linux_old1/drivers/bluetooth/hci_intel.c

1243 lines
29 KiB
C
Raw Normal View History

/*
*
* Bluetooth HCI UART driver for Intel devices
*
* Copyright (C) 2015 Intel Corporation
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/kernel.h>
#include <linux/errno.h>
#include <linux/skbuff.h>
#include <linux/firmware.h>
#include <linux/module.h>
#include <linux/wait.h>
#include <linux/tty.h>
#include <linux/platform_device.h>
#include <linux/gpio/consumer.h>
#include <linux/acpi.h>
#include <linux/interrupt.h>
#include <net/bluetooth/bluetooth.h>
#include <net/bluetooth/hci_core.h>
#include "hci_uart.h"
#include "btintel.h"
#define STATE_BOOTLOADER 0
#define STATE_DOWNLOADING 1
#define STATE_FIRMWARE_LOADED 2
#define STATE_FIRMWARE_FAILED 3
#define STATE_BOOTING 4
#define STATE_LPM_ENABLED 5
#define STATE_TX_ACTIVE 6
#define STATE_SUSPENDED 7
#define STATE_LPM_TRANSACTION 8
#define HCI_LPM_WAKE_PKT 0xf0
#define HCI_LPM_PKT 0xf1
#define HCI_LPM_MAX_SIZE 10
#define HCI_LPM_HDR_SIZE HCI_EVENT_HDR_SIZE
#define LPM_OP_TX_NOTIFY 0x00
#define LPM_OP_SUSPEND_ACK 0x02
#define LPM_OP_RESUME_ACK 0x03
struct hci_lpm_pkt {
__u8 opcode;
__u8 dlen;
__u8 data[0];
} __packed;
struct intel_device {
struct list_head list;
struct platform_device *pdev;
struct gpio_desc *reset;
struct hci_uart *hu;
struct mutex hu_lock;
int irq;
};
static LIST_HEAD(intel_device_list);
static DEFINE_MUTEX(intel_device_list_lock);
struct intel_data {
struct sk_buff *rx_skb;
struct sk_buff_head txq;
unsigned long flags;
};
static u8 intel_convert_speed(unsigned int speed)
{
switch (speed) {
case 9600:
return 0x00;
case 19200:
return 0x01;
case 38400:
return 0x02;
case 57600:
return 0x03;
case 115200:
return 0x04;
case 230400:
return 0x05;
case 460800:
return 0x06;
case 921600:
return 0x07;
case 1843200:
return 0x08;
case 3250000:
return 0x09;
case 2000000:
return 0x0a;
case 3000000:
return 0x0b;
default:
return 0xff;
}
}
static int intel_wait_booting(struct hci_uart *hu)
{
struct intel_data *intel = hu->priv;
int err;
err = wait_on_bit_timeout(&intel->flags, STATE_BOOTING,
TASK_INTERRUPTIBLE,
msecs_to_jiffies(1000));
if (err == 1) {
bt_dev_err(hu->hdev, "Device boot interrupted");
return -EINTR;
}
if (err) {
bt_dev_err(hu->hdev, "Device boot timeout");
return -ETIMEDOUT;
}
return err;
}
static int intel_wait_lpm_transaction(struct hci_uart *hu)
{
struct intel_data *intel = hu->priv;
int err;
err = wait_on_bit_timeout(&intel->flags, STATE_LPM_TRANSACTION,
TASK_INTERRUPTIBLE,
msecs_to_jiffies(1000));
if (err == 1) {
bt_dev_err(hu->hdev, "LPM transaction interrupted");
return -EINTR;
}
if (err) {
bt_dev_err(hu->hdev, "LPM transaction timeout");
return -ETIMEDOUT;
}
return err;
}
static int intel_lpm_suspend(struct hci_uart *hu)
{
static const u8 suspend[] = { 0x01, 0x01, 0x01 };
struct intel_data *intel = hu->priv;
struct sk_buff *skb;
if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
test_bit(STATE_SUSPENDED, &intel->flags))
return 0;
if (test_bit(STATE_TX_ACTIVE, &intel->flags))
return -EAGAIN;
bt_dev_dbg(hu->hdev, "Suspending");
skb = bt_skb_alloc(sizeof(suspend), GFP_KERNEL);
if (!skb) {
bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
return -ENOMEM;
}
memcpy(skb_put(skb, sizeof(suspend)), suspend, sizeof(suspend));
bt_cb(skb)->pkt_type = HCI_LPM_PKT;
set_bit(STATE_LPM_TRANSACTION, &intel->flags);
skb_queue_tail(&intel->txq, skb);
hci_uart_tx_wakeup(hu);
intel_wait_lpm_transaction(hu);
/* Even in case of failure, continue and test the suspended flag */
clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
if (!test_bit(STATE_SUSPENDED, &intel->flags)) {
bt_dev_err(hu->hdev, "Device suspend error");
return -EINVAL;
}
bt_dev_dbg(hu->hdev, "Suspended");
hci_uart_set_flow_control(hu, true);
return 0;
}
static int intel_lpm_resume(struct hci_uart *hu)
{
struct intel_data *intel = hu->priv;
struct sk_buff *skb;
if (!test_bit(STATE_LPM_ENABLED, &intel->flags) ||
!test_bit(STATE_SUSPENDED, &intel->flags))
return 0;
bt_dev_dbg(hu->hdev, "Resuming");
hci_uart_set_flow_control(hu, false);
skb = bt_skb_alloc(0, GFP_KERNEL);
if (!skb) {
bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
return -ENOMEM;
}
bt_cb(skb)->pkt_type = HCI_LPM_WAKE_PKT;
set_bit(STATE_LPM_TRANSACTION, &intel->flags);
skb_queue_tail(&intel->txq, skb);
hci_uart_tx_wakeup(hu);
intel_wait_lpm_transaction(hu);
/* Even in case of failure, continue and test the suspended flag */
clear_bit(STATE_LPM_TRANSACTION, &intel->flags);
if (test_bit(STATE_SUSPENDED, &intel->flags)) {
bt_dev_err(hu->hdev, "Device resume error");
return -EINVAL;
}
bt_dev_dbg(hu->hdev, "Resumed");
return 0;
}
static int intel_lpm_host_wake(struct hci_uart *hu)
{
static const u8 lpm_resume_ack[] = { LPM_OP_RESUME_ACK, 0x00 };
struct intel_data *intel = hu->priv;
struct sk_buff *skb;
hci_uart_set_flow_control(hu, false);
clear_bit(STATE_SUSPENDED, &intel->flags);
skb = bt_skb_alloc(sizeof(lpm_resume_ack), GFP_KERNEL);
if (!skb) {
bt_dev_err(hu->hdev, "Failed to alloc memory for LPM packet");
return -ENOMEM;
}
memcpy(skb_put(skb, sizeof(lpm_resume_ack)), lpm_resume_ack,
sizeof(lpm_resume_ack));
bt_cb(skb)->pkt_type = HCI_LPM_PKT;
skb_queue_tail(&intel->txq, skb);
hci_uart_tx_wakeup(hu);
bt_dev_dbg(hu->hdev, "Resumed by controller");
return 0;
}
static irqreturn_t intel_irq(int irq, void *dev_id)
{
struct intel_device *idev = dev_id;
dev_info(&idev->pdev->dev, "hci_intel irq\n");
mutex_lock(&idev->hu_lock);
if (idev->hu)
intel_lpm_host_wake(idev->hu);
mutex_unlock(&idev->hu_lock);
return IRQ_HANDLED;
}
static int intel_set_power(struct hci_uart *hu, bool powered)
{
struct list_head *p;
int err = -ENODEV;
mutex_lock(&intel_device_list_lock);
list_for_each(p, &intel_device_list) {
struct intel_device *idev = list_entry(p, struct intel_device,
list);
/* tty device and pdev device should share the same parent
* which is the UART port.
*/
if (hu->tty->dev->parent != idev->pdev->dev.parent)
continue;
if (!idev->reset) {
err = -ENOTSUPP;
break;
}
BT_INFO("hu %p, Switching compatible pm device (%s) to %u",
hu, dev_name(&idev->pdev->dev), powered);
gpiod_set_value(idev->reset, powered);
/* Provide to idev a hu reference which is used to run LPM
* transactions (lpm suspend/resume) from PM callbacks.
* hu needs to be protected against concurrent removing during
* these PM ops.
*/
mutex_lock(&idev->hu_lock);
idev->hu = powered ? hu : NULL;
mutex_unlock(&idev->hu_lock);
if (idev->irq < 0)
break;
if (powered && device_can_wakeup(&idev->pdev->dev)) {
err = devm_request_threaded_irq(&idev->pdev->dev,
idev->irq, NULL,
intel_irq,
IRQF_ONESHOT,
"bt-host-wake", idev);
if (err) {
BT_ERR("hu %p, unable to allocate irq-%d",
hu, idev->irq);
break;
}
device_wakeup_enable(&idev->pdev->dev);
} else if (!powered && device_may_wakeup(&idev->pdev->dev)) {
devm_free_irq(&idev->pdev->dev, idev->irq, idev);
device_wakeup_disable(&idev->pdev->dev);
}
}
mutex_unlock(&intel_device_list_lock);
return err;
}
static int intel_open(struct hci_uart *hu)
{
struct intel_data *intel;
BT_DBG("hu %p", hu);
intel = kzalloc(sizeof(*intel), GFP_KERNEL);
if (!intel)
return -ENOMEM;
skb_queue_head_init(&intel->txq);
hu->priv = intel;
if (!intel_set_power(hu, true))
set_bit(STATE_BOOTING, &intel->flags);
return 0;
}
static int intel_close(struct hci_uart *hu)
{
struct intel_data *intel = hu->priv;
BT_DBG("hu %p", hu);
intel_set_power(hu, false);
skb_queue_purge(&intel->txq);
kfree_skb(intel->rx_skb);
kfree(intel);
hu->priv = NULL;
return 0;
}
static int intel_flush(struct hci_uart *hu)
{
struct intel_data *intel = hu->priv;
BT_DBG("hu %p", hu);
skb_queue_purge(&intel->txq);
return 0;
}
static int inject_cmd_complete(struct hci_dev *hdev, __u16 opcode)
{
struct sk_buff *skb;
struct hci_event_hdr *hdr;
struct hci_ev_cmd_complete *evt;
skb = bt_skb_alloc(sizeof(*hdr) + sizeof(*evt) + 1, GFP_ATOMIC);
if (!skb)
return -ENOMEM;
hdr = (struct hci_event_hdr *)skb_put(skb, sizeof(*hdr));
hdr->evt = HCI_EV_CMD_COMPLETE;
hdr->plen = sizeof(*evt) + 1;
evt = (struct hci_ev_cmd_complete *)skb_put(skb, sizeof(*evt));
evt->ncmd = 0x01;
evt->opcode = cpu_to_le16(opcode);
*skb_put(skb, 1) = 0x00;
bt_cb(skb)->pkt_type = HCI_EVENT_PKT;
return hci_recv_frame(hdev, skb);
}
static int intel_set_baudrate(struct hci_uart *hu, unsigned int speed)
{
struct intel_data *intel = hu->priv;
struct hci_dev *hdev = hu->hdev;
u8 speed_cmd[] = { 0x06, 0xfc, 0x01, 0x00 };
struct sk_buff *skb;
int err;
/* This can be the first command sent to the chip, check
* that the controller is ready.
*/
err = intel_wait_booting(hu);
clear_bit(STATE_BOOTING, &intel->flags);
/* In case of timeout, try to continue anyway */
if (err && err != ETIMEDOUT)
return err;
bt_dev_info(hdev, "Change controller speed to %d", speed);
speed_cmd[3] = intel_convert_speed(speed);
if (speed_cmd[3] == 0xff) {
bt_dev_err(hdev, "Unsupported speed");
return -EINVAL;
}
/* Device will not accept speed change if Intel version has not been
* previously requested.
*/
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
kfree_skb(skb);
skb = bt_skb_alloc(sizeof(speed_cmd), GFP_KERNEL);
if (!skb) {
bt_dev_err(hdev, "Failed to alloc memory for baudrate packet");
return -ENOMEM;
}
memcpy(skb_put(skb, sizeof(speed_cmd)), speed_cmd, sizeof(speed_cmd));
bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
hci_uart_set_flow_control(hu, true);
skb_queue_tail(&intel->txq, skb);
hci_uart_tx_wakeup(hu);
/* wait 100ms to change baudrate on controller side */
msleep(100);
hci_uart_set_baudrate(hu, speed);
hci_uart_set_flow_control(hu, false);
return 0;
}
static int intel_setup(struct hci_uart *hu)
{
static const u8 reset_param[] = { 0x00, 0x01, 0x00, 0x01,
0x00, 0x08, 0x04, 0x00 };
static const u8 lpm_param[] = { 0x03, 0x07, 0x01, 0x0b };
struct intel_data *intel = hu->priv;
struct intel_device *idev = NULL;
struct hci_dev *hdev = hu->hdev;
struct sk_buff *skb;
struct intel_version *ver;
struct intel_boot_params *params;
struct list_head *p;
const struct firmware *fw;
const u8 *fw_ptr;
char fwname[64];
u32 frag_len;
ktime_t calltime, delta, rettime;
unsigned long long duration;
unsigned int init_speed, oper_speed;
int speed_change = 0;
int err;
bt_dev_dbg(hdev, "start intel_setup");
hu->hdev->set_bdaddr = btintel_set_bdaddr;
calltime = ktime_get();
if (hu->init_speed)
init_speed = hu->init_speed;
else
init_speed = hu->proto->init_speed;
if (hu->oper_speed)
oper_speed = hu->oper_speed;
else
oper_speed = hu->proto->oper_speed;
if (oper_speed && init_speed && oper_speed != init_speed)
speed_change = 1;
/* Check that the controller is ready */
err = intel_wait_booting(hu);
clear_bit(STATE_BOOTING, &intel->flags);
/* In case of timeout, try to continue anyway */
if (err && err != ETIMEDOUT)
return err;
set_bit(STATE_BOOTLOADER, &intel->flags);
/* Read the Intel version information to determine if the device
* is in bootloader mode or if it already has operational firmware
* loaded.
*/
skb = __hci_cmd_sync(hdev, 0xfc05, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel version information failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*ver)) {
bt_dev_err(hdev, "Intel version event size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
ver = (struct intel_version *)skb->data;
if (ver->status) {
bt_dev_err(hdev, "Intel version command failure (%02x)",
ver->status);
err = -bt_to_errno(ver->status);
kfree_skb(skb);
return err;
}
/* The hardware platform number has a fixed value of 0x37 and
* for now only accept this single value.
*/
if (ver->hw_platform != 0x37) {
bt_dev_err(hdev, "Unsupported Intel hardware platform (%u)",
ver->hw_platform);
kfree_skb(skb);
return -EINVAL;
}
/* At the moment only the hardware variant iBT 3.0 (LnP/SfP) is
* supported by this firmware loading method. This check has been
* put in place to ensure correct forward compatibility options
* when newer hardware variants come along.
*/
if (ver->hw_variant != 0x0b) {
bt_dev_err(hdev, "Unsupported Intel hardware variant (%u)",
ver->hw_variant);
kfree_skb(skb);
return -EINVAL;
}
btintel_version_info(hdev, ver);
/* The firmware variant determines if the device is in bootloader
* mode or is running operational firmware. The value 0x06 identifies
* the bootloader and the value 0x23 identifies the operational
* firmware.
*
* When the operational firmware is already present, then only
* the check for valid Bluetooth device address is needed. This
* determines if the device will be added as configured or
* unconfigured controller.
*
* It is not possible to use the Secure Boot Parameters in this
* case since that command is only available in bootloader mode.
*/
if (ver->fw_variant == 0x23) {
kfree_skb(skb);
clear_bit(STATE_BOOTLOADER, &intel->flags);
btintel_check_bdaddr(hdev);
return 0;
}
/* If the device is not in bootloader mode, then the only possible
* choice is to return an error and abort the device initialization.
*/
if (ver->fw_variant != 0x06) {
bt_dev_err(hdev, "Unsupported Intel firmware variant (%u)",
ver->fw_variant);
kfree_skb(skb);
return -ENODEV;
}
kfree_skb(skb);
/* Read the secure boot parameters to identify the operating
* details of the bootloader.
*/
skb = __hci_cmd_sync(hdev, 0xfc0d, 0, NULL, HCI_INIT_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Reading Intel boot parameters failed (%ld)",
PTR_ERR(skb));
return PTR_ERR(skb);
}
if (skb->len != sizeof(*params)) {
bt_dev_err(hdev, "Intel boot parameters size mismatch");
kfree_skb(skb);
return -EILSEQ;
}
params = (struct intel_boot_params *)skb->data;
if (params->status) {
bt_dev_err(hdev, "Intel boot parameters command failure (%02x)",
params->status);
err = -bt_to_errno(params->status);
kfree_skb(skb);
return err;
}
bt_dev_info(hdev, "Device revision is %u",
le16_to_cpu(params->dev_revid));
bt_dev_info(hdev, "Secure boot is %s",
params->secure_boot ? "enabled" : "disabled");
bt_dev_info(hdev, "Minimum firmware build %u week %u %u",
params->min_fw_build_nn, params->min_fw_build_cw,
2000 + params->min_fw_build_yy);
/* It is required that every single firmware fragment is acknowledged
* with a command complete event. If the boot parameters indicate
* that this bootloader does not send them, then abort the setup.
*/
if (params->limited_cce != 0x00) {
bt_dev_err(hdev, "Unsupported Intel firmware loading method (%u)",
params->limited_cce);
kfree_skb(skb);
return -EINVAL;
}
/* If the OTP has no valid Bluetooth device address, then there will
* also be no valid address for the operational firmware.
*/
if (!bacmp(&params->otp_bdaddr, BDADDR_ANY)) {
bt_dev_info(hdev, "No device address configured");
set_bit(HCI_QUIRK_INVALID_BDADDR, &hdev->quirks);
}
/* With this Intel bootloader only the hardware variant and device
* revision information are used to select the right firmware.
*
* Currently this bootloader support is limited to hardware variant
* iBT 3.0 (LnP/SfP) which is identified by the value 11 (0x0b).
*/
snprintf(fwname, sizeof(fwname), "intel/ibt-11-%u.sfi",
le16_to_cpu(params->dev_revid));
err = request_firmware(&fw, fwname, &hdev->dev);
if (err < 0) {
bt_dev_err(hdev, "Failed to load Intel firmware file (%d)",
err);
kfree_skb(skb);
return err;
}
bt_dev_info(hdev, "Found device firmware: %s", fwname);
kfree_skb(skb);
if (fw->size < 644) {
bt_dev_err(hdev, "Invalid size of firmware file (%zu)",
fw->size);
err = -EBADF;
goto done;
}
set_bit(STATE_DOWNLOADING, &intel->flags);
/* Start the firmware download transaction with the Init fragment
* represented by the 128 bytes of CSS header.
*/
err = btintel_secure_send(hdev, 0x00, 128, fw->data);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware header (%d)", err);
goto done;
}
/* Send the 256 bytes of public key information from the firmware
* as the PKey fragment.
*/
err = btintel_secure_send(hdev, 0x03, 256, fw->data + 128);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware public key (%d)",
err);
goto done;
}
/* Send the 256 bytes of signature information from the firmware
* as the Sign fragment.
*/
err = btintel_secure_send(hdev, 0x02, 256, fw->data + 388);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware signature (%d)",
err);
goto done;
}
fw_ptr = fw->data + 644;
frag_len = 0;
while (fw_ptr - fw->data < fw->size) {
struct hci_command_hdr *cmd = (void *)(fw_ptr + frag_len);
frag_len += sizeof(*cmd) + cmd->plen;
bt_dev_dbg(hdev, "Patching %td/%zu", (fw_ptr - fw->data),
fw->size);
/* The parameter length of the secure send command requires
* a 4 byte alignment. It happens so that the firmware file
* contains proper Intel_NOP commands to align the fragments
* as needed.
*
* Send set of commands with 4 byte alignment from the
* firmware data buffer as a single Data fragement.
*/
if (frag_len % 4)
continue;
/* Send each command from the firmware data buffer as
* a single Data fragment.
*/
err = btintel_secure_send(hdev, 0x01, frag_len, fw_ptr);
if (err < 0) {
bt_dev_err(hdev, "Failed to send firmware data (%d)",
err);
goto done;
}
fw_ptr += frag_len;
frag_len = 0;
}
set_bit(STATE_FIRMWARE_LOADED, &intel->flags);
bt_dev_info(hdev, "Waiting for firmware download to complete");
/* Before switching the device into operational mode and with that
* booting the loaded firmware, wait for the bootloader notification
* that all fragments have been successfully received.
*
* When the event processing receives the notification, then the
* STATE_DOWNLOADING flag will be cleared.
*
* The firmware loading should not take longer than 5 seconds
* and thus just timeout if that happens and fail the setup
* of this device.
*/
err = wait_on_bit_timeout(&intel->flags, STATE_DOWNLOADING,
TASK_INTERRUPTIBLE,
msecs_to_jiffies(5000));
if (err == 1) {
bt_dev_err(hdev, "Firmware loading interrupted");
err = -EINTR;
goto done;
}
if (err) {
bt_dev_err(hdev, "Firmware loading timeout");
err = -ETIMEDOUT;
goto done;
}
if (test_bit(STATE_FIRMWARE_FAILED, &intel->flags)) {
bt_dev_err(hdev, "Firmware loading failed");
err = -ENOEXEC;
goto done;
}
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
bt_dev_info(hdev, "Firmware loaded in %llu usecs", duration);
done:
release_firmware(fw);
if (err < 0)
return err;
/* We need to restore the default speed before Intel reset */
if (speed_change) {
err = intel_set_baudrate(hu, init_speed);
if (err)
return err;
}
calltime = ktime_get();
set_bit(STATE_BOOTING, &intel->flags);
skb = __hci_cmd_sync(hdev, 0xfc01, sizeof(reset_param), reset_param,
HCI_INIT_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
/* The bootloader will not indicate when the device is ready. This
* is done by the operational firmware sending bootup notification.
*
* Booting into operational firmware should not take longer than
* 1 second. However if that happens, then just fail the setup
* since something went wrong.
*/
bt_dev_info(hdev, "Waiting for device to boot");
err = intel_wait_booting(hu);
if (err)
return err;
clear_bit(STATE_BOOTING, &intel->flags);
rettime = ktime_get();
delta = ktime_sub(rettime, calltime);
duration = (unsigned long long) ktime_to_ns(delta) >> 10;
bt_dev_info(hdev, "Device booted in %llu usecs", duration);
/* Enable LPM if matching pdev with wakeup enabled */
mutex_lock(&intel_device_list_lock);
list_for_each(p, &intel_device_list) {
struct intel_device *dev = list_entry(p, struct intel_device,
list);
if (hu->tty->dev->parent == dev->pdev->dev.parent) {
if (device_may_wakeup(&dev->pdev->dev))
idev = dev;
break;
}
}
mutex_unlock(&intel_device_list_lock);
if (!idev)
goto no_lpm;
bt_dev_info(hdev, "Enabling LPM");
skb = __hci_cmd_sync(hdev, 0xfc8b, sizeof(lpm_param), lpm_param,
HCI_CMD_TIMEOUT);
if (IS_ERR(skb)) {
bt_dev_err(hdev, "Failed to enable LPM");
goto no_lpm;
}
kfree_skb(skb);
set_bit(STATE_LPM_ENABLED, &intel->flags);
no_lpm:
skb = __hci_cmd_sync(hdev, HCI_OP_RESET, 0, NULL, HCI_CMD_TIMEOUT);
if (IS_ERR(skb))
return PTR_ERR(skb);
kfree_skb(skb);
if (speed_change) {
err = intel_set_baudrate(hu, oper_speed);
if (err)
return err;
}
bt_dev_info(hdev, "Setup complete");
clear_bit(STATE_BOOTLOADER, &intel->flags);
return 0;
}
static int intel_recv_event(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct intel_data *intel = hu->priv;
struct hci_event_hdr *hdr;
if (!test_bit(STATE_BOOTLOADER, &intel->flags) &&
!test_bit(STATE_BOOTING, &intel->flags))
goto recv;
hdr = (void *)skb->data;
/* When the firmware loading completes the device sends
* out a vendor specific event indicating the result of
* the firmware loading.
*/
if (skb->len == 7 && hdr->evt == 0xff && hdr->plen == 0x05 &&
skb->data[2] == 0x06) {
if (skb->data[3] != 0x00)
set_bit(STATE_FIRMWARE_FAILED, &intel->flags);
if (test_and_clear_bit(STATE_DOWNLOADING, &intel->flags) &&
test_bit(STATE_FIRMWARE_LOADED, &intel->flags)) {
smp_mb__after_atomic();
wake_up_bit(&intel->flags, STATE_DOWNLOADING);
}
/* When switching to the operational firmware the device
* sends a vendor specific event indicating that the bootup
* completed.
*/
} else if (skb->len == 9 && hdr->evt == 0xff && hdr->plen == 0x07 &&
skb->data[2] == 0x02) {
if (test_and_clear_bit(STATE_BOOTING, &intel->flags)) {
smp_mb__after_atomic();
wake_up_bit(&intel->flags, STATE_BOOTING);
}
}
recv:
return hci_recv_frame(hdev, skb);
}
static void intel_recv_lpm_notify(struct hci_dev *hdev, int value)
{
struct hci_uart *hu = hci_get_drvdata(hdev);
struct intel_data *intel = hu->priv;
bt_dev_dbg(hdev, "TX idle notification (%d)", value);
if (value)
set_bit(STATE_TX_ACTIVE, &intel->flags);
else
clear_bit(STATE_TX_ACTIVE, &intel->flags);
}
static int intel_recv_lpm(struct hci_dev *hdev, struct sk_buff *skb)
{
struct hci_lpm_pkt *lpm = (void *)skb->data;
struct hci_uart *hu = hci_get_drvdata(hdev);
struct intel_data *intel = hu->priv;
switch (lpm->opcode) {
case LPM_OP_TX_NOTIFY:
if (lpm->dlen)
intel_recv_lpm_notify(hdev, lpm->data[0]);
break;
case LPM_OP_SUSPEND_ACK:
set_bit(STATE_SUSPENDED, &intel->flags);
if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
smp_mb__after_atomic();
wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
}
break;
case LPM_OP_RESUME_ACK:
clear_bit(STATE_SUSPENDED, &intel->flags);
if (test_and_clear_bit(STATE_LPM_TRANSACTION, &intel->flags)) {
smp_mb__after_atomic();
wake_up_bit(&intel->flags, STATE_LPM_TRANSACTION);
}
break;
default:
bt_dev_err(hdev, "Unknown LPM opcode (%02x)", lpm->opcode);
break;
}
kfree_skb(skb);
return 0;
}
#define INTEL_RECV_LPM \
.type = HCI_LPM_PKT, \
.hlen = HCI_LPM_HDR_SIZE, \
.loff = 1, \
.lsize = 1, \
.maxlen = HCI_LPM_MAX_SIZE
static const struct h4_recv_pkt intel_recv_pkts[] = {
{ H4_RECV_ACL, .recv = hci_recv_frame },
{ H4_RECV_SCO, .recv = hci_recv_frame },
{ H4_RECV_EVENT, .recv = intel_recv_event },
{ INTEL_RECV_LPM, .recv = intel_recv_lpm },
};
static int intel_recv(struct hci_uart *hu, const void *data, int count)
{
struct intel_data *intel = hu->priv;
if (!test_bit(HCI_UART_REGISTERED, &hu->flags))
return -EUNATCH;
intel->rx_skb = h4_recv_buf(hu->hdev, intel->rx_skb, data, count,
intel_recv_pkts,
ARRAY_SIZE(intel_recv_pkts));
if (IS_ERR(intel->rx_skb)) {
int err = PTR_ERR(intel->rx_skb);
bt_dev_err(hu->hdev, "Frame reassembly failed (%d)", err);
intel->rx_skb = NULL;
return err;
}
return count;
}
static int intel_enqueue(struct hci_uart *hu, struct sk_buff *skb)
{
struct intel_data *intel = hu->priv;
BT_DBG("hu %p skb %p", hu, skb);
skb_queue_tail(&intel->txq, skb);
return 0;
}
static struct sk_buff *intel_dequeue(struct hci_uart *hu)
{
struct intel_data *intel = hu->priv;
struct sk_buff *skb;
skb = skb_dequeue(&intel->txq);
if (!skb)
return skb;
if (test_bit(STATE_BOOTLOADER, &intel->flags) &&
(bt_cb(skb)->pkt_type == HCI_COMMAND_PKT)) {
struct hci_command_hdr *cmd = (void *)skb->data;
__u16 opcode = le16_to_cpu(cmd->opcode);
/* When the 0xfc01 command is issued to boot into
* the operational firmware, it will actually not
* send a command complete event. To keep the flow
* control working inject that event here.
*/
if (opcode == 0xfc01)
inject_cmd_complete(hu->hdev, opcode);
}
/* Prepend skb with frame type */
memcpy(skb_push(skb, 1), &bt_cb(skb)->pkt_type, 1);
return skb;
}
static const struct hci_uart_proto intel_proto = {
.id = HCI_UART_INTEL,
.name = "Intel",
.init_speed = 115200,
.oper_speed = 3000000,
.open = intel_open,
.close = intel_close,
.flush = intel_flush,
.setup = intel_setup,
.set_baudrate = intel_set_baudrate,
.recv = intel_recv,
.enqueue = intel_enqueue,
.dequeue = intel_dequeue,
};
#ifdef CONFIG_ACPI
static const struct acpi_device_id intel_acpi_match[] = {
{ "INT33E1", 0 },
{ },
};
MODULE_DEVICE_TABLE(acpi, intel_acpi_match);
static int intel_acpi_probe(struct intel_device *idev)
{
const struct acpi_device_id *id;
id = acpi_match_device(intel_acpi_match, &idev->pdev->dev);
if (!id)
return -ENODEV;
return 0;
}
#else
static int intel_acpi_probe(struct intel_device *idev)
{
return -ENODEV;
}
#endif
#ifdef CONFIG_PM_SLEEP
static int intel_suspend(struct device *dev)
{
struct intel_device *idev = dev_get_drvdata(dev);
dev_dbg(dev, "intel_suspend");
mutex_lock(&idev->hu_lock);
if (idev->hu)
intel_lpm_suspend(idev->hu);
mutex_unlock(&idev->hu_lock);
return 0;
}
static int intel_resume(struct device *dev)
{
struct intel_device *idev = dev_get_drvdata(dev);
dev_dbg(dev, "intel_resume");
mutex_lock(&idev->hu_lock);
if (idev->hu)
intel_lpm_resume(idev->hu);
mutex_unlock(&idev->hu_lock);
return 0;
}
#endif
static const struct dev_pm_ops intel_pm_ops = {
SET_SYSTEM_SLEEP_PM_OPS(intel_suspend, intel_resume)
};
static int intel_probe(struct platform_device *pdev)
{
struct intel_device *idev;
idev = devm_kzalloc(&pdev->dev, sizeof(*idev), GFP_KERNEL);
if (!idev)
return -ENOMEM;
mutex_init(&idev->hu_lock);
idev->pdev = pdev;
if (ACPI_HANDLE(&pdev->dev)) {
int err = intel_acpi_probe(idev);
if (err)
return err;
} else {
return -ENODEV;
}
idev->reset = devm_gpiod_get_optional(&pdev->dev, "reset",
GPIOD_OUT_LOW);
if (IS_ERR(idev->reset)) {
dev_err(&pdev->dev, "Unable to retrieve gpio\n");
return PTR_ERR(idev->reset);
}
idev->irq = platform_get_irq(pdev, 0);
if (idev->irq < 0) {
struct gpio_desc *host_wake;
dev_err(&pdev->dev, "No IRQ, falling back to gpio-irq\n");
host_wake = devm_gpiod_get_optional(&pdev->dev, "host-wake",
GPIOD_IN);
if (IS_ERR(host_wake)) {
dev_err(&pdev->dev, "Unable to retrieve IRQ\n");
goto no_irq;
}
idev->irq = gpiod_to_irq(host_wake);
if (idev->irq < 0) {
dev_err(&pdev->dev, "No corresponding irq for gpio\n");
goto no_irq;
}
}
/* Only enable wake-up/irq when controller is powered */
device_set_wakeup_capable(&pdev->dev, true);
device_wakeup_disable(&pdev->dev);
no_irq:
platform_set_drvdata(pdev, idev);
/* Place this instance on the device list */
mutex_lock(&intel_device_list_lock);
list_add_tail(&idev->list, &intel_device_list);
mutex_unlock(&intel_device_list_lock);
dev_info(&pdev->dev, "registered, gpio(%d)/irq(%d).\n",
desc_to_gpio(idev->reset), idev->irq);
return 0;
}
static int intel_remove(struct platform_device *pdev)
{
struct intel_device *idev = platform_get_drvdata(pdev);
device_wakeup_disable(&pdev->dev);
mutex_lock(&intel_device_list_lock);
list_del(&idev->list);
mutex_unlock(&intel_device_list_lock);
dev_info(&pdev->dev, "unregistered.\n");
return 0;
}
static struct platform_driver intel_driver = {
.probe = intel_probe,
.remove = intel_remove,
.driver = {
.name = "hci_intel",
.acpi_match_table = ACPI_PTR(intel_acpi_match),
.pm = &intel_pm_ops,
},
};
int __init intel_init(void)
{
platform_driver_register(&intel_driver);
return hci_uart_register_proto(&intel_proto);
}
int __exit intel_deinit(void)
{
platform_driver_unregister(&intel_driver);
return hci_uart_unregister_proto(&intel_proto);
}