linux_old1/drivers/net/wireless/prism54/oid_mgt.c

903 lines
25 KiB
C
Raw Normal View History

/*
* Copyright (C) 2003,2004 Aurelien Alleaume <slts@free.fr>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*
*/
#include <linux/kernel.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include "prismcompat.h"
#include "islpci_dev.h"
#include "islpci_mgt.h"
#include "isl_oid.h"
#include "oid_mgt.h"
#include "isl_ioctl.h"
/* to convert between channel and freq */
static const int frequency_list_bg[] = { 2412, 2417, 2422, 2427, 2432,
2437, 2442, 2447, 2452, 2457, 2462, 2467, 2472, 2484
};
int
channel_of_freq(int f)
{
int c = 0;
if ((f >= 2412) && (f <= 2484)) {
while ((c < 14) && (f != frequency_list_bg[c]))
c++;
return (c >= 14) ? 0 : ++c;
} else if ((f >= (int) 5000) && (f <= (int) 6000)) {
return ( (f - 5000) / 5 );
} else
return 0;
}
#define OID_STRUCT(name,oid,s,t) [name] = {oid, 0, sizeof(s), t}
#define OID_STRUCT_C(name,oid,s,t) OID_STRUCT(name,oid,s,t | OID_FLAG_CACHED)
#define OID_U32(name,oid) OID_STRUCT(name,oid,u32,OID_TYPE_U32)
#define OID_U32_C(name,oid) OID_STRUCT_C(name,oid,u32,OID_TYPE_U32)
#define OID_STRUCT_MLME(name,oid) OID_STRUCT(name,oid,struct obj_mlme,OID_TYPE_MLME)
#define OID_STRUCT_MLMEEX(name,oid) OID_STRUCT(name,oid,struct obj_mlmeex,OID_TYPE_MLMEEX)
#define OID_UNKNOWN(name,oid) OID_STRUCT(name,oid,0,0)
struct oid_t isl_oid[] = {
OID_STRUCT(GEN_OID_MACADDRESS, 0x00000000, u8[6], OID_TYPE_ADDR),
OID_U32(GEN_OID_LINKSTATE, 0x00000001),
OID_UNKNOWN(GEN_OID_WATCHDOG, 0x00000002),
OID_UNKNOWN(GEN_OID_MIBOP, 0x00000003),
OID_UNKNOWN(GEN_OID_OPTIONS, 0x00000004),
OID_UNKNOWN(GEN_OID_LEDCONFIG, 0x00000005),
/* 802.11 */
OID_U32_C(DOT11_OID_BSSTYPE, 0x10000000),
OID_STRUCT_C(DOT11_OID_BSSID, 0x10000001, u8[6], OID_TYPE_RAW),
OID_STRUCT_C(DOT11_OID_SSID, 0x10000002, struct obj_ssid,
OID_TYPE_SSID),
OID_U32(DOT11_OID_STATE, 0x10000003),
OID_U32(DOT11_OID_AID, 0x10000004),
OID_STRUCT(DOT11_OID_COUNTRYSTRING, 0x10000005, u8[4], OID_TYPE_RAW),
OID_STRUCT_C(DOT11_OID_SSIDOVERRIDE, 0x10000006, struct obj_ssid,
OID_TYPE_SSID),
OID_U32(DOT11_OID_MEDIUMLIMIT, 0x11000000),
OID_U32_C(DOT11_OID_BEACONPERIOD, 0x11000001),
OID_U32(DOT11_OID_DTIMPERIOD, 0x11000002),
OID_U32(DOT11_OID_ATIMWINDOW, 0x11000003),
OID_U32(DOT11_OID_LISTENINTERVAL, 0x11000004),
OID_U32(DOT11_OID_CFPPERIOD, 0x11000005),
OID_U32(DOT11_OID_CFPDURATION, 0x11000006),
OID_U32_C(DOT11_OID_AUTHENABLE, 0x12000000),
OID_U32_C(DOT11_OID_PRIVACYINVOKED, 0x12000001),
OID_U32_C(DOT11_OID_EXUNENCRYPTED, 0x12000002),
OID_U32_C(DOT11_OID_DEFKEYID, 0x12000003),
[DOT11_OID_DEFKEYX] = {0x12000004, 3, sizeof (struct obj_key),
OID_FLAG_CACHED | OID_TYPE_KEY}, /* DOT11_OID_DEFKEY1,...DOT11_OID_DEFKEY4 */
OID_UNKNOWN(DOT11_OID_STAKEY, 0x12000008),
OID_U32(DOT11_OID_REKEYTHRESHOLD, 0x12000009),
OID_UNKNOWN(DOT11_OID_STASC, 0x1200000a),
OID_U32(DOT11_OID_PRIVTXREJECTED, 0x1a000000),
OID_U32(DOT11_OID_PRIVRXPLAIN, 0x1a000001),
OID_U32(DOT11_OID_PRIVRXFAILED, 0x1a000002),
OID_U32(DOT11_OID_PRIVRXNOKEY, 0x1a000003),
OID_U32_C(DOT11_OID_RTSTHRESH, 0x13000000),
OID_U32_C(DOT11_OID_FRAGTHRESH, 0x13000001),
OID_U32_C(DOT11_OID_SHORTRETRIES, 0x13000002),
OID_U32_C(DOT11_OID_LONGRETRIES, 0x13000003),
OID_U32_C(DOT11_OID_MAXTXLIFETIME, 0x13000004),
OID_U32(DOT11_OID_MAXRXLIFETIME, 0x13000005),
OID_U32(DOT11_OID_AUTHRESPTIMEOUT, 0x13000006),
OID_U32(DOT11_OID_ASSOCRESPTIMEOUT, 0x13000007),
OID_UNKNOWN(DOT11_OID_ALOFT_TABLE, 0x1d000000),
OID_UNKNOWN(DOT11_OID_ALOFT_CTRL_TABLE, 0x1d000001),
OID_UNKNOWN(DOT11_OID_ALOFT_RETREAT, 0x1d000002),
OID_UNKNOWN(DOT11_OID_ALOFT_PROGRESS, 0x1d000003),
OID_U32(DOT11_OID_ALOFT_FIXEDRATE, 0x1d000004),
OID_UNKNOWN(DOT11_OID_ALOFT_RSSIGRAPH, 0x1d000005),
OID_UNKNOWN(DOT11_OID_ALOFT_CONFIG, 0x1d000006),
[DOT11_OID_VDCFX] = {0x1b000000, 7, 0, 0},
OID_U32(DOT11_OID_MAXFRAMEBURST, 0x1b000008),
OID_U32(DOT11_OID_PSM, 0x14000000),
OID_U32(DOT11_OID_CAMTIMEOUT, 0x14000001),
OID_U32(DOT11_OID_RECEIVEDTIMS, 0x14000002),
OID_U32(DOT11_OID_ROAMPREFERENCE, 0x14000003),
OID_U32(DOT11_OID_BRIDGELOCAL, 0x15000000),
OID_U32(DOT11_OID_CLIENTS, 0x15000001),
OID_U32(DOT11_OID_CLIENTSASSOCIATED, 0x15000002),
[DOT11_OID_CLIENTX] = {0x15000003, 2006, 0, 0}, /* DOT11_OID_CLIENTX,...DOT11_OID_CLIENT2007 */
OID_STRUCT(DOT11_OID_CLIENTFIND, 0x150007DB, u8[6], OID_TYPE_ADDR),
OID_STRUCT(DOT11_OID_WDSLINKADD, 0x150007DC, u8[6], OID_TYPE_ADDR),
OID_STRUCT(DOT11_OID_WDSLINKREMOVE, 0x150007DD, u8[6], OID_TYPE_ADDR),
OID_STRUCT(DOT11_OID_EAPAUTHSTA, 0x150007DE, u8[6], OID_TYPE_ADDR),
OID_STRUCT(DOT11_OID_EAPUNAUTHSTA, 0x150007DF, u8[6], OID_TYPE_ADDR),
OID_U32_C(DOT11_OID_DOT1XENABLE, 0x150007E0),
OID_UNKNOWN(DOT11_OID_MICFAILURE, 0x150007E1),
OID_UNKNOWN(DOT11_OID_REKEYINDICATE, 0x150007E2),
OID_U32(DOT11_OID_MPDUTXSUCCESSFUL, 0x16000000),
OID_U32(DOT11_OID_MPDUTXONERETRY, 0x16000001),
OID_U32(DOT11_OID_MPDUTXMULTIPLERETRIES, 0x16000002),
OID_U32(DOT11_OID_MPDUTXFAILED, 0x16000003),
OID_U32(DOT11_OID_MPDURXSUCCESSFUL, 0x16000004),
OID_U32(DOT11_OID_MPDURXDUPS, 0x16000005),
OID_U32(DOT11_OID_RTSSUCCESSFUL, 0x16000006),
OID_U32(DOT11_OID_RTSFAILED, 0x16000007),
OID_U32(DOT11_OID_ACKFAILED, 0x16000008),
OID_U32(DOT11_OID_FRAMERECEIVES, 0x16000009),
OID_U32(DOT11_OID_FRAMEERRORS, 0x1600000A),
OID_U32(DOT11_OID_FRAMEABORTS, 0x1600000B),
OID_U32(DOT11_OID_FRAMEABORTSPHY, 0x1600000C),
OID_U32(DOT11_OID_SLOTTIME, 0x17000000),
OID_U32(DOT11_OID_CWMIN, 0x17000001),
OID_U32(DOT11_OID_CWMAX, 0x17000002),
OID_U32(DOT11_OID_ACKWINDOW, 0x17000003),
OID_U32(DOT11_OID_ANTENNARX, 0x17000004),
OID_U32(DOT11_OID_ANTENNATX, 0x17000005),
OID_U32(DOT11_OID_ANTENNADIVERSITY, 0x17000006),
OID_U32_C(DOT11_OID_CHANNEL, 0x17000007),
OID_U32_C(DOT11_OID_EDTHRESHOLD, 0x17000008),
OID_U32(DOT11_OID_PREAMBLESETTINGS, 0x17000009),
OID_STRUCT(DOT11_OID_RATES, 0x1700000A, u8[IWMAX_BITRATES + 1],
OID_TYPE_RAW),
OID_U32(DOT11_OID_CCAMODESUPPORTED, 0x1700000B),
OID_U32(DOT11_OID_CCAMODE, 0x1700000C),
OID_UNKNOWN(DOT11_OID_RSSIVECTOR, 0x1700000D),
OID_UNKNOWN(DOT11_OID_OUTPUTPOWERTABLE, 0x1700000E),
OID_U32(DOT11_OID_OUTPUTPOWER, 0x1700000F),
OID_STRUCT(DOT11_OID_SUPPORTEDRATES, 0x17000010,
u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
OID_U32_C(DOT11_OID_FREQUENCY, 0x17000011),
[DOT11_OID_SUPPORTEDFREQUENCIES] =
{0x17000012, 0, sizeof (struct obj_frequencies)
+ sizeof (u16) * IWMAX_FREQ, OID_TYPE_FREQUENCIES},
OID_U32(DOT11_OID_NOISEFLOOR, 0x17000013),
OID_STRUCT(DOT11_OID_FREQUENCYACTIVITY, 0x17000014, u8[IWMAX_FREQ + 1],
OID_TYPE_RAW),
OID_UNKNOWN(DOT11_OID_IQCALIBRATIONTABLE, 0x17000015),
OID_U32(DOT11_OID_NONERPPROTECTION, 0x17000016),
OID_U32(DOT11_OID_SLOTSETTINGS, 0x17000017),
OID_U32(DOT11_OID_NONERPTIMEOUT, 0x17000018),
OID_U32(DOT11_OID_PROFILES, 0x17000019),
OID_STRUCT(DOT11_OID_EXTENDEDRATES, 0x17000020,
u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
OID_STRUCT_MLME(DOT11_OID_DEAUTHENTICATE, 0x18000000),
OID_STRUCT_MLME(DOT11_OID_AUTHENTICATE, 0x18000001),
OID_STRUCT_MLME(DOT11_OID_DISASSOCIATE, 0x18000002),
OID_STRUCT_MLME(DOT11_OID_ASSOCIATE, 0x18000003),
OID_UNKNOWN(DOT11_OID_SCAN, 0x18000004),
OID_STRUCT_MLMEEX(DOT11_OID_BEACON, 0x18000005),
OID_STRUCT_MLMEEX(DOT11_OID_PROBE, 0x18000006),
OID_STRUCT_MLMEEX(DOT11_OID_DEAUTHENTICATEEX, 0x18000007),
OID_STRUCT_MLMEEX(DOT11_OID_AUTHENTICATEEX, 0x18000008),
OID_STRUCT_MLMEEX(DOT11_OID_DISASSOCIATEEX, 0x18000009),
OID_STRUCT_MLMEEX(DOT11_OID_ASSOCIATEEX, 0x1800000A),
OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATE, 0x1800000B),
OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATEEX, 0x1800000C),
OID_U32(DOT11_OID_NONERPSTATUS, 0x1E000000),
OID_U32(DOT11_OID_STATIMEOUT, 0x19000000),
OID_U32_C(DOT11_OID_MLMEAUTOLEVEL, 0x19000001),
OID_U32(DOT11_OID_BSSTIMEOUT, 0x19000002),
[DOT11_OID_ATTACHMENT] = {0x19000003, 0,
sizeof(struct obj_attachment), OID_TYPE_ATTACH},
OID_STRUCT_C(DOT11_OID_PSMBUFFER, 0x19000004, struct obj_buffer,
OID_TYPE_BUFFER),
OID_U32(DOT11_OID_BSSS, 0x1C000000),
[DOT11_OID_BSSX] = {0x1C000001, 63, sizeof (struct obj_bss),
OID_TYPE_BSS}, /*DOT11_OID_BSS1,...,DOT11_OID_BSS64 */
OID_STRUCT(DOT11_OID_BSSFIND, 0x1C000042, struct obj_bss, OID_TYPE_BSS),
[DOT11_OID_BSSLIST] = {0x1C000043, 0, sizeof (struct
obj_bsslist) +
sizeof (struct obj_bss[IWMAX_BSS]),
OID_TYPE_BSSLIST},
OID_UNKNOWN(OID_INL_TUNNEL, 0xFF020000),
OID_UNKNOWN(OID_INL_MEMADDR, 0xFF020001),
OID_UNKNOWN(OID_INL_MEMORY, 0xFF020002),
OID_U32_C(OID_INL_MODE, 0xFF020003),
OID_UNKNOWN(OID_INL_COMPONENT_NR, 0xFF020004),
OID_STRUCT(OID_INL_VERSION, 0xFF020005, u8[8], OID_TYPE_RAW),
OID_UNKNOWN(OID_INL_INTERFACE_ID, 0xFF020006),
OID_UNKNOWN(OID_INL_COMPONENT_ID, 0xFF020007),
OID_U32_C(OID_INL_CONFIG, 0xFF020008),
OID_U32_C(OID_INL_DOT11D_CONFORMANCE, 0xFF02000C),
OID_U32(OID_INL_PHYCAPABILITIES, 0xFF02000D),
OID_U32_C(OID_INL_OUTPUTPOWER, 0xFF02000F),
};
int
mgt_init(islpci_private *priv)
{
int i;
priv->mib = kcalloc(OID_NUM_LAST, sizeof (void *), GFP_KERNEL);
if (!priv->mib)
return -ENOMEM;
/* Alloc the cache */
for (i = 0; i < OID_NUM_LAST; i++) {
if (isl_oid[i].flags & OID_FLAG_CACHED) {
priv->mib[i] = kzalloc(isl_oid[i].size *
(isl_oid[i].range + 1),
GFP_KERNEL);
if (!priv->mib[i])
return -ENOMEM;
} else
priv->mib[i] = NULL;
}
init_rwsem(&priv->mib_sem);
prism54_mib_init(priv);
return 0;
}
void
mgt_clean(islpci_private *priv)
{
int i;
if (!priv->mib)
return;
for (i = 0; i < OID_NUM_LAST; i++) {
kfree(priv->mib[i]);
priv->mib[i] = NULL;
}
kfree(priv->mib);
priv->mib = NULL;
}
void
mgt_le_to_cpu(int type, void *data)
{
switch (type) {
case OID_TYPE_U32:
*(u32 *) data = le32_to_cpu(*(u32 *) data);
break;
case OID_TYPE_BUFFER:{
struct obj_buffer *buff = data;
buff->size = le32_to_cpu(buff->size);
buff->addr = le32_to_cpu(buff->addr);
break;
}
case OID_TYPE_BSS:{
struct obj_bss *bss = data;
bss->age = le16_to_cpu(bss->age);
bss->channel = le16_to_cpu(bss->channel);
bss->capinfo = le16_to_cpu(bss->capinfo);
bss->rates = le16_to_cpu(bss->rates);
bss->basic_rates = le16_to_cpu(bss->basic_rates);
break;
}
case OID_TYPE_BSSLIST:{
struct obj_bsslist *list = data;
int i;
list->nr = le32_to_cpu(list->nr);
for (i = 0; i < list->nr; i++)
mgt_le_to_cpu(OID_TYPE_BSS, &list->bsslist[i]);
break;
}
case OID_TYPE_FREQUENCIES:{
struct obj_frequencies *freq = data;
int i;
freq->nr = le16_to_cpu(freq->nr);
for (i = 0; i < freq->nr; i++)
freq->mhz[i] = le16_to_cpu(freq->mhz[i]);
break;
}
case OID_TYPE_MLME:{
struct obj_mlme *mlme = data;
mlme->id = le16_to_cpu(mlme->id);
mlme->state = le16_to_cpu(mlme->state);
mlme->code = le16_to_cpu(mlme->code);
break;
}
case OID_TYPE_MLMEEX:{
struct obj_mlmeex *mlme = data;
mlme->id = le16_to_cpu(mlme->id);
mlme->state = le16_to_cpu(mlme->state);
mlme->code = le16_to_cpu(mlme->code);
mlme->size = le16_to_cpu(mlme->size);
break;
}
case OID_TYPE_ATTACH:{
struct obj_attachment *attach = data;
attach->id = le16_to_cpu(attach->id);
attach->size = le16_to_cpu(attach->size);
break;
}
case OID_TYPE_SSID:
case OID_TYPE_KEY:
case OID_TYPE_ADDR:
case OID_TYPE_RAW:
break;
default:
BUG();
}
}
static void
mgt_cpu_to_le(int type, void *data)
{
switch (type) {
case OID_TYPE_U32:
*(u32 *) data = cpu_to_le32(*(u32 *) data);
break;
case OID_TYPE_BUFFER:{
struct obj_buffer *buff = data;
buff->size = cpu_to_le32(buff->size);
buff->addr = cpu_to_le32(buff->addr);
break;
}
case OID_TYPE_BSS:{
struct obj_bss *bss = data;
bss->age = cpu_to_le16(bss->age);
bss->channel = cpu_to_le16(bss->channel);
bss->capinfo = cpu_to_le16(bss->capinfo);
bss->rates = cpu_to_le16(bss->rates);
bss->basic_rates = cpu_to_le16(bss->basic_rates);
break;
}
case OID_TYPE_BSSLIST:{
struct obj_bsslist *list = data;
int i;
list->nr = cpu_to_le32(list->nr);
for (i = 0; i < list->nr; i++)
mgt_cpu_to_le(OID_TYPE_BSS, &list->bsslist[i]);
break;
}
case OID_TYPE_FREQUENCIES:{
struct obj_frequencies *freq = data;
int i;
freq->nr = cpu_to_le16(freq->nr);
for (i = 0; i < freq->nr; i++)
freq->mhz[i] = cpu_to_le16(freq->mhz[i]);
break;
}
case OID_TYPE_MLME:{
struct obj_mlme *mlme = data;
mlme->id = cpu_to_le16(mlme->id);
mlme->state = cpu_to_le16(mlme->state);
mlme->code = cpu_to_le16(mlme->code);
break;
}
case OID_TYPE_MLMEEX:{
struct obj_mlmeex *mlme = data;
mlme->id = cpu_to_le16(mlme->id);
mlme->state = cpu_to_le16(mlme->state);
mlme->code = cpu_to_le16(mlme->code);
mlme->size = cpu_to_le16(mlme->size);
break;
}
case OID_TYPE_ATTACH:{
struct obj_attachment *attach = data;
attach->id = cpu_to_le16(attach->id);
attach->size = cpu_to_le16(attach->size);
break;
}
case OID_TYPE_SSID:
case OID_TYPE_KEY:
case OID_TYPE_ADDR:
case OID_TYPE_RAW:
break;
default:
BUG();
}
}
/* Note : data is modified during this function */
int
mgt_set_request(islpci_private *priv, enum oid_num_t n, int extra, void *data)
{
int ret = 0;
struct islpci_mgmtframe *response = NULL;
int response_op = PIMFOR_OP_ERROR;
int dlen;
void *cache, *_data = data;
u32 oid;
BUG_ON(OID_NUM_LAST <= n);
BUG_ON(extra > isl_oid[n].range);
if (!priv->mib)
/* memory has been freed */
return -1;
dlen = isl_oid[n].size;
cache = priv->mib[n];
cache += (cache ? extra * dlen : 0);
oid = isl_oid[n].oid + extra;
if (_data == NULL)
/* we are requested to re-set a cached value */
_data = cache;
else
mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, _data);
/* If we are going to write to the cache, we don't want anyone to read
* it -> acquire write lock.
* Else we could acquire a read lock to be sure we don't bother the
* commit process (which takes a write lock). But I'm not sure if it's
* needed.
*/
if (cache)
down_write(&priv->mib_sem);
if (islpci_get_state(priv) >= PRV_STATE_READY) {
ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
_data, dlen, &response);
if (!ret) {
response_op = response->header->operation;
islpci_mgt_release(response);
}
if (ret || response_op == PIMFOR_OP_ERROR)
ret = -EIO;
} else if (!cache)
ret = -EIO;
if (cache) {
if (!ret && data)
memcpy(cache, _data, dlen);
up_write(&priv->mib_sem);
}
/* re-set given data to what it was */
if (data)
mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
return ret;
}
/* None of these are cached */
int
mgt_set_varlen(islpci_private *priv, enum oid_num_t n, void *data, int extra_len)
{
int ret = 0;
struct islpci_mgmtframe *response;
int response_op = PIMFOR_OP_ERROR;
int dlen;
u32 oid;
BUG_ON(OID_NUM_LAST <= n);
dlen = isl_oid[n].size;
oid = isl_oid[n].oid;
mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, data);
if (islpci_get_state(priv) >= PRV_STATE_READY) {
ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
data, dlen + extra_len, &response);
if (!ret) {
response_op = response->header->operation;
islpci_mgt_release(response);
}
if (ret || response_op == PIMFOR_OP_ERROR)
ret = -EIO;
} else
ret = -EIO;
/* re-set given data to what it was */
if (data)
mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
return ret;
}
int
mgt_get_request(islpci_private *priv, enum oid_num_t n, int extra, void *data,
union oid_res_t *res)
{
int ret = -EIO;
int reslen = 0;
struct islpci_mgmtframe *response = NULL;
int dlen;
void *cache, *_res = NULL;
u32 oid;
BUG_ON(OID_NUM_LAST <= n);
BUG_ON(extra > isl_oid[n].range);
res->ptr = NULL;
if (!priv->mib)
/* memory has been freed */
return -1;
dlen = isl_oid[n].size;
cache = priv->mib[n];
cache += cache ? extra * dlen : 0;
oid = isl_oid[n].oid + extra;
reslen = dlen;
if (cache)
down_read(&priv->mib_sem);
if (islpci_get_state(priv) >= PRV_STATE_READY) {
ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
oid, data, dlen, &response);
if (ret || !response ||
response->header->operation == PIMFOR_OP_ERROR) {
if (response)
islpci_mgt_release(response);
ret = -EIO;
}
if (!ret) {
_res = response->data;
reslen = response->header->length;
}
} else if (cache) {
_res = cache;
ret = 0;
}
if ((isl_oid[n].flags & OID_FLAG_TYPE) == OID_TYPE_U32)
res->u = ret ? 0 : le32_to_cpu(*(u32 *) _res);
else {
res->ptr = kmalloc(reslen, GFP_KERNEL);
BUG_ON(res->ptr == NULL);
if (ret)
memset(res->ptr, 0, reslen);
else {
memcpy(res->ptr, _res, reslen);
mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE,
res->ptr);
}
}
if (cache)
up_read(&priv->mib_sem);
if (response && !ret)
islpci_mgt_release(response);
if (reslen > isl_oid[n].size)
printk(KERN_DEBUG
"mgt_get_request(0x%x): received data length was bigger "
"than expected (%d > %d). Memory is probably corrupted...",
oid, reslen, isl_oid[n].size);
return ret;
}
/* lock outside */
int
mgt_commit_list(islpci_private *priv, enum oid_num_t *l, int n)
{
int i, ret = 0;
struct islpci_mgmtframe *response;
for (i = 0; i < n; i++) {
struct oid_t *t = &(isl_oid[l[i]]);
void *data = priv->mib[l[i]];
int j = 0;
u32 oid = t->oid;
BUG_ON(data == NULL);
while (j <= t->range) {
int r = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET,
oid, data, t->size,
&response);
if (response) {
r |= (response->header->operation == PIMFOR_OP_ERROR);
islpci_mgt_release(response);
}
if (r)
printk(KERN_ERR "%s: mgt_commit_list: failure. "
"oid=%08x err=%d\n",
priv->ndev->name, oid, r);
ret |= r;
j++;
oid++;
data += t->size;
}
}
return ret;
}
/* Lock outside */
void
mgt_set(islpci_private *priv, enum oid_num_t n, void *data)
{
BUG_ON(OID_NUM_LAST <= n);
BUG_ON(priv->mib[n] == NULL);
memcpy(priv->mib[n], data, isl_oid[n].size);
mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, priv->mib[n]);
}
void
mgt_get(islpci_private *priv, enum oid_num_t n, void *res)
{
BUG_ON(OID_NUM_LAST <= n);
BUG_ON(priv->mib[n] == NULL);
BUG_ON(res == NULL);
memcpy(res, priv->mib[n], isl_oid[n].size);
mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, res);
}
/* Commits the cache. Lock outside. */
static enum oid_num_t commit_part1[] = {
OID_INL_CONFIG,
OID_INL_MODE,
DOT11_OID_BSSTYPE,
DOT11_OID_CHANNEL,
DOT11_OID_MLMEAUTOLEVEL
};
static enum oid_num_t commit_part2[] = {
DOT11_OID_SSID,
DOT11_OID_PSMBUFFER,
DOT11_OID_AUTHENABLE,
DOT11_OID_PRIVACYINVOKED,
DOT11_OID_EXUNENCRYPTED,
DOT11_OID_DEFKEYX, /* MULTIPLE */
DOT11_OID_DEFKEYID,
DOT11_OID_DOT1XENABLE,
OID_INL_DOT11D_CONFORMANCE,
/* Do not initialize this - fw < 1.0.4.3 rejects it
OID_INL_OUTPUTPOWER,
*/
};
/* update the MAC addr. */
static int
mgt_update_addr(islpci_private *priv)
{
struct islpci_mgmtframe *res;
int ret;
ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
isl_oid[GEN_OID_MACADDRESS].oid, NULL,
isl_oid[GEN_OID_MACADDRESS].size, &res);
if ((ret == 0) && res && (res->header->operation != PIMFOR_OP_ERROR))
memcpy(priv->ndev->dev_addr, res->data, ETH_ALEN);
else
ret = -EIO;
if (res)
islpci_mgt_release(res);
if (ret)
printk(KERN_ERR "%s: mgt_update_addr: failure\n", priv->ndev->name);
return ret;
}
int
mgt_commit(islpci_private *priv)
{
int rvalue;
enum oid_num_t u;
if (islpci_get_state(priv) < PRV_STATE_INIT)
return 0;
rvalue = mgt_commit_list(priv, commit_part1, ARRAY_SIZE(commit_part1));
if (priv->iw_mode != IW_MODE_MONITOR)
rvalue |= mgt_commit_list(priv, commit_part2, ARRAY_SIZE(commit_part2));
u = OID_INL_MODE;
rvalue |= mgt_commit_list(priv, &u, 1);
rvalue |= mgt_update_addr(priv);
if (rvalue) {
/* some request have failed. The device might be in an
incoherent state. We should reset it ! */
printk(KERN_DEBUG "%s: mgt_commit: failure\n", priv->ndev->name);
}
return rvalue;
}
/* The following OIDs need to be "unlatched":
*
* MEDIUMLIMIT,BEACONPERIOD,DTIMPERIOD,ATIMWINDOW,LISTENINTERVAL
* FREQUENCY,EXTENDEDRATES.
*
* The way to do this is to set ESSID. Note though that they may get
* unlatch before though by setting another OID. */
#if 0
void
mgt_unlatch_all(islpci_private *priv)
{
u32 u;
int rvalue = 0;
if (islpci_get_state(priv) < PRV_STATE_INIT)
return;
u = DOT11_OID_SSID;
rvalue = mgt_commit_list(priv, &u, 1);
/* Necessary if in MANUAL RUN mode? */
#if 0
u = OID_INL_MODE;
rvalue |= mgt_commit_list(priv, &u, 1);
u = DOT11_OID_MLMEAUTOLEVEL;
rvalue |= mgt_commit_list(priv, &u, 1);
u = OID_INL_MODE;
rvalue |= mgt_commit_list(priv, &u, 1);
#endif
if (rvalue)
printk(KERN_DEBUG "%s: Unlatching OIDs failed\n", priv->ndev->name);
}
#endif
/* This will tell you if you are allowed to answer a mlme(ex) request .*/
int
mgt_mlme_answer(islpci_private *priv)
{
u32 mlmeautolevel;
/* Acquire a read lock because if we are in a mode change, it's
* possible to answer true, while the card is leaving master to managed
* mode. Answering to a mlme in this situation could hang the card.
*/
down_read(&priv->mib_sem);
mlmeautolevel =
le32_to_cpu(*(u32 *) priv->mib[DOT11_OID_MLMEAUTOLEVEL]);
up_read(&priv->mib_sem);
return ((priv->iw_mode == IW_MODE_MASTER) &&
(mlmeautolevel >= DOT11_MLME_INTERMEDIATE));
}
enum oid_num_t
mgt_oidtonum(u32 oid)
{
int i;
for (i = 0; i < OID_NUM_LAST; i++)
if (isl_oid[i].oid == oid)
return i;
printk(KERN_DEBUG "looking for an unknown oid 0x%x", oid);
return OID_NUM_LAST;
}
int
mgt_response_to_str(enum oid_num_t n, union oid_res_t *r, char *str)
{
switch (isl_oid[n].flags & OID_FLAG_TYPE) {
case OID_TYPE_U32:
return snprintf(str, PRIV_STR_SIZE, "%u\n", r->u);
break;
case OID_TYPE_BUFFER:{
struct obj_buffer *buff = r->ptr;
return snprintf(str, PRIV_STR_SIZE,
"size=%u\naddr=0x%X\n", buff->size,
buff->addr);
}
break;
case OID_TYPE_BSS:{
struct obj_bss *bss = r->ptr;
return snprintf(str, PRIV_STR_SIZE,
"age=%u\nchannel=%u\n"
"capinfo=0x%X\nrates=0x%X\n"
"basic_rates=0x%X\n", bss->age,
bss->channel, bss->capinfo,
bss->rates, bss->basic_rates);
}
break;
case OID_TYPE_BSSLIST:{
struct obj_bsslist *list = r->ptr;
int i, k;
k = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", list->nr);
for (i = 0; i < list->nr; i++)
k += snprintf(str + k, PRIV_STR_SIZE - k,
"bss[%u] :\nage=%u\nchannel=%u\n"
"capinfo=0x%X\nrates=0x%X\n"
"basic_rates=0x%X\n",
i, list->bsslist[i].age,
list->bsslist[i].channel,
list->bsslist[i].capinfo,
list->bsslist[i].rates,
list->bsslist[i].basic_rates);
return k;
}
break;
case OID_TYPE_FREQUENCIES:{
struct obj_frequencies *freq = r->ptr;
int i, t;
printk("nr : %u\n", freq->nr);
t = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", freq->nr);
for (i = 0; i < freq->nr; i++)
t += snprintf(str + t, PRIV_STR_SIZE - t,
"mhz[%u]=%u\n", i, freq->mhz[i]);
return t;
}
break;
case OID_TYPE_MLME:{
struct obj_mlme *mlme = r->ptr;
return snprintf(str, PRIV_STR_SIZE,
"id=0x%X\nstate=0x%X\ncode=0x%X\n",
mlme->id, mlme->state, mlme->code);
}
break;
case OID_TYPE_MLMEEX:{
struct obj_mlmeex *mlme = r->ptr;
return snprintf(str, PRIV_STR_SIZE,
"id=0x%X\nstate=0x%X\n"
"code=0x%X\nsize=0x%X\n", mlme->id,
mlme->state, mlme->code, mlme->size);
}
break;
case OID_TYPE_ATTACH:{
struct obj_attachment *attach = r->ptr;
return snprintf(str, PRIV_STR_SIZE,
"id=%d\nsize=%d\n",
attach->id,
attach->size);
}
break;
case OID_TYPE_SSID:{
struct obj_ssid *ssid = r->ptr;
return snprintf(str, PRIV_STR_SIZE,
"length=%u\noctets=%.*s\n",
ssid->length, ssid->length,
ssid->octets);
}
break;
case OID_TYPE_KEY:{
struct obj_key *key = r->ptr;
int t, i;
t = snprintf(str, PRIV_STR_SIZE,
"type=0x%X\nlength=0x%X\nkey=0x",
key->type, key->length);
for (i = 0; i < key->length; i++)
t += snprintf(str + t, PRIV_STR_SIZE - t,
"%02X:", key->key[i]);
t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
return t;
}
break;
case OID_TYPE_RAW:
case OID_TYPE_ADDR:{
unsigned char *buff = r->ptr;
int t, i;
t = snprintf(str, PRIV_STR_SIZE, "hex data=");
for (i = 0; i < isl_oid[n].size; i++)
t += snprintf(str + t, PRIV_STR_SIZE - t,
"%02X:", buff[i]);
t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
return t;
}
break;
default:
BUG();
}
return 0;
}