linux_old1/drivers/isdn/gigaset/ser-gigaset.c

800 lines
18 KiB
C
Raw Normal View History

/* This is the serial hardware link layer (HLL) for the Gigaset 307x isdn
* DECT base (aka Sinus 45 isdn) using the RS232 DECT data module M101,
* written as a line discipline.
*
* =====================================================================
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation; either version 2 of
* the License, or (at your option) any later version.
* =====================================================================
*/
#include "gigaset.h"
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/platform_device.h>
#include <linux/completion.h>
/* Version Information */
#define DRIVER_AUTHOR "Tilman Schmidt"
#define DRIVER_DESC "Serial Driver for Gigaset 307x using Siemens M101"
#define GIGASET_MINORS 1
#define GIGASET_MINOR 0
#define GIGASET_MODULENAME "ser_gigaset"
#define GIGASET_DEVNAME "ttyGS"
/* length limit according to Siemens 3070usb-protokoll.doc ch. 2.1 */
#define IF_WRITEBUF 264
MODULE_AUTHOR(DRIVER_AUTHOR);
MODULE_DESCRIPTION(DRIVER_DESC);
MODULE_LICENSE("GPL");
MODULE_ALIAS_LDISC(N_GIGASET_M101);
static int startmode = SM_ISDN;
module_param(startmode, int, S_IRUGO);
MODULE_PARM_DESC(startmode, "initial operation mode");
static int cidmode = 1;
module_param(cidmode, int, S_IRUGO);
MODULE_PARM_DESC(cidmode, "stay in CID mode when idle");
static struct gigaset_driver *driver;
struct ser_cardstate {
struct platform_device dev;
struct tty_struct *tty;
atomic_t refcnt;
struct completion dead_cmp;
};
static struct platform_driver device_driver = {
.driver = {
.name = GIGASET_MODULENAME,
},
};
static void flush_send_queue(struct cardstate *);
/* transmit data from current open skb
* result: number of bytes sent or error code < 0
*/
static int write_modem(struct cardstate *cs)
{
struct tty_struct *tty = cs->hw.ser->tty;
struct bc_state *bcs = &cs->bcs[0]; /* only one channel */
struct sk_buff *skb = bcs->tx_skb;
int sent = -EOPNOTSUPP;
WARN_ON(!tty || !tty->ops || !skb);
if (!skb->len) {
dev_kfree_skb_any(skb);
bcs->tx_skb = NULL;
return -EINVAL;
}
set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
if (tty->ops->write)
sent = tty->ops->write(tty, skb->data, skb->len);
gig_dbg(DEBUG_OUTPUT, "write_modem: sent %d", sent);
if (sent < 0) {
/* error */
flush_send_queue(cs);
return sent;
}
skb_pull(skb, sent);
if (!skb->len) {
/* skb sent completely */
gigaset_skb_sent(bcs, skb);
gig_dbg(DEBUG_INTR, "kfree skb (Adr: %lx)!",
(unsigned long) skb);
dev_kfree_skb_any(skb);
bcs->tx_skb = NULL;
}
return sent;
}
/*
* transmit first queued command buffer
* result: number of bytes sent or error code < 0
*/
static int send_cb(struct cardstate *cs)
{
struct tty_struct *tty = cs->hw.ser->tty;
struct cmdbuf_t *cb, *tcb;
unsigned long flags;
int sent = 0;
WARN_ON(!tty || !tty->ops);
cb = cs->cmdbuf;
if (!cb)
return 0; /* nothing to do */
if (cb->len) {
set_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
sent = tty->ops->write(tty, cb->buf + cb->offset, cb->len);
if (sent < 0) {
/* error */
gig_dbg(DEBUG_OUTPUT, "send_cb: write error %d", sent);
flush_send_queue(cs);
return sent;
}
cb->offset += sent;
cb->len -= sent;
gig_dbg(DEBUG_OUTPUT, "send_cb: sent %d, left %u, queued %u",
sent, cb->len, cs->cmdbytes);
}
while (cb && !cb->len) {
spin_lock_irqsave(&cs->cmdlock, flags);
cs->cmdbytes -= cs->curlen;
tcb = cb;
cs->cmdbuf = cb = cb->next;
if (cb) {
cb->prev = NULL;
cs->curlen = cb->len;
} else {
cs->lastcmdbuf = NULL;
cs->curlen = 0;
}
spin_unlock_irqrestore(&cs->cmdlock, flags);
if (tcb->wake_tasklet)
tasklet_schedule(tcb->wake_tasklet);
kfree(tcb);
}
return sent;
}
/*
* send queue tasklet
* If there is already a skb opened, put data to the transfer buffer
* by calling "write_modem".
* Otherwise take a new skb out of the queue.
*/
static void gigaset_modem_fill(unsigned long data)
{
struct cardstate *cs = (struct cardstate *) data;
struct bc_state *bcs;
struct sk_buff *nextskb;
int sent = 0;
if (!cs) {
gig_dbg(DEBUG_OUTPUT, "%s: no cardstate", __func__);
return;
}
bcs = cs->bcs;
if (!bcs) {
gig_dbg(DEBUG_OUTPUT, "%s: no cardstate", __func__);
return;
}
if (!bcs->tx_skb) {
/* no skb is being sent; send command if any */
sent = send_cb(cs);
gig_dbg(DEBUG_OUTPUT, "%s: send_cb -> %d", __func__, sent);
if (sent)
/* something sent or error */
return;
/* no command to send; get skb */
nextskb = skb_dequeue(&bcs->squeue);
if (!nextskb)
/* no skb either, nothing to do */
return;
bcs->tx_skb = nextskb;
gig_dbg(DEBUG_INTR, "Dequeued skb (Adr: %lx)",
(unsigned long) bcs->tx_skb);
}
/* send skb */
gig_dbg(DEBUG_OUTPUT, "%s: tx_skb", __func__);
if (write_modem(cs) < 0)
gig_dbg(DEBUG_OUTPUT, "%s: write_modem failed", __func__);
}
/*
* throw away all data queued for sending
*/
static void flush_send_queue(struct cardstate *cs)
{
struct sk_buff *skb;
struct cmdbuf_t *cb;
unsigned long flags;
/* command queue */
spin_lock_irqsave(&cs->cmdlock, flags);
while ((cb = cs->cmdbuf) != NULL) {
cs->cmdbuf = cb->next;
if (cb->wake_tasklet)
tasklet_schedule(cb->wake_tasklet);
kfree(cb);
}
cs->cmdbuf = cs->lastcmdbuf = NULL;
cs->cmdbytes = cs->curlen = 0;
spin_unlock_irqrestore(&cs->cmdlock, flags);
/* data queue */
if (cs->bcs->tx_skb)
dev_kfree_skb_any(cs->bcs->tx_skb);
while ((skb = skb_dequeue(&cs->bcs->squeue)) != NULL)
dev_kfree_skb_any(skb);
}
/* Gigaset Driver Interface */
/* ======================== */
/*
* queue an AT command string for transmission to the Gigaset device
* parameters:
* cs controller state structure
* buf buffer containing the string to send
* len number of characters to send
* wake_tasklet tasklet to run when transmission is complete, or NULL
* return value:
* number of bytes queued, or error code < 0
*/
static int gigaset_write_cmd(struct cardstate *cs, struct cmdbuf_t *cb)
{
unsigned long flags;
gigaset_dbg_buffer(cs->mstate != MS_LOCKED ?
DEBUG_TRANSCMD : DEBUG_LOCKCMD,
"CMD Transmit", cb->len, cb->buf);
spin_lock_irqsave(&cs->cmdlock, flags);
cb->prev = cs->lastcmdbuf;
if (cs->lastcmdbuf)
cs->lastcmdbuf->next = cb;
else {
cs->cmdbuf = cb;
cs->curlen = cb->len;
}
cs->cmdbytes += cb->len;
cs->lastcmdbuf = cb;
spin_unlock_irqrestore(&cs->cmdlock, flags);
spin_lock_irqsave(&cs->lock, flags);
if (cs->connected)
tasklet_schedule(&cs->write_tasklet);
spin_unlock_irqrestore(&cs->lock, flags);
return cb->len;
}
/*
* tty_driver.write_room interface routine
* return number of characters the driver will accept to be written
* parameter:
* controller state structure
* return value:
* number of characters
*/
static int gigaset_write_room(struct cardstate *cs)
{
unsigned bytes;
bytes = cs->cmdbytes;
return bytes < IF_WRITEBUF ? IF_WRITEBUF - bytes : 0;
}
/*
* tty_driver.chars_in_buffer interface routine
* return number of characters waiting to be sent
* parameter:
* controller state structure
* return value:
* number of characters
*/
static int gigaset_chars_in_buffer(struct cardstate *cs)
{
return cs->cmdbytes;
}
/*
* implementation of ioctl(GIGASET_BRKCHARS)
* parameter:
* controller state structure
* return value:
* -EINVAL (unimplemented function)
*/
static int gigaset_brkchars(struct cardstate *cs, const unsigned char buf[6])
{
/* not implemented */
return -EINVAL;
}
/*
* Open B channel
* Called by "do_action" in ev-layer.c
*/
static int gigaset_init_bchannel(struct bc_state *bcs)
{
/* nothing to do for M10x */
gigaset_bchannel_up(bcs);
return 0;
}
/*
* Close B channel
* Called by "do_action" in ev-layer.c
*/
static int gigaset_close_bchannel(struct bc_state *bcs)
{
/* nothing to do for M10x */
gigaset_bchannel_down(bcs);
return 0;
}
/*
* Set up B channel structure
* This is called by "gigaset_initcs" in common.c
*/
static int gigaset_initbcshw(struct bc_state *bcs)
{
/* unused */
bcs->hw.ser = NULL;
return 0;
}
/*
* Free B channel structure
* Called by "gigaset_freebcs" in common.c
*/
static void gigaset_freebcshw(struct bc_state *bcs)
{
/* unused */
}
/*
* Reinitialize B channel structure
* This is called by "bcs_reinit" in common.c
*/
static void gigaset_reinitbcshw(struct bc_state *bcs)
{
/* nothing to do for M10x */
}
/*
* Free hardware specific device data
* This will be called by "gigaset_freecs" in common.c
*/
static void gigaset_freecshw(struct cardstate *cs)
{
tasklet_kill(&cs->write_tasklet);
if (!cs->hw.ser)
return;
platform_device_unregister(&cs->hw.ser->dev);
}
static void gigaset_device_release(struct device *dev)
{
ser_gigaset: use container_of() instead of detour The purpose of gigaset_device_release() is to kfree() the struct ser_cardstate that contains our struct device. This is done via a bit of a detour. First we make our struct device's driver_data point to the container of our struct ser_cardstate (which is a struct cardstate). In gigaset_device_release() we then retrieve that driver_data again. And after that we finally kfree() the struct ser_cardstate that was saved in the struct cardstate. All of this can be achieved much easier by using container_of() to get from our struct device to its container, struct ser_cardstate. Do so. Note that at the time the detour was implemented commit b8b2c7d845d5 ("base/platform: assert that dev_pm_domain callbacks are called unconditionally") had just entered the tree. That commit disconnected our platform_device and our platform_driver. These were reconnected again in v4.5-rc2 through commit 25cad69f21f5 ("base/platform: Fix platform drivers with no probe callback"). And one of the consequences of that fix was that it broke the detour via driver_data. That's because it made __device_release_driver() stop being a NOP for our struct device and actually do stuff again. One of the things it now does, is setting our driver_data to NULL. That, in turn, makes it impossible for gigaset_device_release() to get to our struct cardstate. Which has the net effect of leaking a struct ser_cardstate at every call of this driver's tty close() operation. So using container_of() has the additional benefit of actually working. Reported-by: Dmitry Vyukov <dvyukov@google.com> Tested-by: Dmitry Vyukov <dvyukov@google.com> Signed-off-by: Paul Bolle <pebolle@tiscali.nl> Acked-by: Tilman Schmidt <tilman@imap.cc> Signed-off-by: David S. Miller <davem@davemloft.net>
2016-02-19 04:29:08 +08:00
kfree(container_of(dev, struct ser_cardstate, dev.dev));
}
/*
* Set up hardware specific device data
* This is called by "gigaset_initcs" in common.c
*/
static int gigaset_initcshw(struct cardstate *cs)
{
int rc;
struct ser_cardstate *scs;
scs = kzalloc(sizeof(struct ser_cardstate), GFP_KERNEL);
if (!scs) {
pr_err("out of memory\n");
return -ENOMEM;
}
cs->hw.ser = scs;
cs->hw.ser->dev.name = GIGASET_MODULENAME;
cs->hw.ser->dev.id = cs->minor_index;
cs->hw.ser->dev.dev.release = gigaset_device_release;
rc = platform_device_register(&cs->hw.ser->dev);
if (rc != 0) {
pr_err("error %d registering platform device\n", rc);
kfree(cs->hw.ser);
cs->hw.ser = NULL;
return rc;
}
tasklet_init(&cs->write_tasklet,
gigaset_modem_fill, (unsigned long) cs);
return 0;
}
/*
* set modem control lines
* Parameters:
* card state structure
* modem control line state ([TIOCM_DTR]|[TIOCM_RTS])
* Called by "gigaset_start" and "gigaset_enterconfigmode" in common.c
* and by "if_lock" and "if_termios" in interface.c
*/
static int gigaset_set_modem_ctrl(struct cardstate *cs, unsigned old_state,
unsigned new_state)
{
struct tty_struct *tty = cs->hw.ser->tty;
unsigned int set, clear;
WARN_ON(!tty || !tty->ops);
/* tiocmset is an optional tty driver method */
if (!tty->ops->tiocmset)
return -EINVAL;
set = new_state & ~old_state;
clear = old_state & ~new_state;
if (!set && !clear)
return 0;
gig_dbg(DEBUG_IF, "tiocmset set %x clear %x", set, clear);
return tty->ops->tiocmset(tty, set, clear);
}
static int gigaset_baud_rate(struct cardstate *cs, unsigned cflag)
{
return -EINVAL;
}
static int gigaset_set_line_ctrl(struct cardstate *cs, unsigned cflag)
{
return -EINVAL;
}
static const struct gigaset_ops ops = {
.write_cmd = gigaset_write_cmd,
.write_room = gigaset_write_room,
.chars_in_buffer = gigaset_chars_in_buffer,
.brkchars = gigaset_brkchars,
.init_bchannel = gigaset_init_bchannel,
.close_bchannel = gigaset_close_bchannel,
.initbcshw = gigaset_initbcshw,
.freebcshw = gigaset_freebcshw,
.reinitbcshw = gigaset_reinitbcshw,
.initcshw = gigaset_initcshw,
.freecshw = gigaset_freecshw,
.set_modem_ctrl = gigaset_set_modem_ctrl,
.baud_rate = gigaset_baud_rate,
.set_line_ctrl = gigaset_set_line_ctrl,
.send_skb = gigaset_m10x_send_skb, /* asyncdata.c */
.handle_input = gigaset_m10x_input, /* asyncdata.c */
};
/* Line Discipline Interface */
/* ========================= */
/* helper functions for cardstate refcounting */
static struct cardstate *cs_get(struct tty_struct *tty)
{
struct cardstate *cs = tty->disc_data;
if (!cs || !cs->hw.ser) {
gig_dbg(DEBUG_ANY, "%s: no cardstate", __func__);
return NULL;
}
atomic_inc(&cs->hw.ser->refcnt);
return cs;
}
static void cs_put(struct cardstate *cs)
{
if (atomic_dec_and_test(&cs->hw.ser->refcnt))
complete(&cs->hw.ser->dead_cmp);
}
/*
* Called by the tty driver when the line discipline is pushed onto the tty.
* Called in process context.
*/
static int
gigaset_tty_open(struct tty_struct *tty)
{
struct cardstate *cs;
int rc;
gig_dbg(DEBUG_INIT, "Starting HLL for Gigaset M101");
pr_info(DRIVER_DESC "\n");
if (!driver) {
pr_err("%s: no driver structure\n", __func__);
return -ENODEV;
}
/* allocate memory for our device state and initialize it */
cs = gigaset_initcs(driver, 1, 1, 0, cidmode, GIGASET_MODULENAME);
if (!cs) {
rc = -ENODEV;
goto error;
}
cs->dev = &cs->hw.ser->dev.dev;
cs->hw.ser->tty = tty;
atomic_set(&cs->hw.ser->refcnt, 1);
init_completion(&cs->hw.ser->dead_cmp);
tty->disc_data = cs;
/* Set the amount of data we're willing to receive per call
* from the hardware driver to half of the input buffer size
* to leave some reserve.
* Note: We don't do flow control towards the hardware driver.
* If more data is received than will fit into the input buffer,
* it will be dropped and an error will be logged. This should
* never happen as the device is slow and the buffer size ample.
*/
tty->receive_room = RBUFSIZE/2;
/* OK.. Initialization of the datastructures and the HW is done.. Now
* startup system and notify the LL that we are ready to run
*/
if (startmode == SM_LOCKED)
cs->mstate = MS_LOCKED;
rc = gigaset_start(cs);
if (rc < 0) {
tasklet_kill(&cs->write_tasklet);
goto error;
}
gig_dbg(DEBUG_INIT, "Startup of HLL done");
return 0;
error:
gig_dbg(DEBUG_INIT, "Startup of HLL failed");
tty->disc_data = NULL;
gigaset_freecs(cs);
return rc;
}
/*
* Called by the tty driver when the line discipline is removed.
* Called from process context.
*/
static void
gigaset_tty_close(struct tty_struct *tty)
{
struct cardstate *cs = tty->disc_data;
gig_dbg(DEBUG_INIT, "Stopping HLL for Gigaset M101");
if (!cs) {
gig_dbg(DEBUG_INIT, "%s: no cardstate", __func__);
return;
}
/* prevent other callers from entering ldisc methods */
tty->disc_data = NULL;
if (!cs->hw.ser)
pr_err("%s: no hw cardstate\n", __func__);
else {
/* wait for running methods to finish */
if (!atomic_dec_and_test(&cs->hw.ser->refcnt))
wait_for_completion(&cs->hw.ser->dead_cmp);
}
/* stop operations */
gigaset_stop(cs);
tasklet_kill(&cs->write_tasklet);
flush_send_queue(cs);
cs->dev = NULL;
gigaset_freecs(cs);
gig_dbg(DEBUG_INIT, "Shutdown of HLL done");
}
/*
* Called by the tty driver when the tty line is hung up.
* Wait for I/O to driver to complete and unregister ISDN device.
* This is already done by the close routine, so just call that.
* Called from process context.
*/
static int gigaset_tty_hangup(struct tty_struct *tty)
{
gigaset_tty_close(tty);
return 0;
}
/*
* Ioctl on the tty.
* Called in process context only.
* May be re-entered by multiple ioctl calling threads.
*/
static int
gigaset_tty_ioctl(struct tty_struct *tty, struct file *file,
unsigned int cmd, unsigned long arg)
{
struct cardstate *cs = cs_get(tty);
int rc, val;
int __user *p = (int __user *)arg;
if (!cs)
return -ENXIO;
switch (cmd) {
case FIONREAD:
/* unused, always return zero */
val = 0;
rc = put_user(val, p);
break;
case TCFLSH:
/* flush our buffers and the serial port's buffer */
switch (arg) {
case TCIFLUSH:
/* no own input buffer to flush */
break;
case TCIOFLUSH:
case TCOFLUSH:
flush_send_queue(cs);
break;
}
/* Pass through */
default:
/* pass through to underlying serial device */
rc = n_tty_ioctl_helper(tty, file, cmd, arg);
break;
}
cs_put(cs);
return rc;
}
/*
* Called by the tty driver when a block of data has been received.
* Will not be re-entered while running but other ldisc functions
* may be called in parallel.
* Can be called from hard interrupt level as well as soft interrupt
* level or mainline.
* Parameters:
* tty tty structure
* buf buffer containing received characters
* cflags buffer containing error flags for received characters (ignored)
* count number of received characters
*/
Revert "tty: make receive_buf() return the amout of bytes received" This reverts commit b1c43f82c5aa265442f82dba31ce985ebb7aa71c. It was broken in so many ways, and results in random odd pty issues. It re-introduced the buggy schedule_work() in flush_to_ldisc() that can cause endless work-loops (see commit a5660b41af6a: "tty: fix endless work loop when the buffer fills up"). It also used an "unsigned int" return value fo the ->receive_buf() function, but then made multiple functions return a negative error code, and didn't actually check for the error in the caller. And it didn't actually work at all. BenH bisected down odd tty behavior to it: "It looks like the patch is causing some major malfunctions of the X server for me, possibly related to PTYs. For example, cat'ing a large file in a gnome terminal hangs the kernel for -minutes- in a loop of what looks like flush_to_ldisc/workqueue code, (some ftrace data in the quoted bits further down). ... Some more data: It -looks- like what happens is that the flush_to_ldisc work queue entry constantly re-queues itself (because the PTY is full ?) and the workqueue thread will basically loop forver calling it without ever scheduling, thus starving the consumer process that could have emptied the PTY." which is pretty much exactly the problem we fixed in a5660b41af6a. Milton Miller pointed out the 'unsigned int' issue. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reported-by: Milton Miller <miltonm@bga.com> Cc: Stefan Bigler <stefan.bigler@keymile.com> Cc: Toby Gray <toby.gray@realvnc.com> Cc: Felipe Balbi <balbi@ti.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-04 05:33:24 +08:00
static void
gigaset_tty_receive(struct tty_struct *tty, const unsigned char *buf,
char *cflags, int count)
{
struct cardstate *cs = cs_get(tty);
unsigned tail, head, n;
struct inbuf_t *inbuf;
if (!cs)
Revert "tty: make receive_buf() return the amout of bytes received" This reverts commit b1c43f82c5aa265442f82dba31ce985ebb7aa71c. It was broken in so many ways, and results in random odd pty issues. It re-introduced the buggy schedule_work() in flush_to_ldisc() that can cause endless work-loops (see commit a5660b41af6a: "tty: fix endless work loop when the buffer fills up"). It also used an "unsigned int" return value fo the ->receive_buf() function, but then made multiple functions return a negative error code, and didn't actually check for the error in the caller. And it didn't actually work at all. BenH bisected down odd tty behavior to it: "It looks like the patch is causing some major malfunctions of the X server for me, possibly related to PTYs. For example, cat'ing a large file in a gnome terminal hangs the kernel for -minutes- in a loop of what looks like flush_to_ldisc/workqueue code, (some ftrace data in the quoted bits further down). ... Some more data: It -looks- like what happens is that the flush_to_ldisc work queue entry constantly re-queues itself (because the PTY is full ?) and the workqueue thread will basically loop forver calling it without ever scheduling, thus starving the consumer process that could have emptied the PTY." which is pretty much exactly the problem we fixed in a5660b41af6a. Milton Miller pointed out the 'unsigned int' issue. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reported-by: Milton Miller <miltonm@bga.com> Cc: Stefan Bigler <stefan.bigler@keymile.com> Cc: Toby Gray <toby.gray@realvnc.com> Cc: Felipe Balbi <balbi@ti.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-04 05:33:24 +08:00
return;
inbuf = cs->inbuf;
if (!inbuf) {
dev_err(cs->dev, "%s: no inbuf\n", __func__);
cs_put(cs);
Revert "tty: make receive_buf() return the amout of bytes received" This reverts commit b1c43f82c5aa265442f82dba31ce985ebb7aa71c. It was broken in so many ways, and results in random odd pty issues. It re-introduced the buggy schedule_work() in flush_to_ldisc() that can cause endless work-loops (see commit a5660b41af6a: "tty: fix endless work loop when the buffer fills up"). It also used an "unsigned int" return value fo the ->receive_buf() function, but then made multiple functions return a negative error code, and didn't actually check for the error in the caller. And it didn't actually work at all. BenH bisected down odd tty behavior to it: "It looks like the patch is causing some major malfunctions of the X server for me, possibly related to PTYs. For example, cat'ing a large file in a gnome terminal hangs the kernel for -minutes- in a loop of what looks like flush_to_ldisc/workqueue code, (some ftrace data in the quoted bits further down). ... Some more data: It -looks- like what happens is that the flush_to_ldisc work queue entry constantly re-queues itself (because the PTY is full ?) and the workqueue thread will basically loop forver calling it without ever scheduling, thus starving the consumer process that could have emptied the PTY." which is pretty much exactly the problem we fixed in a5660b41af6a. Milton Miller pointed out the 'unsigned int' issue. Reported-by: Benjamin Herrenschmidt <benh@kernel.crashing.org> Reported-by: Milton Miller <miltonm@bga.com> Cc: Stefan Bigler <stefan.bigler@keymile.com> Cc: Toby Gray <toby.gray@realvnc.com> Cc: Felipe Balbi <balbi@ti.com> Cc: Greg Kroah-Hartman <gregkh@suse.de> Cc: Alan Cox <alan@lxorguk.ukuu.org.uk> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2011-06-04 05:33:24 +08:00
return;
}
tail = inbuf->tail;
head = inbuf->head;
gig_dbg(DEBUG_INTR, "buffer state: %u -> %u, receive %u bytes",
head, tail, count);
if (head <= tail) {
/* possible buffer wraparound */
n = min_t(unsigned, count, RBUFSIZE - tail);
memcpy(inbuf->data + tail, buf, n);
tail = (tail + n) % RBUFSIZE;
buf += n;
count -= n;
}
if (count > 0) {
/* tail < head and some data left */
n = head - tail - 1;
if (count > n) {
dev_err(cs->dev,
"inbuf overflow, discarding %d bytes\n",
count - n);
count = n;
}
memcpy(inbuf->data + tail, buf, count);
tail += count;
}
gig_dbg(DEBUG_INTR, "setting tail to %u", tail);
inbuf->tail = tail;
/* Everything was received .. Push data into handler */
gig_dbg(DEBUG_INTR, "%s-->BH", __func__);
gigaset_schedule_event(cs);
cs_put(cs);
}
/*
* Called by the tty driver when there's room for more data to send.
*/
static void
gigaset_tty_wakeup(struct tty_struct *tty)
{
struct cardstate *cs = cs_get(tty);
clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
if (!cs)
return;
tasklet_schedule(&cs->write_tasklet);
cs_put(cs);
}
static struct tty_ldisc_ops gigaset_ldisc = {
.owner = THIS_MODULE,
.magic = TTY_LDISC_MAGIC,
.name = "ser_gigaset",
.open = gigaset_tty_open,
.close = gigaset_tty_close,
.hangup = gigaset_tty_hangup,
.ioctl = gigaset_tty_ioctl,
.receive_buf = gigaset_tty_receive,
.write_wakeup = gigaset_tty_wakeup,
};
/* Initialization / Shutdown */
/* ========================= */
static int __init ser_gigaset_init(void)
{
int rc;
gig_dbg(DEBUG_INIT, "%s", __func__);
rc = platform_driver_register(&device_driver);
if (rc != 0) {
pr_err("error %d registering platform driver\n", rc);
return rc;
}
/* allocate memory for our driver state and initialize it */
driver = gigaset_initdriver(GIGASET_MINOR, GIGASET_MINORS,
GIGASET_MODULENAME, GIGASET_DEVNAME,
&ops, THIS_MODULE);
if (!driver) {
rc = -ENOMEM;
goto error;
}
rc = tty_register_ldisc(N_GIGASET_M101, &gigaset_ldisc);
if (rc != 0) {
pr_err("error %d registering line discipline\n", rc);
goto error;
}
return 0;
error:
if (driver) {
gigaset_freedriver(driver);
driver = NULL;
}
platform_driver_unregister(&device_driver);
return rc;
}
static void __exit ser_gigaset_exit(void)
{
int rc;
gig_dbg(DEBUG_INIT, "%s", __func__);
if (driver) {
gigaset_freedriver(driver);
driver = NULL;
}
rc = tty_unregister_ldisc(N_GIGASET_M101);
if (rc != 0)
pr_err("error %d unregistering line discipline\n", rc);
platform_driver_unregister(&device_driver);
}
module_init(ser_gigaset_init);
module_exit(ser_gigaset_exit);