapic:
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
ioc->reply_queue_count = 1;
r = _base_request_irq(ioc, 0, ioc->pdev->irq);
return r;
}
/**
* mpt3sas_base_map_resources - map in controller resources (io/irq/memap)
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_map_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
u32 memap_sz;
u32 pio_sz;
int i, r = 0;
u64 pio_chip = 0;
u64 chip_phys = 0;
struct adapter_reply_queue *reply_q;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n",
ioc->name, __func__));
ioc->bars = pci_select_bars(pdev, IORESOURCE_MEM);
if (pci_enable_device_mem(pdev)) {
pr_warn(MPT3SAS_FMT "pci_enable_device_mem: failed\n",
ioc->name);
ioc->bars = 0;
return -ENODEV;
}
if (pci_request_selected_regions(pdev, ioc->bars,
MPT3SAS_DRIVER_NAME)) {
pr_warn(MPT3SAS_FMT "pci_request_selected_regions: failed\n",
ioc->name);
ioc->bars = 0;
r = -ENODEV;
goto out_fail;
}
/* AER (Advanced Error Reporting) hooks */
pci_enable_pcie_error_reporting(pdev);
pci_set_master(pdev);
if (_base_config_dma_addressing(ioc, pdev) != 0) {
pr_warn(MPT3SAS_FMT "no suitable DMA mask for %s\n",
ioc->name, pci_name(pdev));
r = -ENODEV;
goto out_fail;
}
for (i = 0, memap_sz = 0, pio_sz = 0 ; i < DEVICE_COUNT_RESOURCE; i++) {
if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
if (pio_sz)
continue;
pio_chip = (u64)pci_resource_start(pdev, i);
pio_sz = pci_resource_len(pdev, i);
} else if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
if (memap_sz)
continue;
ioc->chip_phys = pci_resource_start(pdev, i);
chip_phys = (u64)ioc->chip_phys;
memap_sz = pci_resource_len(pdev, i);
ioc->chip = ioremap(ioc->chip_phys, memap_sz);
if (ioc->chip == NULL) {
pr_err(MPT3SAS_FMT "unable to map adapter memory!\n",
ioc->name);
r = -EINVAL;
goto out_fail;
}
}
}
_base_mask_interrupts(ioc);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
r = _base_get_ioc_facts(ioc, CAN_SLEEP);
if (r)
goto out_fail;
if (!ioc->rdpq_array_enable_assigned) {
ioc->rdpq_array_enable = ioc->rdpq_array_capable;
ioc->rdpq_array_enable_assigned = 1;
}
r = _base_enable_msix(ioc);
if (r)
goto out_fail;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list)
pr_info(MPT3SAS_FMT "%s: IRQ %d\n",
reply_q->name, ((ioc->msix_enable) ? "PCI-MSI-X enabled" :
"IO-APIC enabled"), reply_q->vector);
pr_info(MPT3SAS_FMT "iomem(0x%016llx), mapped(0x%p), size(%d)\n",
ioc->name, (unsigned long long)chip_phys, ioc->chip, memap_sz);
pr_info(MPT3SAS_FMT "ioport(0x%016llx), size(%d)\n",
ioc->name, (unsigned long long)pio_chip, pio_sz);
/* Save PCI configuration state for recovery from PCI AER/EEH errors */
pci_save_state(pdev);
return 0;
out_fail:
if (ioc->chip_phys)
iounmap(ioc->chip);
ioc->chip_phys = 0;
pci_release_selected_regions(ioc->pdev, ioc->bars);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
return r;
}
/**
* mpt3sas_base_get_msg_frame - obtain request mf pointer
* @ioc: per adapter object
* @smid: system request message index(smid zero is invalid)
*
* Returns virt pointer to message frame.
*/
void *
mpt3sas_base_get_msg_frame(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->request + (smid * ioc->request_sz));
}
/**
* mpt3sas_base_get_sense_buffer - obtain a sense buffer virt addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns virt pointer to sense buffer.
*/
void *
mpt3sas_base_get_sense_buffer(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return (void *)(ioc->sense + ((smid - 1) * SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_sense_buffer_dma - obtain a sense buffer dma addr
* @ioc: per adapter object
* @smid: system request message index
*
* Returns phys pointer to the low 32bit address of the sense buffer.
*/
__le32
mpt3sas_base_get_sense_buffer_dma(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
return cpu_to_le32(ioc->sense_dma + ((smid - 1) *
SCSI_SENSE_BUFFERSIZE));
}
/**
* mpt3sas_base_get_reply_virt_addr - obtain reply frames virt address
* @ioc: per adapter object
* @phys_addr: lower 32 physical addr of the reply
*
* Converts 32bit lower physical addr into a virt address.
*/
void *
mpt3sas_base_get_reply_virt_addr(struct MPT3SAS_ADAPTER *ioc, u32 phys_addr)
{
if (!phys_addr)
return NULL;
return ioc->reply + (phys_addr - (u32)ioc->reply_dma);
}
/**
* mpt3sas_base_get_smid - obtain a free smid from internal queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->internal_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
pr_err(MPT3SAS_FMT "%s: smid not available\n",
ioc->name, __func__);
return 0;
}
request = list_entry(ioc->internal_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_get_smid_scsiio - obtain a free smid from scsiio queue
* @ioc: per adapter object
* @cb_idx: callback index
* @scmd: pointer to scsi command object
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_scsiio(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx,
struct scsi_cmnd *scmd)
{
unsigned long flags;
struct scsiio_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
pr_err(MPT3SAS_FMT "%s: smid not available\n",
ioc->name, __func__);
return 0;
}
request = list_entry(ioc->free_list.next,
struct scsiio_tracker, tracker_list);
request->scmd = scmd;
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_get_smid_hpr - obtain a free smid from hi-priority queue
* @ioc: per adapter object
* @cb_idx: callback index
*
* Returns smid (zero is invalid)
*/
u16
mpt3sas_base_get_smid_hpr(struct MPT3SAS_ADAPTER *ioc, u8 cb_idx)
{
unsigned long flags;
struct request_tracker *request;
u16 smid;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (list_empty(&ioc->hpr_free_list)) {
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return 0;
}
request = list_entry(ioc->hpr_free_list.next,
struct request_tracker, tracker_list);
request->cb_idx = cb_idx;
smid = request->smid;
list_del(&request->tracker_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
return smid;
}
/**
* mpt3sas_base_free_smid - put smid back on free_list
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
void
mpt3sas_base_free_smid(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
unsigned long flags;
int i;
struct chain_tracker *chain_req, *next;
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
if (smid < ioc->hi_priority_smid) {
/* scsiio queue */
i = smid - 1;
if (!list_empty(&ioc->scsi_lookup[i].chain_list)) {
list_for_each_entry_safe(chain_req, next,
&ioc->scsi_lookup[i].chain_list, tracker_list) {
list_del_init(&chain_req->tracker_list);
list_add(&chain_req->tracker_list,
&ioc->free_chain_list);
}
}
ioc->scsi_lookup[i].cb_idx = 0xFF;
ioc->scsi_lookup[i].scmd = NULL;
list_add(&ioc->scsi_lookup[i].tracker_list, &ioc->free_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
/*
* See _wait_for_commands_to_complete() call with regards
* to this code.
*/
if (ioc->shost_recovery && ioc->pending_io_count) {
if (ioc->pending_io_count == 1)
wake_up(&ioc->reset_wq);
ioc->pending_io_count--;
}
return;
} else if (smid < ioc->internal_smid) {
/* hi-priority */
i = smid - ioc->hi_priority_smid;
ioc->hpr_lookup[i].cb_idx = 0xFF;
list_add(&ioc->hpr_lookup[i].tracker_list, &ioc->hpr_free_list);
} else if (smid <= ioc->hba_queue_depth) {
/* internal queue */
i = smid - ioc->internal_smid;
ioc->internal_lookup[i].cb_idx = 0xFF;
list_add(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
}
/**
* _base_writeq - 64 bit write to MMIO
* @ioc: per adapter object
* @b: data payload
* @addr: address in MMIO space
* @writeq_lock: spin lock
*
* Glue for handling an atomic 64 bit word to MMIO. This special handling takes
* care of 32 bit environment where its not quarenteed to send the entire word
* in one transfer.
*/
#if defined(writeq) && defined(CONFIG_64BIT)
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
writeq(cpu_to_le64(b), addr);
}
#else
static inline void
_base_writeq(__u64 b, volatile void __iomem *addr, spinlock_t *writeq_lock)
{
unsigned long flags;
__u64 data_out = cpu_to_le64(b);
spin_lock_irqsave(writeq_lock, flags);
writel((u32)(data_out), addr);
writel((u32)(data_out >> 32), (addr + 4));
spin_unlock_irqrestore(writeq_lock, flags);
}
#endif
static inline u8
_base_get_msix_index(struct MPT3SAS_ADAPTER *ioc)
{
return ioc->cpu_msix_table[raw_smp_processor_id()];
}
/**
* mpt3sas_base_put_smid_scsi_io - send SCSI_IO request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
void
mpt3sas_base_put_smid_scsi_io(struct MPT3SAS_ADAPTER *ioc, u16 smid, u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* mpt3sas_base_put_smid_fast_path - send fast path request to firmware
* @ioc: per adapter object
* @smid: system request message index
* @handle: device handle
*
* Return nothing.
*/
void
mpt3sas_base_put_smid_fast_path(struct MPT3SAS_ADAPTER *ioc, u16 smid,
u16 handle)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.SCSIIO.RequestFlags =
MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO;
descriptor.SCSIIO.MSIxIndex = _base_get_msix_index(ioc);
descriptor.SCSIIO.SMID = cpu_to_le16(smid);
descriptor.SCSIIO.DevHandle = cpu_to_le16(handle);
descriptor.SCSIIO.LMID = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* mpt3sas_base_put_smid_hi_priority - send Task Managment request to firmware
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
void
mpt3sas_base_put_smid_hi_priority(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.HighPriority.RequestFlags =
MPI2_REQ_DESCRIPT_FLAGS_HIGH_PRIORITY;
descriptor.HighPriority.MSIxIndex = 0;
descriptor.HighPriority.SMID = cpu_to_le16(smid);
descriptor.HighPriority.LMID = 0;
descriptor.HighPriority.Reserved1 = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* mpt3sas_base_put_smid_default - Default, primarily used for config pages
* @ioc: per adapter object
* @smid: system request message index
*
* Return nothing.
*/
void
mpt3sas_base_put_smid_default(struct MPT3SAS_ADAPTER *ioc, u16 smid)
{
Mpi2RequestDescriptorUnion_t descriptor;
u64 *request = (u64 *)&descriptor;
descriptor.Default.RequestFlags = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE;
descriptor.Default.MSIxIndex = _base_get_msix_index(ioc);
descriptor.Default.SMID = cpu_to_le16(smid);
descriptor.Default.LMID = 0;
descriptor.Default.DescriptorTypeDependent = 0;
_base_writeq(*request, &ioc->chip->RequestDescriptorPostLow,
&ioc->scsi_lookup_lock);
}
/**
* _base_display_intel_branding - Display branding string
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_intel_branding(struct MPT3SAS_ADAPTER *ioc)
{
if (ioc->pdev->subsystem_vendor != PCI_VENDOR_ID_INTEL)
return;
switch (ioc->pdev->device) {
case MPI25_MFGPAGE_DEVID_SAS3008:
switch (ioc->pdev->subsystem_device) {
case MPT3SAS_INTEL_RMS3JC080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RMS3JC080_BRANDING);
break;
case MPT3SAS_INTEL_RS3GC008_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3GC008_BRANDING);
break;
case MPT3SAS_INTEL_RS3FC044_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3FC044_BRANDING);
break;
case MPT3SAS_INTEL_RS3UC080_SSDID:
pr_info(MPT3SAS_FMT "%s\n", ioc->name,
MPT3SAS_INTEL_RS3UC080_BRANDING);
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
break;
default:
pr_info(MPT3SAS_FMT
"Intel(R) Controller: Subsystem ID: 0x%X\n",
ioc->name, ioc->pdev->subsystem_device);
break;
}
}
/**
* _base_display_ioc_capabilities - Disply IOC's capabilities.
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_display_ioc_capabilities(struct MPT3SAS_ADAPTER *ioc)
{
int i = 0;
char desc[16];
u32 iounit_pg1_flags;
u32 bios_version;
bios_version = le32_to_cpu(ioc->bios_pg3.BiosVersion);
strncpy(desc, ioc->manu_pg0.ChipName, 16);
pr_info(MPT3SAS_FMT "%s: FWVersion(%02d.%02d.%02d.%02d), "\
"ChipRevision(0x%02x), BiosVersion(%02d.%02d.%02d.%02d)\n",
ioc->name, desc,
(ioc->facts.FWVersion.Word & 0xFF000000) >> 24,
(ioc->facts.FWVersion.Word & 0x00FF0000) >> 16,
(ioc->facts.FWVersion.Word & 0x0000FF00) >> 8,
ioc->facts.FWVersion.Word & 0x000000FF,
ioc->pdev->revision,
(bios_version & 0xFF000000) >> 24,
(bios_version & 0x00FF0000) >> 16,
(bios_version & 0x0000FF00) >> 8,
bios_version & 0x000000FF);
_base_display_intel_branding(ioc);
pr_info(MPT3SAS_FMT "Protocol=(", ioc->name);
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_INITIATOR) {
pr_info("Initiator");
i++;
}
if (ioc->facts.ProtocolFlags & MPI2_IOCFACTS_PROTOCOL_SCSI_TARGET) {
pr_info("%sTarget", i ? "," : "");
i++;
}
i = 0;
pr_info("), ");
pr_info("Capabilities=(");
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID) {
pr_info("Raid");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_TLR) {
pr_info("%sTLR", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_MULTICAST) {
pr_info("%sMulticast", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_BIDIRECTIONAL_TARGET) {
pr_info("%sBIDI Target", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_EEDP) {
pr_info("%sEEDP", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_SNAPSHOT_BUFFER) {
pr_info("%sSnapshot Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_DIAG_TRACE_BUFFER) {
pr_info("%sDiag Trace Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EXTENDED_BUFFER) {
pr_info("%sDiag Extended Buffer", i ? "," : "");
i++;
}
if (ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING) {
pr_info("%sTask Set Full", i ? "," : "");
i++;
}
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if (!(iounit_pg1_flags & MPI2_IOUNITPAGE1_NATIVE_COMMAND_Q_DISABLE)) {
pr_info("%sNCQ", i ? "," : "");
i++;
}
pr_info(")\n");
}
/**
* mpt3sas_base_update_missing_delay - change the missing delay timers
* @ioc: per adapter object
* @device_missing_delay: amount of time till device is reported missing
* @io_missing_delay: interval IO is returned when there is a missing device
*
* Return nothing.
*
* Passed on the command line, this function will modify the device missing
* delay, as well as the io missing delay. This should be called at driver
* load time.
*/
void
mpt3sas_base_update_missing_delay(struct MPT3SAS_ADAPTER *ioc,
u16 device_missing_delay, u8 io_missing_delay)
{
u16 dmd, dmd_new, dmd_orignal;
u8 io_missing_delay_original;
u16 sz;
Mpi2SasIOUnitPage1_t *sas_iounit_pg1 = NULL;
Mpi2ConfigReply_t mpi_reply;
u8 num_phys = 0;
u16 ioc_status;
mpt3sas_config_get_number_hba_phys(ioc, &num_phys);
if (!num_phys)
return;
sz = offsetof(Mpi2SasIOUnitPage1_t, PhyData) + (num_phys *
sizeof(Mpi2SasIOUnit1PhyData_t));
sas_iounit_pg1 = kzalloc(sz, GFP_KERNEL);
if (!sas_iounit_pg1) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
if ((mpt3sas_config_get_sas_iounit_pg1(ioc, &mpi_reply,
sas_iounit_pg1, sz))) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) &
MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
pr_err(MPT3SAS_FMT "failure at %s:%d/%s()!\n",
ioc->name, __FILE__, __LINE__, __func__);
goto out;
}
/* device missing delay */
dmd = sas_iounit_pg1->ReportDeviceMissingDelay;
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd = (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd = dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
dmd_orignal = dmd;
if (device_missing_delay > 0x7F) {
dmd = (device_missing_delay > 0x7F0) ? 0x7F0 :
device_missing_delay;
dmd = dmd / 16;
dmd |= MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16;
} else
dmd = device_missing_delay;
sas_iounit_pg1->ReportDeviceMissingDelay = dmd;
/* io missing delay */
io_missing_delay_original = sas_iounit_pg1->IODeviceMissingDelay;
sas_iounit_pg1->IODeviceMissingDelay = io_missing_delay;
if (!mpt3sas_config_set_sas_iounit_pg1(ioc, &mpi_reply, sas_iounit_pg1,
sz)) {
if (dmd & MPI2_SASIOUNIT1_REPORT_MISSING_UNIT_16)
dmd_new = (dmd &
MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK) * 16;
else
dmd_new =
dmd & MPI2_SASIOUNIT1_REPORT_MISSING_TIMEOUT_MASK;
pr_info(MPT3SAS_FMT "device_missing_delay: old(%d), new(%d)\n",
ioc->name, dmd_orignal, dmd_new);
pr_info(MPT3SAS_FMT "ioc_missing_delay: old(%d), new(%d)\n",
ioc->name, io_missing_delay_original,
io_missing_delay);
ioc->device_missing_delay = dmd_new;
ioc->io_missing_delay = io_missing_delay;
}
out:
kfree(sas_iounit_pg1);
}
/**
* _base_static_config_pages - static start of day config pages
* @ioc: per adapter object
*
* Return nothing.
*/
static void
_base_static_config_pages(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2ConfigReply_t mpi_reply;
u32 iounit_pg1_flags;
mpt3sas_config_get_manufacturing_pg0(ioc, &mpi_reply, &ioc->manu_pg0);
if (ioc->ir_firmware)
mpt3sas_config_get_manufacturing_pg10(ioc, &mpi_reply,
&ioc->manu_pg10);
/*
* Ensure correct T10 PI operation if vendor left EEDPTagMode
* flag unset in NVDATA.
*/
mpt3sas_config_get_manufacturing_pg11(ioc, &mpi_reply, &ioc->manu_pg11);
if (ioc->manu_pg11.EEDPTagMode == 0) {
pr_err("%s: overriding NVDATA EEDPTagMode setting\n",
ioc->name);
ioc->manu_pg11.EEDPTagMode &= ~0x3;
ioc->manu_pg11.EEDPTagMode |= 0x1;
mpt3sas_config_set_manufacturing_pg11(ioc, &mpi_reply,
&ioc->manu_pg11);
}
mpt3sas_config_get_bios_pg2(ioc, &mpi_reply, &ioc->bios_pg2);
mpt3sas_config_get_bios_pg3(ioc, &mpi_reply, &ioc->bios_pg3);
mpt3sas_config_get_ioc_pg8(ioc, &mpi_reply, &ioc->ioc_pg8);
mpt3sas_config_get_iounit_pg0(ioc, &mpi_reply, &ioc->iounit_pg0);
mpt3sas_config_get_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
mpt3sas_config_get_iounit_pg8(ioc, &mpi_reply, &ioc->iounit_pg8);
_base_display_ioc_capabilities(ioc);
/*
* Enable task_set_full handling in iounit_pg1 when the
* facts capabilities indicate that its supported.
*/
iounit_pg1_flags = le32_to_cpu(ioc->iounit_pg1.Flags);
if ((ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_TASK_SET_FULL_HANDLING))
iounit_pg1_flags &=
~MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
else
iounit_pg1_flags |=
MPI2_IOUNITPAGE1_DISABLE_TASK_SET_FULL_HANDLING;
ioc->iounit_pg1.Flags = cpu_to_le32(iounit_pg1_flags);
mpt3sas_config_set_iounit_pg1(ioc, &mpi_reply, &ioc->iounit_pg1);
if (ioc->iounit_pg8.NumSensors)
ioc->temp_sensors_count = ioc->iounit_pg8.NumSensors;
}
/**
* _base_release_memory_pools - release memory
* @ioc: per adapter object
*
* Free memory allocated from _base_allocate_memory_pools.
*
* Return nothing.
*/
static void
_base_release_memory_pools(struct MPT3SAS_ADAPTER *ioc)
{
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
int i = 0;
struct reply_post_struct *rps;
dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->request) {
pci_free_consistent(ioc->pdev, ioc->request_dma_sz,
ioc->request, ioc->request_dma);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"request_pool(0x%p): free\n",
ioc->name, ioc->request));
ioc->request = NULL;
}
if (ioc->sense) {
pci_pool_free(ioc->sense_dma_pool, ioc->sense, ioc->sense_dma);
if (ioc->sense_dma_pool)
pci_pool_destroy(ioc->sense_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"sense_pool(0x%p): free\n",
ioc->name, ioc->sense));
ioc->sense = NULL;
}
if (ioc->reply) {
pci_pool_free(ioc->reply_dma_pool, ioc->reply, ioc->reply_dma);
if (ioc->reply_dma_pool)
pci_pool_destroy(ioc->reply_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_pool(0x%p): free\n",
ioc->name, ioc->reply));
ioc->reply = NULL;
}
if (ioc->reply_free) {
pci_pool_free(ioc->reply_free_dma_pool, ioc->reply_free,
ioc->reply_free_dma);
if (ioc->reply_free_dma_pool)
pci_pool_destroy(ioc->reply_free_dma_pool);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_free_pool(0x%p): free\n",
ioc->name, ioc->reply_free));
ioc->reply_free = NULL;
}
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
if (ioc->reply_post) {
do {
rps = &ioc->reply_post[i];
if (rps->reply_post_free) {
pci_pool_free(
ioc->reply_post_free_dma_pool,
rps->reply_post_free,
rps->reply_post_free_dma);
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_post_free_pool(0x%p): free\n",
ioc->name, rps->reply_post_free));
rps->reply_post_free = NULL;
}
} while (ioc->rdpq_array_enable &&
(++i < ioc->reply_queue_count));
if (ioc->reply_post_free_dma_pool)
pci_pool_destroy(ioc->reply_post_free_dma_pool);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
kfree(ioc->reply_post);
}
if (ioc->config_page) {
dexitprintk(ioc, pr_info(MPT3SAS_FMT
"config_page(0x%p): free\n", ioc->name,
ioc->config_page));
pci_free_consistent(ioc->pdev, ioc->config_page_sz,
ioc->config_page, ioc->config_page_dma);
}
if (ioc->scsi_lookup) {
free_pages((ulong)ioc->scsi_lookup, ioc->scsi_lookup_pages);
ioc->scsi_lookup = NULL;
}
kfree(ioc->hpr_lookup);
kfree(ioc->internal_lookup);
if (ioc->chain_lookup) {
for (i = 0; i < ioc->chain_depth; i++) {
if (ioc->chain_lookup[i].chain_buffer)
pci_pool_free(ioc->chain_dma_pool,
ioc->chain_lookup[i].chain_buffer,
ioc->chain_lookup[i].chain_buffer_dma);
}
if (ioc->chain_dma_pool)
pci_pool_destroy(ioc->chain_dma_pool);
free_pages((ulong)ioc->chain_lookup, ioc->chain_pages);
ioc->chain_lookup = NULL;
}
}
/**
* _base_allocate_memory_pools - allocate start of day memory pools
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 success, anything else error
*/
static int
_base_allocate_memory_pools(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
struct mpt3sas_facts *facts;
u16 max_sge_elements;
u16 chains_needed_per_io;
u32 sz, total_sz, reply_post_free_sz;
u32 retry_sz;
u16 max_request_credit;
unsigned short sg_tablesize;
u16 sge_size;
int i;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
retry_sz = 0;
facts = &ioc->facts;
/* command line tunables for max sgl entries */
if (max_sgl_entries != -1)
sg_tablesize = max_sgl_entries;
else
sg_tablesize = MPT3SAS_SG_DEPTH;
if (sg_tablesize < MPT3SAS_MIN_PHYS_SEGMENTS)
sg_tablesize = MPT3SAS_MIN_PHYS_SEGMENTS;
else if (sg_tablesize > MPT3SAS_MAX_PHYS_SEGMENTS) {
sg_tablesize = min_t(unsigned short, sg_tablesize,
SCSI_MAX_SG_CHAIN_SEGMENTS);
pr_warn(MPT3SAS_FMT
"sg_tablesize(%u) is bigger than kernel"
" defined SCSI_MAX_SG_SEGMENTS(%u)\n", ioc->name,
sg_tablesize, MPT3SAS_MAX_PHYS_SEGMENTS);
}
ioc->shost->sg_tablesize = sg_tablesize;
ioc->hi_priority_depth = facts->HighPriorityCredit;
ioc->internal_depth = ioc->hi_priority_depth + (5);
/* command line tunables for max controller queue depth */
if (max_queue_depth != -1 && max_queue_depth != 0) {
max_request_credit = min_t(u16, max_queue_depth +
ioc->hi_priority_depth + ioc->internal_depth,
facts->RequestCredit);
if (max_request_credit > MAX_HBA_QUEUE_DEPTH)
max_request_credit = MAX_HBA_QUEUE_DEPTH;
} else
max_request_credit = min_t(u16, facts->RequestCredit,
MAX_HBA_QUEUE_DEPTH);
ioc->hba_queue_depth = max_request_credit;
/* request frame size */
ioc->request_sz = facts->IOCRequestFrameSize * 4;
/* reply frame size */
ioc->reply_sz = facts->ReplyFrameSize * 4;
/* calculate the max scatter element size */
sge_size = max_t(u16, ioc->sge_size, ioc->sge_size_ieee);
retry_allocation:
total_sz = 0;
/* calculate number of sg elements left over in the 1st frame */
max_sge_elements = ioc->request_sz - ((sizeof(Mpi2SCSIIORequest_t) -
sizeof(Mpi2SGEIOUnion_t)) + sge_size);
ioc->max_sges_in_main_message = max_sge_elements/sge_size;
/* now do the same for a chain buffer */
max_sge_elements = ioc->request_sz - sge_size;
ioc->max_sges_in_chain_message = max_sge_elements/sge_size;
/*
* MPT3SAS_SG_DEPTH = CONFIG_FUSION_MAX_SGE
*/
chains_needed_per_io = ((ioc->shost->sg_tablesize -
ioc->max_sges_in_main_message)/ioc->max_sges_in_chain_message)
+ 1;
if (chains_needed_per_io > facts->MaxChainDepth) {
chains_needed_per_io = facts->MaxChainDepth;
ioc->shost->sg_tablesize = min_t(u16,
ioc->max_sges_in_main_message + (ioc->max_sges_in_chain_message
* chains_needed_per_io), ioc->shost->sg_tablesize);
}
ioc->chains_needed_per_io = chains_needed_per_io;
/* reply free queue sizing - taking into account for 64 FW events */
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
/* calculate reply descriptor post queue depth */
ioc->reply_post_queue_depth = ioc->hba_queue_depth +
ioc->reply_free_queue_depth + 1 ;
/* align the reply post queue on the next 16 count boundary */
if (ioc->reply_post_queue_depth % 16)
ioc->reply_post_queue_depth += 16 -
(ioc->reply_post_queue_depth % 16);
if (ioc->reply_post_queue_depth >
facts->MaxReplyDescriptorPostQueueDepth) {
ioc->reply_post_queue_depth =
facts->MaxReplyDescriptorPostQueueDepth -
(facts->MaxReplyDescriptorPostQueueDepth % 16);
ioc->hba_queue_depth =
((ioc->reply_post_queue_depth - 64) / 2) - 1;
ioc->reply_free_queue_depth = ioc->hba_queue_depth + 64;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT "scatter gather: " \
"sge_in_main_msg(%d), sge_per_chain(%d), sge_per_io(%d), "
"chains_per_io(%d)\n", ioc->name, ioc->max_sges_in_main_message,
ioc->max_sges_in_chain_message, ioc->shost->sg_tablesize,
ioc->chains_needed_per_io));
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
/* reply post queue, 16 byte align */
reply_post_free_sz = ioc->reply_post_queue_depth *
sizeof(Mpi2DefaultReplyDescriptor_t);
sz = reply_post_free_sz;
if (_base_is_controller_msix_enabled(ioc) && !ioc->rdpq_array_enable)
sz *= ioc->reply_queue_count;
ioc->reply_post = kcalloc((ioc->rdpq_array_enable) ?
(ioc->reply_queue_count):1,
sizeof(struct reply_post_struct), GFP_KERNEL);
if (!ioc->reply_post) {
pr_err(MPT3SAS_FMT "reply_post_free pool: kcalloc failed\n",
ioc->name);
goto out;
}
ioc->reply_post_free_dma_pool = pci_pool_create("reply_post_free pool",
ioc->pdev, sz, 16, 0);
if (!ioc->reply_post_free_dma_pool) {
pr_err(MPT3SAS_FMT
"reply_post_free pool: pci_pool_create failed\n",
ioc->name);
goto out;
}
i = 0;
do {
ioc->reply_post[i].reply_post_free =
pci_pool_alloc(ioc->reply_post_free_dma_pool,
GFP_KERNEL,
&ioc->reply_post[i].reply_post_free_dma);
if (!ioc->reply_post[i].reply_post_free) {
pr_err(MPT3SAS_FMT
"reply_post_free pool: pci_pool_alloc failed\n",
ioc->name);
goto out;
}
memset(ioc->reply_post[i].reply_post_free, 0, sz);
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply post free pool (0x%p): depth(%d),"
"element_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->reply_post[i].reply_post_free,
ioc->reply_post_queue_depth, 8, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_post_free_dma = (0x%llx)\n", ioc->name,
(unsigned long long)
ioc->reply_post[i].reply_post_free_dma));
total_sz += sz;
} while (ioc->rdpq_array_enable && (++i < ioc->reply_queue_count));
if (ioc->dma_mask == 64) {
if (_base_change_consistent_dma_mask(ioc, ioc->pdev) != 0) {
pr_warn(MPT3SAS_FMT
"no suitable consistent DMA mask for %s\n",
ioc->name, pci_name(ioc->pdev));
goto out;
}
}
ioc->scsiio_depth = ioc->hba_queue_depth -
ioc->hi_priority_depth - ioc->internal_depth;
/* set the scsi host can_queue depth
* with some internal commands that could be outstanding
*/
ioc->shost->can_queue = ioc->scsiio_depth;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"scsi host: can_queue depth (%d)\n",
ioc->name, ioc->shost->can_queue));
/* contiguous pool for request and chains, 16 byte align, one extra "
* "frame for smid=0
*/
ioc->chain_depth = ioc->chains_needed_per_io * ioc->scsiio_depth;
sz = ((ioc->scsiio_depth + 1) * ioc->request_sz);
/* hi-priority queue */
sz += (ioc->hi_priority_depth * ioc->request_sz);
/* internal queue */
sz += (ioc->internal_depth * ioc->request_sz);
ioc->request_dma_sz = sz;
ioc->request = pci_alloc_consistent(ioc->pdev, sz, &ioc->request_dma);
if (!ioc->request) {
pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
"failed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
"total(%d kB)\n", ioc->name, ioc->hba_queue_depth,
ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
if (ioc->scsiio_depth < MPT3SAS_SAS_QUEUE_DEPTH)
goto out;
retry_sz += 64;
ioc->hba_queue_depth = max_request_credit - retry_sz;
goto retry_allocation;
}
if (retry_sz)
pr_err(MPT3SAS_FMT "request pool: pci_alloc_consistent " \
"succeed: hba_depth(%d), chains_per_io(%d), frame_sz(%d), "
"total(%d kb)\n", ioc->name, ioc->hba_queue_depth,
ioc->chains_needed_per_io, ioc->request_sz, sz/1024);
/* hi-priority queue */
ioc->hi_priority = ioc->request + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
ioc->hi_priority_dma = ioc->request_dma + ((ioc->scsiio_depth + 1) *
ioc->request_sz);
/* internal queue */
ioc->internal = ioc->hi_priority + (ioc->hi_priority_depth *
ioc->request_sz);
ioc->internal_dma = ioc->hi_priority_dma + (ioc->hi_priority_depth *
ioc->request_sz);
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"request pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->request, ioc->hba_queue_depth, ioc->request_sz,
(ioc->hba_queue_depth * ioc->request_sz)/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "request pool: dma(0x%llx)\n",
ioc->name, (unsigned long long) ioc->request_dma));
total_sz += sz;
sz = ioc->scsiio_depth * sizeof(struct scsiio_tracker);
ioc->scsi_lookup_pages = get_order(sz);
ioc->scsi_lookup = (struct scsiio_tracker *)__get_free_pages(
GFP_KERNEL, ioc->scsi_lookup_pages);
if (!ioc->scsi_lookup) {
pr_err(MPT3SAS_FMT "scsi_lookup: get_free_pages failed, sz(%d)\n",
ioc->name, (int)sz);
goto out;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT "scsiio(0x%p): depth(%d)\n",
ioc->name, ioc->request, ioc->scsiio_depth));
ioc->chain_depth = min_t(u32, ioc->chain_depth, MAX_CHAIN_DEPTH);
sz = ioc->chain_depth * sizeof(struct chain_tracker);
ioc->chain_pages = get_order(sz);
ioc->chain_lookup = (struct chain_tracker *)__get_free_pages(
GFP_KERNEL, ioc->chain_pages);
if (!ioc->chain_lookup) {
pr_err(MPT3SAS_FMT "chain_lookup: __get_free_pages failed\n",
ioc->name);
goto out;
}
ioc->chain_dma_pool = pci_pool_create("chain pool", ioc->pdev,
ioc->request_sz, 16, 0);
if (!ioc->chain_dma_pool) {
pr_err(MPT3SAS_FMT "chain_dma_pool: pci_pool_create failed\n",
ioc->name);
goto out;
}
for (i = 0; i < ioc->chain_depth; i++) {
ioc->chain_lookup[i].chain_buffer = pci_pool_alloc(
ioc->chain_dma_pool , GFP_KERNEL,
&ioc->chain_lookup[i].chain_buffer_dma);
if (!ioc->chain_lookup[i].chain_buffer) {
ioc->chain_depth = i;
goto chain_done;
}
total_sz += ioc->request_sz;
}
chain_done:
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"chain pool depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->chain_depth, ioc->request_sz,
((ioc->chain_depth * ioc->request_sz))/1024));
/* initialize hi-priority queue smid's */
ioc->hpr_lookup = kcalloc(ioc->hi_priority_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->hpr_lookup) {
pr_err(MPT3SAS_FMT "hpr_lookup: kcalloc failed\n",
ioc->name);
goto out;
}
ioc->hi_priority_smid = ioc->scsiio_depth + 1;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"hi_priority(0x%p): depth(%d), start smid(%d)\n",
ioc->name, ioc->hi_priority,
ioc->hi_priority_depth, ioc->hi_priority_smid));
/* initialize internal queue smid's */
ioc->internal_lookup = kcalloc(ioc->internal_depth,
sizeof(struct request_tracker), GFP_KERNEL);
if (!ioc->internal_lookup) {
pr_err(MPT3SAS_FMT "internal_lookup: kcalloc failed\n",
ioc->name);
goto out;
}
ioc->internal_smid = ioc->hi_priority_smid + ioc->hi_priority_depth;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"internal(0x%p): depth(%d), start smid(%d)\n",
ioc->name, ioc->internal,
ioc->internal_depth, ioc->internal_smid));
/* sense buffers, 4 byte align */
sz = ioc->scsiio_depth * SCSI_SENSE_BUFFERSIZE;
ioc->sense_dma_pool = pci_pool_create("sense pool", ioc->pdev, sz, 4,
0);
if (!ioc->sense_dma_pool) {
pr_err(MPT3SAS_FMT "sense pool: pci_pool_create failed\n",
ioc->name);
goto out;
}
ioc->sense = pci_pool_alloc(ioc->sense_dma_pool , GFP_KERNEL,
&ioc->sense_dma);
if (!ioc->sense) {
pr_err(MPT3SAS_FMT "sense pool: pci_pool_alloc failed\n",
ioc->name);
goto out;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"sense pool(0x%p): depth(%d), element_size(%d), pool_size"
"(%d kB)\n", ioc->name, ioc->sense, ioc->scsiio_depth,
SCSI_SENSE_BUFFERSIZE, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "sense_dma(0x%llx)\n",
ioc->name, (unsigned long long)ioc->sense_dma));
total_sz += sz;
/* reply pool, 4 byte align */
sz = ioc->reply_free_queue_depth * ioc->reply_sz;
ioc->reply_dma_pool = pci_pool_create("reply pool", ioc->pdev, sz, 4,
0);
if (!ioc->reply_dma_pool) {
pr_err(MPT3SAS_FMT "reply pool: pci_pool_create failed\n",
ioc->name);
goto out;
}
ioc->reply = pci_pool_alloc(ioc->reply_dma_pool , GFP_KERNEL,
&ioc->reply_dma);
if (!ioc->reply) {
pr_err(MPT3SAS_FMT "reply pool: pci_pool_alloc failed\n",
ioc->name);
goto out;
}
ioc->reply_dma_min_address = (u32)(ioc->reply_dma);
ioc->reply_dma_max_address = (u32)(ioc->reply_dma) + sz;
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply pool(0x%p): depth(%d), frame_size(%d), pool_size(%d kB)\n",
ioc->name, ioc->reply,
ioc->reply_free_queue_depth, ioc->reply_sz, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_dma(0x%llx)\n",
ioc->name, (unsigned long long)ioc->reply_dma));
total_sz += sz;
/* reply free queue, 16 byte align */
sz = ioc->reply_free_queue_depth * 4;
ioc->reply_free_dma_pool = pci_pool_create("reply_free pool",
ioc->pdev, sz, 16, 0);
if (!ioc->reply_free_dma_pool) {
pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_create failed\n",
ioc->name);
goto out;
}
ioc->reply_free = pci_pool_alloc(ioc->reply_free_dma_pool , GFP_KERNEL,
&ioc->reply_free_dma);
if (!ioc->reply_free) {
pr_err(MPT3SAS_FMT "reply_free pool: pci_pool_alloc failed\n",
ioc->name);
goto out;
}
memset(ioc->reply_free, 0, sz);
dinitprintk(ioc, pr_info(MPT3SAS_FMT "reply_free pool(0x%p): " \
"depth(%d), element_size(%d), pool_size(%d kB)\n", ioc->name,
ioc->reply_free, ioc->reply_free_queue_depth, 4, sz/1024));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"reply_free_dma (0x%llx)\n",
ioc->name, (unsigned long long)ioc->reply_free_dma));
total_sz += sz;
ioc->config_page_sz = 512;
ioc->config_page = pci_alloc_consistent(ioc->pdev,
ioc->config_page_sz, &ioc->config_page_dma);
if (!ioc->config_page) {
pr_err(MPT3SAS_FMT
"config page: pci_pool_alloc failed\n",
ioc->name);
goto out;
}
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"config page(0x%p): size(%d)\n",
ioc->name, ioc->config_page, ioc->config_page_sz));
dinitprintk(ioc, pr_info(MPT3SAS_FMT "config_page_dma(0x%llx)\n",
ioc->name, (unsigned long long)ioc->config_page_dma));
total_sz += ioc->config_page_sz;
pr_info(MPT3SAS_FMT "Allocated physical memory: size(%d kB)\n",
ioc->name, total_sz/1024);
pr_info(MPT3SAS_FMT
"Current Controller Queue Depth(%d),Max Controller Queue Depth(%d)\n",
ioc->name, ioc->shost->can_queue, facts->RequestCredit);
pr_info(MPT3SAS_FMT "Scatter Gather Elements per IO(%d)\n",
ioc->name, ioc->shost->sg_tablesize);
return 0;
out:
return -ENOMEM;
}
/**
* mpt3sas_base_get_iocstate - Get the current state of a MPT adapter.
* @ioc: Pointer to MPT_ADAPTER structure
* @cooked: Request raw or cooked IOC state
*
* Returns all IOC Doorbell register bits if cooked==0, else just the
* Doorbell bits in MPI_IOC_STATE_MASK.
*/
u32
mpt3sas_base_get_iocstate(struct MPT3SAS_ADAPTER *ioc, int cooked)
{
u32 s, sc;
s = readl(&ioc->chip->Doorbell);
sc = s & MPI2_IOC_STATE_MASK;
return cooked ? sc : s;
}
/**
* _base_wait_on_iocstate - waiting on a particular ioc state
* @ioc_state: controller state { READY, OPERATIONAL, or RESET }
* @timeout: timeout in second
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_wait_on_iocstate(struct MPT3SAS_ADAPTER *ioc, u32 ioc_state, int timeout,
int sleep_flag)
{
u32 count, cntdn;
u32 current_state;
count = 0;
cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
do {
current_state = mpt3sas_base_get_iocstate(ioc, 1);
if (current_state == ioc_state)
return 0;
if (count && current_state == MPI2_IOC_STATE_FAULT)
break;
if (sleep_flag == CAN_SLEEP)
usleep_range(1000, 1500);
else
udelay(500);
count++;
} while (--cntdn);
return current_state;
}
/**
* _base_wait_for_doorbell_int - waiting for controller interrupt(generated by
* a write to the doorbell)
* @ioc: per adapter object
* @timeout: timeout in second
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_IOC2SYS_DB_STATUS - set to one when IOC writes to doorbell.
*/
static int
_base_wait_for_doorbell_int(struct MPT3SAS_ADAPTER *ioc, int timeout,
int sleep_flag)
{
u32 cntdn, count;
u32 int_status;
count = 0;
cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
do {
int_status = readl(&ioc->chip->HostInterruptStatus);
if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
}
if (sleep_flag == CAN_SLEEP)
usleep_range(1000, 1500);
else
udelay(500);
count++;
} while (--cntdn);
pr_err(MPT3SAS_FMT
"%s: failed due to timeout count(%d), int_status(%x)!\n",
ioc->name, __func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_ack - waiting for controller to read the doorbell.
* @ioc: per adapter object
* @timeout: timeout in second
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*
* Notes: MPI2_HIS_SYS2IOC_DB_STATUS - set to one when host writes to
* doorbell.
*/
static int
_base_wait_for_doorbell_ack(struct MPT3SAS_ADAPTER *ioc, int timeout,
int sleep_flag)
{
u32 cntdn, count;
u32 int_status;
u32 doorbell;
count = 0;
cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
do {
int_status = readl(&ioc->chip->HostInterruptStatus);
if (!(int_status & MPI2_HIS_SYS2IOC_DB_STATUS)) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
} else if (int_status & MPI2_HIS_IOC2SYS_DB_STATUS) {
doorbell = readl(&ioc->chip->Doorbell);
if ((doorbell & MPI2_IOC_STATE_MASK) ==
MPI2_IOC_STATE_FAULT) {
mpt3sas_base_fault_info(ioc , doorbell);
return -EFAULT;
}
} else if (int_status == 0xFFFFFFFF)
goto out;
if (sleep_flag == CAN_SLEEP)
usleep_range(1000, 1500);
else
udelay(500);
count++;
} while (--cntdn);
out:
pr_err(MPT3SAS_FMT
"%s: failed due to timeout count(%d), int_status(%x)!\n",
ioc->name, __func__, count, int_status);
return -EFAULT;
}
/**
* _base_wait_for_doorbell_not_used - waiting for doorbell to not be in use
* @ioc: per adapter object
* @timeout: timeout in second
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*
*/
static int
_base_wait_for_doorbell_not_used(struct MPT3SAS_ADAPTER *ioc, int timeout,
int sleep_flag)
{
u32 cntdn, count;
u32 doorbell_reg;
count = 0;
cntdn = (sleep_flag == CAN_SLEEP) ? 1000*timeout : 2000*timeout;
do {
doorbell_reg = readl(&ioc->chip->Doorbell);
if (!(doorbell_reg & MPI2_DOORBELL_USED)) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"%s: successful count(%d), timeout(%d)\n",
ioc->name, __func__, count, timeout));
return 0;
}
if (sleep_flag == CAN_SLEEP)
usleep_range(1000, 1500);
else
udelay(500);
count++;
} while (--cntdn);
pr_err(MPT3SAS_FMT
"%s: failed due to timeout count(%d), doorbell_reg(%x)!\n",
ioc->name, __func__, count, doorbell_reg);
return -EFAULT;
}
/**
* _base_send_ioc_reset - send doorbell reset
* @ioc: per adapter object
* @reset_type: currently only supports: MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET
* @timeout: timeout in second
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_reset(struct MPT3SAS_ADAPTER *ioc, u8 reset_type, int timeout,
int sleep_flag)
{
u32 ioc_state;
int r = 0;
if (reset_type != MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET) {
pr_err(MPT3SAS_FMT "%s: unknown reset_type\n",
ioc->name, __func__);
return -EFAULT;
}
if (!(ioc->facts.IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_EVENT_REPLAY))
return -EFAULT;
pr_info(MPT3SAS_FMT "sending message unit reset !!\n", ioc->name);
writel(reset_type << MPI2_DOORBELL_FUNCTION_SHIFT,
&ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 15, sleep_flag))) {
r = -EFAULT;
goto out;
}
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY,
timeout, sleep_flag);
if (ioc_state) {
pr_err(MPT3SAS_FMT
"%s: failed going to ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state);
r = -EFAULT;
goto out;
}
out:
pr_info(MPT3SAS_FMT "message unit reset: %s\n",
ioc->name, ((r == 0) ? "SUCCESS" : "FAILED"));
return r;
}
/**
* _base_handshake_req_reply_wait - send request thru doorbell interface
* @ioc: per adapter object
* @request_bytes: request length
* @request: pointer having request payload
* @reply_bytes: reply length
* @reply: pointer to reply payload
* @timeout: timeout in second
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_handshake_req_reply_wait(struct MPT3SAS_ADAPTER *ioc, int request_bytes,
u32 *request, int reply_bytes, u16 *reply, int timeout, int sleep_flag)
{
MPI2DefaultReply_t *default_reply = (MPI2DefaultReply_t *)reply;
int i;
u8 failed;
u16 dummy;
__le32 *mfp;
/* make sure doorbell is not in use */
if ((readl(&ioc->chip->Doorbell) & MPI2_DOORBELL_USED)) {
pr_err(MPT3SAS_FMT
"doorbell is in use (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* clear pending doorbell interrupts from previous state changes */
if (readl(&ioc->chip->HostInterruptStatus) &
MPI2_HIS_IOC2SYS_DB_STATUS)
writel(0, &ioc->chip->HostInterruptStatus);
/* send message to ioc */
writel(((MPI2_FUNCTION_HANDSHAKE<<MPI2_DOORBELL_FUNCTION_SHIFT) |
((request_bytes/4)<<MPI2_DOORBELL_ADD_DWORDS_SHIFT)),
&ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_int(ioc, 5, NO_SLEEP))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag))) {
pr_err(MPT3SAS_FMT
"doorbell handshake ack failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* send message 32-bits at a time */
for (i = 0, failed = 0; i < request_bytes/4 && !failed; i++) {
writel(cpu_to_le32(request[i]), &ioc->chip->Doorbell);
if ((_base_wait_for_doorbell_ack(ioc, 5, sleep_flag)))
failed = 1;
}
if (failed) {
pr_err(MPT3SAS_FMT
"doorbell handshake sending request failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* now wait for the reply */
if ((_base_wait_for_doorbell_int(ioc, timeout, sleep_flag))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
/* read the first two 16-bits, it gives the total length of the reply */
reply[0] = le16_to_cpu(readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
reply[1] = le16_to_cpu(readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
for (i = 2; i < default_reply->MsgLength * 2; i++) {
if ((_base_wait_for_doorbell_int(ioc, 5, sleep_flag))) {
pr_err(MPT3SAS_FMT
"doorbell handshake int failed (line=%d)\n",
ioc->name, __LINE__);
return -EFAULT;
}
if (i >= reply_bytes/2) /* overflow case */
dummy = readl(&ioc->chip->Doorbell);
else
reply[i] = le16_to_cpu(readl(&ioc->chip->Doorbell)
& MPI2_DOORBELL_DATA_MASK);
writel(0, &ioc->chip->HostInterruptStatus);
}
_base_wait_for_doorbell_int(ioc, 5, sleep_flag);
if (_base_wait_for_doorbell_not_used(ioc, 5, sleep_flag) != 0) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"doorbell is in use (line=%d)\n", ioc->name, __LINE__));
}
writel(0, &ioc->chip->HostInterruptStatus);
if (ioc->logging_level & MPT_DEBUG_INIT) {
mfp = (__le32 *)reply;
pr_info("\toffset:data\n");
for (i = 0; i < reply_bytes/4; i++)
pr_info("\t[0x%02x]:%08x\n", i*4,
le32_to_cpu(mfp[i]));
}
return 0;
}
/**
* mpt3sas_base_sas_iounit_control - send sas iounit control to FW
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SAS IO Unit Control Request message allows the host to perform low-level
* operations, such as resets on the PHYs of the IO Unit, also allows the host
* to obtain the IOC assigned device handles for a device if it has other
* identifying information about the device, in addition allows the host to
* remove IOC resources associated with the device.
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_sas_iounit_control(struct MPT3SAS_ADAPTER *ioc,
Mpi2SasIoUnitControlReply_t *mpi_reply,
Mpi2SasIoUnitControlRequest_t *mpi_request)
{
u16 smid;
u32 ioc_state;
unsigned long timeleft;
bool issue_reset = false;
int rc;
void *request;
u16 wait_state_count;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
wait_state_count = 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
if (wait_state_count++ == 10) {
pr_err(MPT3SAS_FMT
"%s: failed due to ioc not operational\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
pr_info(MPT3SAS_FMT
"%s: waiting for operational state(count=%d)\n",
ioc->name, __func__, wait_state_count);
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memcpy(request, mpi_request, sizeof(Mpi2SasIoUnitControlRequest_t));
if (mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET)
ioc->ioc_link_reset_in_progress = 1;
init_completion(&ioc->base_cmds.done);
mpt3sas_base_put_smid_default(ioc, smid);
timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if ((mpi_request->Operation == MPI2_SAS_OP_PHY_HARD_RESET ||
mpi_request->Operation == MPI2_SAS_OP_PHY_LINK_RESET) &&
ioc->ioc_link_reset_in_progress)
ioc->ioc_link_reset_in_progress = 0;
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2SasIoUnitControlRequest_t)/4);
if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
issue_reset = true;
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SasIoUnitControlReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SasIoUnitControlReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
/**
* mpt3sas_base_scsi_enclosure_processor - sending request to sep device
* @ioc: per adapter object
* @mpi_reply: the reply payload from FW
* @mpi_request: the request payload sent to FW
*
* The SCSI Enclosure Processor request message causes the IOC to
* communicate with SES devices to control LED status signals.
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_scsi_enclosure_processor(struct MPT3SAS_ADAPTER *ioc,
Mpi2SepReply_t *mpi_reply, Mpi2SepRequest_t *mpi_request)
{
u16 smid;
u32 ioc_state;
unsigned long timeleft;
bool issue_reset = false;
int rc;
void *request;
u16 wait_state_count;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mutex_lock(&ioc->base_cmds.mutex);
if (ioc->base_cmds.status != MPT3_CMD_NOT_USED) {
pr_err(MPT3SAS_FMT "%s: base_cmd in use\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
wait_state_count = 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
while (ioc_state != MPI2_IOC_STATE_OPERATIONAL) {
if (wait_state_count++ == 10) {
pr_err(MPT3SAS_FMT
"%s: failed due to ioc not operational\n",
ioc->name, __func__);
rc = -EFAULT;
goto out;
}
ssleep(1);
ioc_state = mpt3sas_base_get_iocstate(ioc, 1);
pr_info(MPT3SAS_FMT
"%s: waiting for operational state(count=%d)\n",
ioc->name,
__func__, wait_state_count);
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
rc = -EAGAIN;
goto out;
}
rc = 0;
ioc->base_cmds.status = MPT3_CMD_PENDING;
request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memcpy(request, mpi_request, sizeof(Mpi2SepReply_t));
init_completion(&ioc->base_cmds.done);
mpt3sas_base_put_smid_default(ioc, smid);
timeleft = wait_for_completion_timeout(&ioc->base_cmds.done,
msecs_to_jiffies(10000));
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2SepRequest_t)/4);
if (!(ioc->base_cmds.status & MPT3_CMD_RESET))
issue_reset = false;
goto issue_host_reset;
}
if (ioc->base_cmds.status & MPT3_CMD_REPLY_VALID)
memcpy(mpi_reply, ioc->base_cmds.reply,
sizeof(Mpi2SepReply_t));
else
memset(mpi_reply, 0, sizeof(Mpi2SepReply_t));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
goto out;
issue_host_reset:
if (issue_reset)
mpt3sas_base_hard_reset_handler(ioc, CAN_SLEEP,
FORCE_BIG_HAMMER);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
rc = -EFAULT;
out:
mutex_unlock(&ioc->base_cmds.mutex);
return rc;
}
/**
* _base_get_port_facts - obtain port facts reply and save in ioc
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_get_port_facts(struct MPT3SAS_ADAPTER *ioc, int port, int sleep_flag)
{
Mpi2PortFactsRequest_t mpi_request;
Mpi2PortFactsReply_t mpi_reply;
struct mpt3sas_port_facts *pfacts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mpi_reply_sz = sizeof(Mpi2PortFactsReply_t);
mpi_request_sz = sizeof(Mpi2PortFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_PORT_FACTS;
mpi_request.PortNumber = port;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
if (r != 0) {
pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
return r;
}
pfacts = &ioc->pfacts[port];
memset(pfacts, 0, sizeof(struct mpt3sas_port_facts));
pfacts->PortNumber = mpi_reply.PortNumber;
pfacts->VP_ID = mpi_reply.VP_ID;
pfacts->VF_ID = mpi_reply.VF_ID;
pfacts->MaxPostedCmdBuffers =
le16_to_cpu(mpi_reply.MaxPostedCmdBuffers);
return 0;
}
/**
* _base_get_ioc_facts - obtain ioc facts reply and save in ioc
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_get_ioc_facts(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
Mpi2IOCFactsRequest_t mpi_request;
Mpi2IOCFactsReply_t mpi_reply;
struct mpt3sas_facts *facts;
int mpi_reply_sz, mpi_request_sz, r;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mpi_reply_sz = sizeof(Mpi2IOCFactsReply_t);
mpi_request_sz = sizeof(Mpi2IOCFactsRequest_t);
memset(&mpi_request, 0, mpi_request_sz);
mpi_request.Function = MPI2_FUNCTION_IOC_FACTS;
r = _base_handshake_req_reply_wait(ioc, mpi_request_sz,
(u32 *)&mpi_request, mpi_reply_sz, (u16 *)&mpi_reply, 5, CAN_SLEEP);
if (r != 0) {
pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
return r;
}
facts = &ioc->facts;
memset(facts, 0, sizeof(struct mpt3sas_facts));
facts->MsgVersion = le16_to_cpu(mpi_reply.MsgVersion);
facts->HeaderVersion = le16_to_cpu(mpi_reply.HeaderVersion);
facts->VP_ID = mpi_reply.VP_ID;
facts->VF_ID = mpi_reply.VF_ID;
facts->IOCExceptions = le16_to_cpu(mpi_reply.IOCExceptions);
facts->MaxChainDepth = mpi_reply.MaxChainDepth;
facts->WhoInit = mpi_reply.WhoInit;
facts->NumberOfPorts = mpi_reply.NumberOfPorts;
facts->MaxMSIxVectors = mpi_reply.MaxMSIxVectors;
facts->RequestCredit = le16_to_cpu(mpi_reply.RequestCredit);
facts->MaxReplyDescriptorPostQueueDepth =
le16_to_cpu(mpi_reply.MaxReplyDescriptorPostQueueDepth);
facts->ProductID = le16_to_cpu(mpi_reply.ProductID);
facts->IOCCapabilities = le32_to_cpu(mpi_reply.IOCCapabilities);
if ((facts->IOCCapabilities & MPI2_IOCFACTS_CAPABILITY_INTEGRATED_RAID))
ioc->ir_firmware = 1;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
if ((facts->IOCCapabilities &
MPI2_IOCFACTS_CAPABILITY_RDPQ_ARRAY_CAPABLE))
ioc->rdpq_array_capable = 1;
facts->FWVersion.Word = le32_to_cpu(mpi_reply.FWVersion.Word);
facts->IOCRequestFrameSize =
le16_to_cpu(mpi_reply.IOCRequestFrameSize);
facts->MaxInitiators = le16_to_cpu(mpi_reply.MaxInitiators);
facts->MaxTargets = le16_to_cpu(mpi_reply.MaxTargets);
ioc->shost->max_id = -1;
facts->MaxSasExpanders = le16_to_cpu(mpi_reply.MaxSasExpanders);
facts->MaxEnclosures = le16_to_cpu(mpi_reply.MaxEnclosures);
facts->ProtocolFlags = le16_to_cpu(mpi_reply.ProtocolFlags);
facts->HighPriorityCredit =
le16_to_cpu(mpi_reply.HighPriorityCredit);
facts->ReplyFrameSize = mpi_reply.ReplyFrameSize;
facts->MaxDevHandle = le16_to_cpu(mpi_reply.MaxDevHandle);
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"hba queue depth(%d), max chains per io(%d)\n",
ioc->name, facts->RequestCredit,
facts->MaxChainDepth));
dinitprintk(ioc, pr_info(MPT3SAS_FMT
"request frame size(%d), reply frame size(%d)\n", ioc->name,
facts->IOCRequestFrameSize * 4, facts->ReplyFrameSize * 4));
return 0;
}
/**
* _base_send_ioc_init - send ioc_init to firmware
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_ioc_init(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
Mpi2IOCInitRequest_t mpi_request;
Mpi2IOCInitReply_t mpi_reply;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
int i, r = 0;
struct timeval current_time;
u16 ioc_status;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
u32 reply_post_free_array_sz = 0;
Mpi2IOCInitRDPQArrayEntry *reply_post_free_array = NULL;
dma_addr_t reply_post_free_array_dma;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
memset(&mpi_request, 0, sizeof(Mpi2IOCInitRequest_t));
mpi_request.Function = MPI2_FUNCTION_IOC_INIT;
mpi_request.WhoInit = MPI2_WHOINIT_HOST_DRIVER;
mpi_request.VF_ID = 0; /* TODO */
mpi_request.VP_ID = 0;
mpi_request.MsgVersion = cpu_to_le16(MPI2_VERSION);
mpi_request.HeaderVersion = cpu_to_le16(MPI2_HEADER_VERSION);
if (_base_is_controller_msix_enabled(ioc))
mpi_request.HostMSIxVectors = ioc->reply_queue_count;
mpi_request.SystemRequestFrameSize = cpu_to_le16(ioc->request_sz/4);
mpi_request.ReplyDescriptorPostQueueDepth =
cpu_to_le16(ioc->reply_post_queue_depth);
mpi_request.ReplyFreeQueueDepth =
cpu_to_le16(ioc->reply_free_queue_depth);
mpi_request.SenseBufferAddressHigh =
cpu_to_le32((u64)ioc->sense_dma >> 32);
mpi_request.SystemReplyAddressHigh =
cpu_to_le32((u64)ioc->reply_dma >> 32);
mpi_request.SystemRequestFrameBaseAddress =
cpu_to_le64((u64)ioc->request_dma);
mpi_request.ReplyFreeQueueAddress =
cpu_to_le64((u64)ioc->reply_free_dma);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
if (ioc->rdpq_array_enable) {
reply_post_free_array_sz = ioc->reply_queue_count *
sizeof(Mpi2IOCInitRDPQArrayEntry);
reply_post_free_array = pci_alloc_consistent(ioc->pdev,
reply_post_free_array_sz, &reply_post_free_array_dma);
if (!reply_post_free_array) {
pr_err(MPT3SAS_FMT
"reply_post_free_array: pci_alloc_consistent failed\n",
ioc->name);
r = -ENOMEM;
goto out;
}
memset(reply_post_free_array, 0, reply_post_free_array_sz);
for (i = 0; i < ioc->reply_queue_count; i++)
reply_post_free_array[i].RDPQBaseAddress =
cpu_to_le64(
(u64)ioc->reply_post[i].reply_post_free_dma);
mpi_request.MsgFlags = MPI2_IOCINIT_MSGFLAG_RDPQ_ARRAY_MODE;
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)reply_post_free_array_dma);
} else {
mpi_request.ReplyDescriptorPostQueueAddress =
cpu_to_le64((u64)ioc->reply_post[0].reply_post_free_dma);
}
/* This time stamp specifies number of milliseconds
* since epoch ~ midnight January 1, 1970.
*/
do_gettimeofday(&current_time);
mpi_request.TimeStamp = cpu_to_le64((u64)current_time.tv_sec * 1000 +
(current_time.tv_usec / 1000));
if (ioc->logging_level & MPT_DEBUG_INIT) {
__le32 *mfp;
int i;
mfp = (__le32 *)&mpi_request;
pr_info("\toffset:data\n");
for (i = 0; i < sizeof(Mpi2IOCInitRequest_t)/4; i++)
pr_info("\t[0x%02x]:%08x\n", i*4,
le32_to_cpu(mfp[i]));
}
r = _base_handshake_req_reply_wait(ioc,
sizeof(Mpi2IOCInitRequest_t), (u32 *)&mpi_request,
sizeof(Mpi2IOCInitReply_t), (u16 *)&mpi_reply, 10,
sleep_flag);
if (r != 0) {
pr_err(MPT3SAS_FMT "%s: handshake failed (r=%d)\n",
ioc->name, __func__, r);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
goto out;
}
ioc_status = le16_to_cpu(mpi_reply.IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS ||
mpi_reply.IOCLogInfo) {
pr_err(MPT3SAS_FMT "%s: failed\n", ioc->name, __func__);
r = -EIO;
}
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
out:
if (reply_post_free_array)
pci_free_consistent(ioc->pdev, reply_post_free_array_sz,
reply_post_free_array,
reply_post_free_array_dma);
return r;
}
/**
* mpt3sas_port_enable_done - command completion routine for port enable
* @ioc: per adapter object
* @smid: system request message index
* @msix_index: MSIX table index supplied by the OS
* @reply: reply message frame(lower 32bit addr)
*
* Return 1 meaning mf should be freed from _base_interrupt
* 0 means the mf is freed from this function.
*/
u8
mpt3sas_port_enable_done(struct MPT3SAS_ADAPTER *ioc, u16 smid, u8 msix_index,
u32 reply)
{
MPI2DefaultReply_t *mpi_reply;
u16 ioc_status;
if (ioc->port_enable_cmds.status == MPT3_CMD_NOT_USED)
return 1;
mpi_reply = mpt3sas_base_get_reply_virt_addr(ioc, reply);
if (!mpi_reply)
return 1;
if (mpi_reply->Function != MPI2_FUNCTION_PORT_ENABLE)
return 1;
ioc->port_enable_cmds.status &= ~MPT3_CMD_PENDING;
ioc->port_enable_cmds.status |= MPT3_CMD_COMPLETE;
ioc->port_enable_cmds.status |= MPT3_CMD_REPLY_VALID;
memcpy(ioc->port_enable_cmds.reply, mpi_reply, mpi_reply->MsgLength*4);
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS)
ioc->port_enable_failed = 1;
if (ioc->is_driver_loading) {
if (ioc_status == MPI2_IOCSTATUS_SUCCESS) {
mpt3sas_port_enable_complete(ioc);
return 1;
} else {
ioc->start_scan_failed = ioc_status;
ioc->start_scan = 0;
return 1;
}
}
complete(&ioc->port_enable_cmds.done);
return 1;
}
/**
* _base_send_port_enable - send port_enable(discovery stuff) to firmware
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_send_port_enable(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
Mpi2PortEnableRequest_t *mpi_request;
Mpi2PortEnableReply_t *mpi_reply;
unsigned long timeleft;
int r = 0;
u16 smid;
u16 ioc_status;
pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
init_completion(&ioc->port_enable_cmds.done);
mpt3sas_base_put_smid_default(ioc, smid);
timeleft = wait_for_completion_timeout(&ioc->port_enable_cmds.done,
300*HZ);
if (!(ioc->port_enable_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2PortEnableRequest_t)/4);
if (ioc->port_enable_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
goto out;
}
mpi_reply = ioc->port_enable_cmds.reply;
ioc_status = le16_to_cpu(mpi_reply->IOCStatus) & MPI2_IOCSTATUS_MASK;
if (ioc_status != MPI2_IOCSTATUS_SUCCESS) {
pr_err(MPT3SAS_FMT "%s: failed with (ioc_status=0x%08x)\n",
ioc->name, __func__, ioc_status);
r = -EFAULT;
goto out;
}
out:
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
pr_info(MPT3SAS_FMT "port enable: %s\n", ioc->name, ((r == 0) ?
"SUCCESS" : "FAILED"));
return r;
}
/**
* mpt3sas_port_enable - initiate firmware discovery (don't wait for reply)
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_port_enable(struct MPT3SAS_ADAPTER *ioc)
{
Mpi2PortEnableRequest_t *mpi_request;
u16 smid;
pr_info(MPT3SAS_FMT "sending port enable !!\n", ioc->name);
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->port_enable_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->port_enable_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->port_enable_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2PortEnableRequest_t));
mpi_request->Function = MPI2_FUNCTION_PORT_ENABLE;
mpt3sas_base_put_smid_default(ioc, smid);
return 0;
}
/**
* _base_determine_wait_on_discovery - desposition
* @ioc: per adapter object
*
* Decide whether to wait on discovery to complete. Used to either
* locate boot device, or report volumes ahead of physical devices.
*
* Returns 1 for wait, 0 for don't wait
*/
static int
_base_determine_wait_on_discovery(struct MPT3SAS_ADAPTER *ioc)
{
/* We wait for discovery to complete if IR firmware is loaded.
* The sas topology events arrive before PD events, so we need time to
* turn on the bit in ioc->pd_handles to indicate PD
* Also, it maybe required to report Volumes ahead of physical
* devices when MPI2_IOCPAGE8_IRFLAGS_LOW_VOLUME_MAPPING is set.
*/
if (ioc->ir_firmware)
return 1;
/* if no Bios, then we don't need to wait */
if (!ioc->bios_pg3.BiosVersion)
return 0;
/* Bios is present, then we drop down here.
*
* If there any entries in the Bios Page 2, then we wait
* for discovery to complete.
*/
/* Current Boot Device */
if ((ioc->bios_pg2.CurrentBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Request Boot Device */
(ioc->bios_pg2.ReqBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED &&
/* Alternate Request Boot Device */
(ioc->bios_pg2.ReqAltBootDeviceForm &
MPI2_BIOSPAGE2_FORM_MASK) ==
MPI2_BIOSPAGE2_FORM_NO_DEVICE_SPECIFIED)
return 0;
return 1;
}
/**
* _base_unmask_events - turn on notification for this event
* @ioc: per adapter object
* @event: firmware event
*
* The mask is stored in ioc->event_masks.
*/
static void
_base_unmask_events(struct MPT3SAS_ADAPTER *ioc, u16 event)
{
u32 desired_event;
if (event >= 128)
return;
desired_event = (1 << (event % 32));
if (event < 32)
ioc->event_masks[0] &= ~desired_event;
else if (event < 64)
ioc->event_masks[1] &= ~desired_event;
else if (event < 96)
ioc->event_masks[2] &= ~desired_event;
else if (event < 128)
ioc->event_masks[3] &= ~desired_event;
}
/**
* _base_event_notification - send event notification
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_event_notification(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
Mpi2EventNotificationRequest_t *mpi_request;
unsigned long timeleft;
u16 smid;
int r = 0;
int i;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
pr_err(MPT3SAS_FMT "%s: internal command already in use\n",
ioc->name, __func__);
return -EAGAIN;
}
smid = mpt3sas_base_get_smid(ioc, ioc->base_cb_idx);
if (!smid) {
pr_err(MPT3SAS_FMT "%s: failed obtaining a smid\n",
ioc->name, __func__);
return -EAGAIN;
}
ioc->base_cmds.status = MPT3_CMD_PENDING;
mpi_request = mpt3sas_base_get_msg_frame(ioc, smid);
ioc->base_cmds.smid = smid;
memset(mpi_request, 0, sizeof(Mpi2EventNotificationRequest_t));
mpi_request->Function = MPI2_FUNCTION_EVENT_NOTIFICATION;
mpi_request->VF_ID = 0; /* TODO */
mpi_request->VP_ID = 0;
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
mpi_request->EventMasks[i] =
cpu_to_le32(ioc->event_masks[i]);
init_completion(&ioc->base_cmds.done);
mpt3sas_base_put_smid_default(ioc, smid);
timeleft = wait_for_completion_timeout(&ioc->base_cmds.done, 30*HZ);
if (!(ioc->base_cmds.status & MPT3_CMD_COMPLETE)) {
pr_err(MPT3SAS_FMT "%s: timeout\n",
ioc->name, __func__);
_debug_dump_mf(mpi_request,
sizeof(Mpi2EventNotificationRequest_t)/4);
if (ioc->base_cmds.status & MPT3_CMD_RESET)
r = -EFAULT;
else
r = -ETIME;
} else
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s: complete\n",
ioc->name, __func__));
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
return r;
}
/**
* mpt3sas_base_validate_event_type - validating event types
* @ioc: per adapter object
* @event: firmware event
*
* This will turn on firmware event notification when application
* ask for that event. We don't mask events that are already enabled.
*/
void
mpt3sas_base_validate_event_type(struct MPT3SAS_ADAPTER *ioc, u32 *event_type)
{
int i, j;
u32 event_mask, desired_event;
u8 send_update_to_fw;
for (i = 0, send_update_to_fw = 0; i <
MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++) {
event_mask = ~event_type[i];
desired_event = 1;
for (j = 0; j < 32; j++) {
if (!(event_mask & desired_event) &&
(ioc->event_masks[i] & desired_event)) {
ioc->event_masks[i] &= ~desired_event;
send_update_to_fw = 1;
}
desired_event = (desired_event << 1);
}
}
if (!send_update_to_fw)
return;
mutex_lock(&ioc->base_cmds.mutex);
_base_event_notification(ioc, CAN_SLEEP);
mutex_unlock(&ioc->base_cmds.mutex);
}
/**
* _base_diag_reset - the "big hammer" start of day reset
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_diag_reset(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
u32 host_diagnostic;
u32 ioc_state;
u32 count;
u32 hcb_size;
pr_info(MPT3SAS_FMT "sending diag reset !!\n", ioc->name);
drsprintk(ioc, pr_info(MPT3SAS_FMT "clear interrupts\n",
ioc->name));
count = 0;
do {
/* Write magic sequence to WriteSequence register
* Loop until in diagnostic mode
*/
drsprintk(ioc, pr_info(MPT3SAS_FMT
"write magic sequence\n", ioc->name));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_1ST_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_2ND_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_3RD_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_4TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_5TH_KEY_VALUE, &ioc->chip->WriteSequence);
writel(MPI2_WRSEQ_6TH_KEY_VALUE, &ioc->chip->WriteSequence);
/* wait 100 msec */
if (sleep_flag == CAN_SLEEP)
msleep(100);
else
mdelay(100);
if (count++ > 20)
goto out;
host_diagnostic = readl(&ioc->chip->HostDiagnostic);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"wrote magic sequence: count(%d), host_diagnostic(0x%08x)\n",
ioc->name, count, host_diagnostic));
} while ((host_diagnostic & MPI2_DIAG_DIAG_WRITE_ENABLE) == 0);
hcb_size = readl(&ioc->chip->HCBSize);
drsprintk(ioc, pr_info(MPT3SAS_FMT "diag reset: issued\n",
ioc->name));
writel(host_diagnostic | MPI2_DIAG_RESET_ADAPTER,
&ioc->chip->HostDiagnostic);
/*This delay allows the chip PCIe hardware time to finish reset tasks*/
if (sleep_flag == CAN_SLEEP)
msleep(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
else
mdelay(MPI2_HARD_RESET_PCIE_FIRST_READ_DELAY_MICRO_SEC/1000);
/* Approximately 300 second max wait */
for (count = 0; count < (300000000 /
MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC); count++) {
host_diagnostic = readl(&ioc->chip->HostDiagnostic);
if (host_diagnostic == 0xFFFFFFFF)
goto out;
if (!(host_diagnostic & MPI2_DIAG_RESET_ADAPTER))
break;
/* Wait to pass the second read delay window */
if (sleep_flag == CAN_SLEEP)
msleep(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
/ 1000);
else
mdelay(MPI2_HARD_RESET_PCIE_SECOND_READ_DELAY_MICRO_SEC
/ 1000);
}
if (host_diagnostic & MPI2_DIAG_HCB_MODE) {
drsprintk(ioc, pr_info(MPT3SAS_FMT
"restart the adapter assuming the HCB Address points to good F/W\n",
ioc->name));
host_diagnostic &= ~MPI2_DIAG_BOOT_DEVICE_SELECT_MASK;
host_diagnostic |= MPI2_DIAG_BOOT_DEVICE_SELECT_HCDW;
writel(host_diagnostic, &ioc->chip->HostDiagnostic);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"re-enable the HCDW\n", ioc->name));
writel(hcb_size | MPI2_HCB_SIZE_HCB_ENABLE,
&ioc->chip->HCBSize);
}
drsprintk(ioc, pr_info(MPT3SAS_FMT "restart the adapter\n",
ioc->name));
writel(host_diagnostic & ~MPI2_DIAG_HOLD_IOC_RESET,
&ioc->chip->HostDiagnostic);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"disable writes to the diagnostic register\n", ioc->name));
writel(MPI2_WRSEQ_FLUSH_KEY_VALUE, &ioc->chip->WriteSequence);
drsprintk(ioc, pr_info(MPT3SAS_FMT
"Wait for FW to go to the READY state\n", ioc->name));
ioc_state = _base_wait_on_iocstate(ioc, MPI2_IOC_STATE_READY, 20,
sleep_flag);
if (ioc_state) {
pr_err(MPT3SAS_FMT
"%s: failed going to ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state);
goto out;
}
pr_info(MPT3SAS_FMT "diag reset: SUCCESS\n", ioc->name);
return 0;
out:
pr_err(MPT3SAS_FMT "diag reset: FAILED\n", ioc->name);
return -EFAULT;
}
/**
* _base_make_ioc_ready - put controller in READY state
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_make_ioc_ready(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
enum reset_type type)
{
u32 ioc_state;
int rc;
int count;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->pci_error_recovery)
return 0;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
dhsprintk(ioc, pr_info(MPT3SAS_FMT "%s: ioc_state(0x%08x)\n",
ioc->name, __func__, ioc_state));
/* if in RESET state, it should move to READY state shortly */
count = 0;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) {
while ((ioc_state & MPI2_IOC_STATE_MASK) !=
MPI2_IOC_STATE_READY) {
if (count++ == 10) {
pr_err(MPT3SAS_FMT
"%s: failed going to ready state (ioc_state=0x%x)\n",
ioc->name, __func__, ioc_state);
return -EFAULT;
}
if (sleep_flag == CAN_SLEEP)
ssleep(1);
else
mdelay(1000);
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
}
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_READY)
return 0;
if (ioc_state & MPI2_DOORBELL_USED) {
dhsprintk(ioc, pr_info(MPT3SAS_FMT
"unexpected doorbell active!\n",
ioc->name));
goto issue_diag_reset;
}
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) {
mpt3sas_base_fault_info(ioc, ioc_state &
MPI2_DOORBELL_DATA_MASK);
goto issue_diag_reset;
}
if (type == FORCE_BIG_HAMMER)
goto issue_diag_reset;
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_OPERATIONAL)
if (!(_base_send_ioc_reset(ioc,
MPI2_FUNCTION_IOC_MESSAGE_UNIT_RESET, 15, CAN_SLEEP))) {
return 0;
}
issue_diag_reset:
rc = _base_diag_reset(ioc, CAN_SLEEP);
return rc;
}
/**
* _base_make_ioc_operational - put controller in OPERATIONAL state
* @ioc: per adapter object
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* Returns 0 for success, non-zero for failure.
*/
static int
_base_make_ioc_operational(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
int r, i;
unsigned long flags;
u32 reply_address;
u16 smid;
struct _tr_list *delayed_tr, *delayed_tr_next;
struct adapter_reply_queue *reply_q;
long reply_post_free;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
u32 reply_post_free_sz, index = 0;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
/* clean the delayed target reset list */
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
list_for_each_entry_safe(delayed_tr, delayed_tr_next,
&ioc->delayed_tr_volume_list, list) {
list_del(&delayed_tr->list);
kfree(delayed_tr);
}
/* initialize the scsi lookup free list */
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
INIT_LIST_HEAD(&ioc->free_list);
smid = 1;
for (i = 0; i < ioc->scsiio_depth; i++, smid++) {
INIT_LIST_HEAD(&ioc->scsi_lookup[i].chain_list);
ioc->scsi_lookup[i].cb_idx = 0xFF;
ioc->scsi_lookup[i].smid = smid;
ioc->scsi_lookup[i].scmd = NULL;
list_add_tail(&ioc->scsi_lookup[i].tracker_list,
&ioc->free_list);
}
/* hi-priority queue */
INIT_LIST_HEAD(&ioc->hpr_free_list);
smid = ioc->hi_priority_smid;
for (i = 0; i < ioc->hi_priority_depth; i++, smid++) {
ioc->hpr_lookup[i].cb_idx = 0xFF;
ioc->hpr_lookup[i].smid = smid;
list_add_tail(&ioc->hpr_lookup[i].tracker_list,
&ioc->hpr_free_list);
}
/* internal queue */
INIT_LIST_HEAD(&ioc->internal_free_list);
smid = ioc->internal_smid;
for (i = 0; i < ioc->internal_depth; i++, smid++) {
ioc->internal_lookup[i].cb_idx = 0xFF;
ioc->internal_lookup[i].smid = smid;
list_add_tail(&ioc->internal_lookup[i].tracker_list,
&ioc->internal_free_list);
}
/* chain pool */
INIT_LIST_HEAD(&ioc->free_chain_list);
for (i = 0; i < ioc->chain_depth; i++)
list_add_tail(&ioc->chain_lookup[i].tracker_list,
&ioc->free_chain_list);
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
/* initialize Reply Free Queue */
for (i = 0, reply_address = (u32)ioc->reply_dma ;
i < ioc->reply_free_queue_depth ; i++, reply_address +=
ioc->reply_sz)
ioc->reply_free[i] = cpu_to_le32(reply_address);
/* initialize reply queues */
if (ioc->is_driver_loading)
_base_assign_reply_queues(ioc);
/* initialize Reply Post Free Queue */
reply_post_free_sz = ioc->reply_post_queue_depth *
sizeof(Mpi2DefaultReplyDescriptor_t);
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
reply_post_free = (long)ioc->reply_post[index].reply_post_free;
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
reply_q->reply_post_host_index = 0;
reply_q->reply_post_free = (Mpi2ReplyDescriptorsUnion_t *)
reply_post_free;
for (i = 0; i < ioc->reply_post_queue_depth; i++)
reply_q->reply_post_free[i].Words =
cpu_to_le64(ULLONG_MAX);
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_free_queue;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
/*
* If RDPQ is enabled, switch to the next allocation.
* Otherwise advance within the contiguous region.
*/
if (ioc->rdpq_array_enable)
reply_post_free = (long)
ioc->reply_post[++index].reply_post_free;
else
reply_post_free += reply_post_free_sz;
}
skip_init_reply_post_free_queue:
r = _base_send_ioc_init(ioc, sleep_flag);
if (r)
return r;
/* initialize reply free host index */
ioc->reply_free_host_index = ioc->reply_free_queue_depth - 1;
writel(ioc->reply_free_host_index, &ioc->chip->ReplyFreeHostIndex);
/* initialize reply post host index */
list_for_each_entry(reply_q, &ioc->reply_queue_list, list) {
writel(reply_q->msix_index << MPI2_RPHI_MSIX_INDEX_SHIFT,
&ioc->chip->ReplyPostHostIndex);
if (!_base_is_controller_msix_enabled(ioc))
goto skip_init_reply_post_host_index;
}
skip_init_reply_post_host_index:
_base_unmask_interrupts(ioc);
r = _base_event_notification(ioc, sleep_flag);
if (r)
return r;
if (sleep_flag == CAN_SLEEP)
_base_static_config_pages(ioc);
if (ioc->is_driver_loading) {
ioc->wait_for_discovery_to_complete =
_base_determine_wait_on_discovery(ioc);
return r; /* scan_start and scan_finished support */
}
r = _base_send_port_enable(ioc, sleep_flag);
if (r)
return r;
return r;
}
/**
* mpt3sas_base_free_resources - free resources controller resources
* @ioc: per adapter object
*
* Return nothing.
*/
void
mpt3sas_base_free_resources(struct MPT3SAS_ADAPTER *ioc)
{
struct pci_dev *pdev = ioc->pdev;
dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
if (ioc->chip_phys && ioc->chip) {
_base_mask_interrupts(ioc);
ioc->shost_recovery = 1;
_base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
ioc->shost_recovery = 0;
}
_base_free_irq(ioc);
_base_disable_msix(ioc);
if (ioc->chip_phys && ioc->chip)
iounmap(ioc->chip);
ioc->chip_phys = 0;
if (pci_is_enabled(pdev)) {
pci_release_selected_regions(ioc->pdev, ioc->bars);
pci_disable_pcie_error_reporting(pdev);
pci_disable_device(pdev);
}
return;
}
/**
* mpt3sas_base_attach - attach controller instance
* @ioc: per adapter object
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_attach(struct MPT3SAS_ADAPTER *ioc)
{
int r, i;
int cpu_id, last_cpu_id = 0;
dinitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
/* setup cpu_msix_table */
ioc->cpu_count = num_online_cpus();
for_each_online_cpu(cpu_id)
last_cpu_id = cpu_id;
ioc->cpu_msix_table_sz = last_cpu_id + 1;
ioc->cpu_msix_table = kzalloc(ioc->cpu_msix_table_sz, GFP_KERNEL);
ioc->reply_queue_count = 1;
if (!ioc->cpu_msix_table) {
dfailprintk(ioc, pr_info(MPT3SAS_FMT
"allocation for cpu_msix_table failed!!!\n",
ioc->name));
r = -ENOMEM;
goto out_free_resources;
}
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
ioc->rdpq_array_enable_assigned = 0;
ioc->dma_mask = 0;
r = mpt3sas_base_map_resources(ioc);
if (r)
goto out_free_resources;
pci_set_drvdata(ioc->pdev, ioc->shost);
r = _base_get_ioc_facts(ioc, CAN_SLEEP);
if (r)
goto out_free_resources;
/*
* In SAS3.0,
* SCSI_IO, SMP_PASSTHRU, SATA_PASSTHRU, Target Assist, and
* Target Status - all require the IEEE formated scatter gather
* elements.
*/
ioc->build_sg_scmd = &_base_build_sg_scmd_ieee;
ioc->build_sg = &_base_build_sg_ieee;
ioc->build_zero_len_sge = &_base_build_zero_len_sge_ieee;
ioc->mpi25 = 1;
ioc->sge_size_ieee = sizeof(Mpi2IeeeSgeSimple64_t);
/*
* These function pointers for other requests that don't
* the require IEEE scatter gather elements.
*
* For example Configuration Pages and SAS IOUNIT Control don't.
*/
ioc->build_sg_mpi = &_base_build_sg;
ioc->build_zero_len_sge_mpi = &_base_build_zero_len_sge;
r = _base_make_ioc_ready(ioc, CAN_SLEEP, SOFT_RESET);
if (r)
goto out_free_resources;
ioc->pfacts = kcalloc(ioc->facts.NumberOfPorts,
sizeof(struct mpt3sas_port_facts), GFP_KERNEL);
if (!ioc->pfacts) {
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0 ; i < ioc->facts.NumberOfPorts; i++) {
r = _base_get_port_facts(ioc, i, CAN_SLEEP);
if (r)
goto out_free_resources;
}
r = _base_allocate_memory_pools(ioc, CAN_SLEEP);
if (r)
goto out_free_resources;
init_waitqueue_head(&ioc->reset_wq);
/* allocate memory pd handle bitmask list */
ioc->pd_handles_sz = (ioc->facts.MaxDevHandle / 8);
if (ioc->facts.MaxDevHandle % 8)
ioc->pd_handles_sz++;
ioc->pd_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->pd_handles) {
r = -ENOMEM;
goto out_free_resources;
}
ioc->blocking_handles = kzalloc(ioc->pd_handles_sz,
GFP_KERNEL);
if (!ioc->blocking_handles) {
r = -ENOMEM;
goto out_free_resources;
}
ioc->fwfault_debug = mpt3sas_fwfault_debug;
/* base internal command bits */
mutex_init(&ioc->base_cmds.mutex);
ioc->base_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->base_cmds.status = MPT3_CMD_NOT_USED;
/* port_enable command bits */
ioc->port_enable_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->port_enable_cmds.status = MPT3_CMD_NOT_USED;
/* transport internal command bits */
ioc->transport_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->transport_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->transport_cmds.mutex);
/* scsih internal command bits */
ioc->scsih_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->scsih_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->scsih_cmds.mutex);
/* task management internal command bits */
ioc->tm_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->tm_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->tm_cmds.mutex);
/* config page internal command bits */
ioc->config_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->config_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->config_cmds.mutex);
/* ctl module internal command bits */
ioc->ctl_cmds.reply = kzalloc(ioc->reply_sz, GFP_KERNEL);
ioc->ctl_cmds.sense = kzalloc(SCSI_SENSE_BUFFERSIZE, GFP_KERNEL);
ioc->ctl_cmds.status = MPT3_CMD_NOT_USED;
mutex_init(&ioc->ctl_cmds.mutex);
if (!ioc->base_cmds.reply || !ioc->transport_cmds.reply ||
!ioc->scsih_cmds.reply || !ioc->tm_cmds.reply ||
!ioc->config_cmds.reply || !ioc->ctl_cmds.reply ||
!ioc->ctl_cmds.sense) {
r = -ENOMEM;
goto out_free_resources;
}
for (i = 0; i < MPI2_EVENT_NOTIFY_EVENTMASK_WORDS; i++)
ioc->event_masks[i] = -1;
/* here we enable the events we care about */
_base_unmask_events(ioc, MPI2_EVENT_SAS_DISCOVERY);
_base_unmask_events(ioc, MPI2_EVENT_SAS_BROADCAST_PRIMITIVE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE);
_base_unmask_events(ioc, MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST);
_base_unmask_events(ioc, MPI2_EVENT_IR_VOLUME);
_base_unmask_events(ioc, MPI2_EVENT_IR_PHYSICAL_DISK);
_base_unmask_events(ioc, MPI2_EVENT_IR_OPERATION_STATUS);
_base_unmask_events(ioc, MPI2_EVENT_LOG_ENTRY_ADDED);
_base_unmask_events(ioc, MPI2_EVENT_TEMP_THRESHOLD);
r = _base_make_ioc_operational(ioc, CAN_SLEEP);
if (r)
goto out_free_resources;
return 0;
out_free_resources:
ioc->remove_host = 1;
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->pfacts);
ioc->ctl_cmds.reply = NULL;
ioc->base_cmds.reply = NULL;
ioc->tm_cmds.reply = NULL;
ioc->scsih_cmds.reply = NULL;
ioc->transport_cmds.reply = NULL;
ioc->config_cmds.reply = NULL;
ioc->pfacts = NULL;
return r;
}
/**
* mpt3sas_base_detach - remove controller instance
* @ioc: per adapter object
*
* Return nothing.
*/
void
mpt3sas_base_detach(struct MPT3SAS_ADAPTER *ioc)
{
dexitprintk(ioc, pr_info(MPT3SAS_FMT "%s\n", ioc->name,
__func__));
mpt3sas_base_stop_watchdog(ioc);
mpt3sas_base_free_resources(ioc);
_base_release_memory_pools(ioc);
pci_set_drvdata(ioc->pdev, NULL);
kfree(ioc->cpu_msix_table);
kfree(ioc->pd_handles);
kfree(ioc->blocking_handles);
kfree(ioc->pfacts);
kfree(ioc->ctl_cmds.reply);
kfree(ioc->ctl_cmds.sense);
kfree(ioc->base_cmds.reply);
kfree(ioc->port_enable_cmds.reply);
kfree(ioc->tm_cmds.reply);
kfree(ioc->transport_cmds.reply);
kfree(ioc->scsih_cmds.reply);
kfree(ioc->config_cmds.reply);
}
/**
* _base_reset_handler - reset callback handler (for base)
* @ioc: per adapter object
* @reset_phase: phase
*
* The handler for doing any required cleanup or initialization.
*
* The reset phase can be MPT3_IOC_PRE_RESET, MPT3_IOC_AFTER_RESET,
* MPT3_IOC_DONE_RESET
*
* Return nothing.
*/
static void
_base_reset_handler(struct MPT3SAS_ADAPTER *ioc, int reset_phase)
{
mpt3sas_scsih_reset_handler(ioc, reset_phase);
mpt3sas_ctl_reset_handler(ioc, reset_phase);
switch (reset_phase) {
case MPT3_IOC_PRE_RESET:
dtmprintk(ioc, pr_info(MPT3SAS_FMT
"%s: MPT3_IOC_PRE_RESET\n", ioc->name, __func__));
break;
case MPT3_IOC_AFTER_RESET:
dtmprintk(ioc, pr_info(MPT3SAS_FMT
"%s: MPT3_IOC_AFTER_RESET\n", ioc->name, __func__));
if (ioc->transport_cmds.status & MPT3_CMD_PENDING) {
ioc->transport_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->transport_cmds.smid);
complete(&ioc->transport_cmds.done);
}
if (ioc->base_cmds.status & MPT3_CMD_PENDING) {
ioc->base_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->base_cmds.smid);
complete(&ioc->base_cmds.done);
}
if (ioc->port_enable_cmds.status & MPT3_CMD_PENDING) {
ioc->port_enable_failed = 1;
ioc->port_enable_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->port_enable_cmds.smid);
if (ioc->is_driver_loading) {
ioc->start_scan_failed =
MPI2_IOCSTATUS_INTERNAL_ERROR;
ioc->start_scan = 0;
ioc->port_enable_cmds.status =
MPT3_CMD_NOT_USED;
} else
complete(&ioc->port_enable_cmds.done);
}
if (ioc->config_cmds.status & MPT3_CMD_PENDING) {
ioc->config_cmds.status |= MPT3_CMD_RESET;
mpt3sas_base_free_smid(ioc, ioc->config_cmds.smid);
ioc->config_cmds.smid = USHRT_MAX;
complete(&ioc->config_cmds.done);
}
break;
case MPT3_IOC_DONE_RESET:
dtmprintk(ioc, pr_info(MPT3SAS_FMT
"%s: MPT3_IOC_DONE_RESET\n", ioc->name, __func__));
break;
}
}
/**
* _wait_for_commands_to_complete - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
* @sleep_flag: CAN_SLEEP or NO_SLEEP
*
* This function waiting(3s) for all pending commands to complete
* prior to putting controller in reset.
*/
static void
_wait_for_commands_to_complete(struct MPT3SAS_ADAPTER *ioc, int sleep_flag)
{
u32 ioc_state;
unsigned long flags;
u16 i;
ioc->pending_io_count = 0;
if (sleep_flag != CAN_SLEEP)
return;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc_state & MPI2_IOC_STATE_MASK) != MPI2_IOC_STATE_OPERATIONAL)
return;
/* pending command count */
spin_lock_irqsave(&ioc->scsi_lookup_lock, flags);
for (i = 0; i < ioc->scsiio_depth; i++)
if (ioc->scsi_lookup[i].cb_idx != 0xFF)
ioc->pending_io_count++;
spin_unlock_irqrestore(&ioc->scsi_lookup_lock, flags);
if (!ioc->pending_io_count)
return;
/* wait for pending commands to complete */
wait_event_timeout(ioc->reset_wq, ioc->pending_io_count == 0, 10 * HZ);
}
/**
* mpt3sas_base_hard_reset_handler - reset controller
* @ioc: Pointer to MPT_ADAPTER structure
* @sleep_flag: CAN_SLEEP or NO_SLEEP
* @type: FORCE_BIG_HAMMER or SOFT_RESET
*
* Returns 0 for success, non-zero for failure.
*/
int
mpt3sas_base_hard_reset_handler(struct MPT3SAS_ADAPTER *ioc, int sleep_flag,
enum reset_type type)
{
int r;
unsigned long flags;
u32 ioc_state;
u8 is_fault = 0, is_trigger = 0;
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: enter\n", ioc->name,
__func__));
if (ioc->pci_error_recovery) {
pr_err(MPT3SAS_FMT "%s: pci error recovery reset\n",
ioc->name, __func__);
r = 0;
goto out_unlocked;
}
if (mpt3sas_fwfault_debug)
mpt3sas_halt_firmware(ioc);
/* TODO - What we really should be doing is pulling
* out all the code associated with NO_SLEEP; its never used.
* That is legacy code from mpt fusion driver, ported over.
* I will leave this BUG_ON here for now till its been resolved.
*/
BUG_ON(sleep_flag == NO_SLEEP);
/* wait for an active reset in progress to complete */
if (!mutex_trylock(&ioc->reset_in_progress_mutex)) {
do {
ssleep(1);
} while (ioc->shost_recovery == 1);
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
__func__));
return ioc->ioc_reset_in_progress_status;
}
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->shost_recovery = 1;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
if ((ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_REGISTERED) &&
(!(ioc->diag_buffer_status[MPI2_DIAG_BUF_TYPE_TRACE] &
MPT3_DIAG_BUFFER_IS_RELEASED))) {
is_trigger = 1;
ioc_state = mpt3sas_base_get_iocstate(ioc, 0);
if ((ioc_state & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT)
is_fault = 1;
}
_base_reset_handler(ioc, MPT3_IOC_PRE_RESET);
_wait_for_commands_to_complete(ioc, sleep_flag);
_base_mask_interrupts(ioc);
r = _base_make_ioc_ready(ioc, sleep_flag, type);
if (r)
goto out;
_base_reset_handler(ioc, MPT3_IOC_AFTER_RESET);
/* If this hard reset is called while port enable is active, then
* there is no reason to call make_ioc_operational
*/
if (ioc->is_driver_loading && ioc->port_enable_failed) {
ioc->remove_host = 1;
r = -EFAULT;
goto out;
}
r = _base_get_ioc_facts(ioc, CAN_SLEEP);
if (r)
goto out;
mpt3sas: Added Reply Descriptor Post Queue (RDPQ) Array support Up to now, Driver allocates a single contiguous block of memory pool for all reply queues and passes down a single address in the ReplyDescriptorPostQueueAddress field of the IOC Init Request Message to the firmware. When firmware receives this address, it will program each of the Reply Descriptor Post Queue registers, as each reply queue has its own register. Thus the firmware, starting from a base address it determines the starting address of the subsequent reply queues through some simple arithmetic calculations. The size of this contiguous block of memory pool is directly proportional to number of MSI-X vectors and the HBA queue depth. For example higher MSIX vectors requires larger contiguous block of memory pool. But some of the OS kernels are unable to allocate this larger contiguous block of memory pool. So, the proposal is to allocate memory independently for each Reply Queue and pass down all of the addresses to the firmware. Then the firmware will just take each address and program the value into the correct register. When HBAs with older firmware(i.e. without RDPQ capability) is used with this new driver then the max_msix_vectors value would be set to 8 by default. Change set in v1: 1. Declared the _base_get_ioc_facts() functions at the beginning of the mpt3sas_base.c file instead of moving all these functions before mpt3sas_base_map_resources() function a. _base_wait_for_doorbell_int() b. _base_wait_for_doorbell_ack() c. _base_wait_for_doorbell_not_used() d. _base_handshake_req_reply_wait() e. _base_get_ioc_facts() 2. Initially set the consistent DMA mask to 32 bit and then change it to 64 bit mask after allocating RDPQ pools by calling the function _base_change_consistent_dma_mask. This is to ensure that all the upper 32 bits of RDPQ entries's base address to be same. 3. Reduced the redundancy between the RDPQ and non-RDPQ support in these following functions a. _base_release_memory_pools() b. _base_allocate_memory_pools() c. _base_send_ioc_init() d. _base_make_ioc_operational() Signed-off-by: Sreekanth Reddy <Sreekanth.Reddy@avagotech.com> Reviewed-by: Martin K. Petersen <martin.petersen@oracle.com> Signed-off-by: Christoph Hellwig <hch@lst.de>
2014-09-12 18:05:31 +08:00
if (ioc->rdpq_array_enable && !ioc->rdpq_array_capable)
panic("%s: Issue occurred with flashing controller firmware."
"Please reboot the system and ensure that the correct"
" firmware version is running\n", ioc->name);
r = _base_make_ioc_operational(ioc, sleep_flag);
if (!r)
_base_reset_handler(ioc, MPT3_IOC_DONE_RESET);
out:
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: %s\n",
ioc->name, __func__, ((r == 0) ? "SUCCESS" : "FAILED")));
spin_lock_irqsave(&ioc->ioc_reset_in_progress_lock, flags);
ioc->ioc_reset_in_progress_status = r;
ioc->shost_recovery = 0;
spin_unlock_irqrestore(&ioc->ioc_reset_in_progress_lock, flags);
ioc->ioc_reset_count++;
mutex_unlock(&ioc->reset_in_progress_mutex);
out_unlocked:
if ((r == 0) && is_trigger) {
if (is_fault)
mpt3sas_trigger_master(ioc, MASTER_TRIGGER_FW_FAULT);
else
mpt3sas_trigger_master(ioc,
MASTER_TRIGGER_ADAPTER_RESET);
}
dtmprintk(ioc, pr_info(MPT3SAS_FMT "%s: exit\n", ioc->name,
__func__));
return r;
}