linux_old1/drivers/hv/hv.c

627 lines
16 KiB
C
Raw Normal View History

/*
* Copyright (c) 2009, Microsoft Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program; if not, write to the Free Software Foundation, Inc., 59 Temple
* Place - Suite 330, Boston, MA 02111-1307 USA.
*
* Authors:
* Haiyang Zhang <haiyangz@microsoft.com>
* Hank Janssen <hjanssen@microsoft.com>
*
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <linux/kernel.h>
#include <linux/mm.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/hyperv.h>
#include <linux/version.h>
#include <linux/interrupt.h>
#include <linux/clockchips.h>
#include <asm/hyperv.h>
#include <asm/mshyperv.h>
#include "hyperv_vmbus.h"
/* The one and only */
struct hv_context hv_context = {
.synic_initialized = false,
.hypercall_page = NULL,
};
#define HV_TIMER_FREQUENCY (10 * 1000 * 1000) /* 100ns period */
#define HV_MAX_MAX_DELTA_TICKS 0xffffffff
#define HV_MIN_DELTA_TICKS 1
/*
* query_hypervisor_info - Get version info of the windows hypervisor
*/
unsigned int host_info_eax;
unsigned int host_info_ebx;
unsigned int host_info_ecx;
unsigned int host_info_edx;
static int query_hypervisor_info(void)
{
unsigned int eax;
unsigned int ebx;
unsigned int ecx;
unsigned int edx;
unsigned int max_leaf;
unsigned int op;
/*
* Its assumed that this is called after confirming that Viridian
* is present. Query id and revision.
*/
eax = 0;
ebx = 0;
ecx = 0;
edx = 0;
op = HVCPUID_VENDOR_MAXFUNCTION;
cpuid(op, &eax, &ebx, &ecx, &edx);
max_leaf = eax;
if (max_leaf >= HVCPUID_VERSION) {
eax = 0;
ebx = 0;
ecx = 0;
edx = 0;
op = HVCPUID_VERSION;
cpuid(op, &eax, &ebx, &ecx, &edx);
host_info_eax = eax;
host_info_ebx = ebx;
host_info_ecx = ecx;
host_info_edx = edx;
}
return max_leaf;
}
/*
* hv_do_hypercall- Invoke the specified hypercall
*/
u64 hv_do_hypercall(u64 control, void *input, void *output)
{
u64 input_address = (input) ? virt_to_phys(input) : 0;
u64 output_address = (output) ? virt_to_phys(output) : 0;
void *hypercall_page = hv_context.hypercall_page;
#ifdef CONFIG_X86_64
u64 hv_status = 0;
if (!hypercall_page)
return (u64)ULLONG_MAX;
__asm__ __volatile__("mov %0, %%r8" : : "r" (output_address) : "r8");
__asm__ __volatile__("call *%3" : "=a" (hv_status) :
"c" (control), "d" (input_address),
"m" (hypercall_page));
return hv_status;
#else
u32 control_hi = control >> 32;
u32 control_lo = control & 0xFFFFFFFF;
u32 hv_status_hi = 1;
u32 hv_status_lo = 1;
u32 input_address_hi = input_address >> 32;
u32 input_address_lo = input_address & 0xFFFFFFFF;
u32 output_address_hi = output_address >> 32;
u32 output_address_lo = output_address & 0xFFFFFFFF;
if (!hypercall_page)
return (u64)ULLONG_MAX;
__asm__ __volatile__ ("call *%8" : "=d"(hv_status_hi),
"=a"(hv_status_lo) : "d" (control_hi),
"a" (control_lo), "b" (input_address_hi),
"c" (input_address_lo), "D"(output_address_hi),
"S"(output_address_lo), "m" (hypercall_page));
return hv_status_lo | ((u64)hv_status_hi << 32);
#endif /* !x86_64 */
}
EXPORT_SYMBOL_GPL(hv_do_hypercall);
#ifdef CONFIG_X86_64
static u64 read_hv_clock_tsc(struct clocksource *arg)
{
u64 current_tick;
struct ms_hyperv_tsc_page *tsc_pg = hv_context.tsc_page;
drivers/hv: correct tsc page sequence invalid value Hypervisor Top Level Functional Specification v3/4 says that TSC page sequence value = -1(0xFFFFFFFF) is used to indicate that TSC page no longer reliable source of reference timer. Unfortunately, we found that Windows Hyper-V guest side implementation uses sequence value = 0 to indicate that Tsc page no longer valid. This is clearly visible inside Windows 2012R2 ntoskrnl.exe HvlGetReferenceTime() function dissassembly: HvlGetReferenceTime proc near xchg ax, ax loc_1401C3132: mov rax, cs:HvlpReferenceTscPage mov r9d, [rax] test r9d, r9d jz short loc_1401C3176 rdtsc mov rcx, cs:HvlpReferenceTscPage shl rdx, 20h or rdx, rax mov rax, [rcx+8] mov rcx, cs:HvlpReferenceTscPage mov r8, [rcx+10h] mul rdx mov rax, cs:HvlpReferenceTscPage add rdx, r8 mov ecx, [rax] cmp ecx, r9d jnz short loc_1401C3132 jmp short loc_1401C3184 loc_1401C3176: mov ecx, 40000020h rdmsr shl rdx, 20h or rdx, rax loc_1401C3184: mov rax, rdx retn HvlGetReferenceTime endp This patch aligns Tsc page invalid sequence value with Windows Hyper-V guest implementation which is more compatible with both Hyper-V hypervisor and KVM hypervisor. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: "K. Y. Srinivasan" <kys@microsoft.com> CC: Haiyang Zhang <haiyangz@microsoft.com> CC: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Denis V. Lunev <den@openvz.org> Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-12-15 08:01:55 +08:00
if (tsc_pg->tsc_sequence != 0) {
/*
* Use the tsc page to compute the value.
*/
while (1) {
u64 tmp;
u32 sequence = tsc_pg->tsc_sequence;
u64 cur_tsc;
u64 scale = tsc_pg->tsc_scale;
s64 offset = tsc_pg->tsc_offset;
rdtscll(cur_tsc);
/* current_tick = ((cur_tsc *scale) >> 64) + offset */
asm("mulq %3"
: "=d" (current_tick), "=a" (tmp)
: "a" (cur_tsc), "r" (scale));
current_tick += offset;
if (tsc_pg->tsc_sequence == sequence)
return current_tick;
drivers/hv: correct tsc page sequence invalid value Hypervisor Top Level Functional Specification v3/4 says that TSC page sequence value = -1(0xFFFFFFFF) is used to indicate that TSC page no longer reliable source of reference timer. Unfortunately, we found that Windows Hyper-V guest side implementation uses sequence value = 0 to indicate that Tsc page no longer valid. This is clearly visible inside Windows 2012R2 ntoskrnl.exe HvlGetReferenceTime() function dissassembly: HvlGetReferenceTime proc near xchg ax, ax loc_1401C3132: mov rax, cs:HvlpReferenceTscPage mov r9d, [rax] test r9d, r9d jz short loc_1401C3176 rdtsc mov rcx, cs:HvlpReferenceTscPage shl rdx, 20h or rdx, rax mov rax, [rcx+8] mov rcx, cs:HvlpReferenceTscPage mov r8, [rcx+10h] mul rdx mov rax, cs:HvlpReferenceTscPage add rdx, r8 mov ecx, [rax] cmp ecx, r9d jnz short loc_1401C3132 jmp short loc_1401C3184 loc_1401C3176: mov ecx, 40000020h rdmsr shl rdx, 20h or rdx, rax loc_1401C3184: mov rax, rdx retn HvlGetReferenceTime endp This patch aligns Tsc page invalid sequence value with Windows Hyper-V guest implementation which is more compatible with both Hyper-V hypervisor and KVM hypervisor. Signed-off-by: Andrey Smetanin <asmetanin@virtuozzo.com> Signed-off-by: Denis V. Lunev <den@openvz.org> CC: "K. Y. Srinivasan" <kys@microsoft.com> CC: Haiyang Zhang <haiyangz@microsoft.com> CC: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: Denis V. Lunev <den@openvz.org> Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-12-15 08:01:55 +08:00
if (tsc_pg->tsc_sequence != 0)
continue;
/*
* Fallback using MSR method.
*/
break;
}
}
rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
return current_tick;
}
static struct clocksource hyperv_cs_tsc = {
.name = "hyperv_clocksource_tsc_page",
.rating = 425,
.read = read_hv_clock_tsc,
.mask = CLOCKSOURCE_MASK(64),
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
#endif
/*
* hv_init - Main initialization routine.
*
* This routine must be called before any other routines in here are called
*/
int hv_init(void)
{
int max_leaf;
union hv_x64_msr_hypercall_contents hypercall_msr;
void *virtaddr = NULL;
memset(hv_context.synic_event_page, 0, sizeof(void *) * NR_CPUS);
memset(hv_context.synic_message_page, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.post_msg_page, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.vp_index, 0,
sizeof(int) * NR_CPUS);
memset(hv_context.event_dpc, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.msg_dpc, 0,
sizeof(void *) * NR_CPUS);
memset(hv_context.clk_evt, 0,
sizeof(void *) * NR_CPUS);
max_leaf = query_hypervisor_info();
/*
* Write our OS ID.
*/
hv_context.guestid = generate_guest_id(0, LINUX_VERSION_CODE, 0);
wrmsrl(HV_X64_MSR_GUEST_OS_ID, hv_context.guestid);
/* See if the hypercall page is already set */
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
virtaddr = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL_EXEC);
if (!virtaddr)
goto cleanup;
hypercall_msr.enable = 1;
hypercall_msr.guest_physical_address = vmalloc_to_pfn(virtaddr);
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
/* Confirm that hypercall page did get setup. */
hypercall_msr.as_uint64 = 0;
rdmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
if (!hypercall_msr.enable)
goto cleanup;
hv_context.hypercall_page = virtaddr;
#ifdef CONFIG_X86_64
if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
union hv_x64_msr_hypercall_contents tsc_msr;
void *va_tsc;
va_tsc = __vmalloc(PAGE_SIZE, GFP_KERNEL, PAGE_KERNEL);
if (!va_tsc)
goto cleanup;
hv_context.tsc_page = va_tsc;
rdmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
tsc_msr.enable = 1;
tsc_msr.guest_physical_address = vmalloc_to_pfn(va_tsc);
wrmsrl(HV_X64_MSR_REFERENCE_TSC, tsc_msr.as_uint64);
clocksource_register_hz(&hyperv_cs_tsc, NSEC_PER_SEC/100);
}
#endif
return 0;
cleanup:
if (virtaddr) {
if (hypercall_msr.enable) {
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
}
vfree(virtaddr);
}
return -ENOTSUPP;
}
/*
* hv_cleanup - Cleanup routine.
*
* This routine is called normally during driver unloading or exiting.
*/
void hv_cleanup(bool crash)
{
union hv_x64_msr_hypercall_contents hypercall_msr;
/* Reset our OS id */
wrmsrl(HV_X64_MSR_GUEST_OS_ID, 0);
if (hv_context.hypercall_page) {
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_HYPERCALL, hypercall_msr.as_uint64);
if (!crash)
vfree(hv_context.hypercall_page);
hv_context.hypercall_page = NULL;
}
#ifdef CONFIG_X86_64
/*
* Cleanup the TSC page based CS.
*/
if (ms_hyperv.features & HV_X64_MSR_REFERENCE_TSC_AVAILABLE) {
/*
* Crash can happen in an interrupt context and unregistering
* a clocksource is impossible and redundant in this case.
*/
if (!oops_in_progress) {
clocksource_change_rating(&hyperv_cs_tsc, 10);
clocksource_unregister(&hyperv_cs_tsc);
}
hypercall_msr.as_uint64 = 0;
wrmsrl(HV_X64_MSR_REFERENCE_TSC, hypercall_msr.as_uint64);
if (!crash)
vfree(hv_context.tsc_page);
hv_context.tsc_page = NULL;
}
#endif
}
/*
* hv_post_message - Post a message using the hypervisor message IPC.
*
* This involves a hypercall.
*/
int hv_post_message(union hv_connection_id connection_id,
enum hv_message_type message_type,
void *payload, size_t payload_size)
{
struct hv_input_post_message *aligned_msg;
u64 status;
if (payload_size > HV_MESSAGE_PAYLOAD_BYTE_COUNT)
return -EMSGSIZE;
aligned_msg = (struct hv_input_post_message *)
hv_context.post_msg_page[get_cpu()];
aligned_msg->connectionid = connection_id;
aligned_msg->reserved = 0;
aligned_msg->message_type = message_type;
aligned_msg->payload_size = payload_size;
memcpy((void *)aligned_msg->payload, payload, payload_size);
status = hv_do_hypercall(HVCALL_POST_MESSAGE, aligned_msg, NULL);
put_cpu();
return status & 0xFFFF;
}
static int hv_ce_set_next_event(unsigned long delta,
struct clock_event_device *evt)
{
u64 current_tick;
WARN_ON(!clockevent_state_oneshot(evt));
rdmsrl(HV_X64_MSR_TIME_REF_COUNT, current_tick);
current_tick += delta;
wrmsrl(HV_X64_MSR_STIMER0_COUNT, current_tick);
return 0;
}
static int hv_ce_shutdown(struct clock_event_device *evt)
{
wrmsrl(HV_X64_MSR_STIMER0_COUNT, 0);
wrmsrl(HV_X64_MSR_STIMER0_CONFIG, 0);
return 0;
}
static int hv_ce_set_oneshot(struct clock_event_device *evt)
{
union hv_timer_config timer_cfg;
timer_cfg.enable = 1;
timer_cfg.auto_enable = 1;
timer_cfg.sintx = VMBUS_MESSAGE_SINT;
wrmsrl(HV_X64_MSR_STIMER0_CONFIG, timer_cfg.as_uint64);
return 0;
}
static void hv_init_clockevent_device(struct clock_event_device *dev, int cpu)
{
dev->name = "Hyper-V clockevent";
dev->features = CLOCK_EVT_FEAT_ONESHOT;
dev->cpumask = cpumask_of(cpu);
dev->rating = 1000;
/*
* Avoid settint dev->owner = THIS_MODULE deliberately as doing so will
* result in clockevents_config_and_register() taking additional
* references to the hv_vmbus module making it impossible to unload.
*/
dev->set_state_shutdown = hv_ce_shutdown;
dev->set_state_oneshot = hv_ce_set_oneshot;
dev->set_next_event = hv_ce_set_next_event;
}
int hv_synic_alloc(void)
{
size_t size = sizeof(struct tasklet_struct);
size_t ced_size = sizeof(struct clock_event_device);
int cpu;
hv_context.hv_numa_map = kzalloc(sizeof(struct cpumask) * nr_node_ids,
GFP_ATOMIC);
if (hv_context.hv_numa_map == NULL) {
pr_err("Unable to allocate NUMA map\n");
goto err;
}
for_each_online_cpu(cpu) {
hv_context.event_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
if (hv_context.event_dpc[cpu] == NULL) {
pr_err("Unable to allocate event dpc\n");
goto err;
}
tasklet_init(hv_context.event_dpc[cpu], vmbus_on_event, cpu);
hv_context.msg_dpc[cpu] = kmalloc(size, GFP_ATOMIC);
if (hv_context.msg_dpc[cpu] == NULL) {
pr_err("Unable to allocate event dpc\n");
goto err;
}
tasklet_init(hv_context.msg_dpc[cpu], vmbus_on_msg_dpc, cpu);
hv_context.clk_evt[cpu] = kzalloc(ced_size, GFP_ATOMIC);
if (hv_context.clk_evt[cpu] == NULL) {
pr_err("Unable to allocate clock event device\n");
goto err;
}
hv_init_clockevent_device(hv_context.clk_evt[cpu], cpu);
hv_context.synic_message_page[cpu] =
(void *)get_zeroed_page(GFP_ATOMIC);
if (hv_context.synic_message_page[cpu] == NULL) {
pr_err("Unable to allocate SYNIC message page\n");
goto err;
}
hv_context.synic_event_page[cpu] =
(void *)get_zeroed_page(GFP_ATOMIC);
if (hv_context.synic_event_page[cpu] == NULL) {
pr_err("Unable to allocate SYNIC event page\n");
goto err;
}
hv_context.post_msg_page[cpu] =
(void *)get_zeroed_page(GFP_ATOMIC);
if (hv_context.post_msg_page[cpu] == NULL) {
pr_err("Unable to allocate post msg page\n");
goto err;
}
}
return 0;
err:
return -ENOMEM;
}
static void hv_synic_free_cpu(int cpu)
{
kfree(hv_context.event_dpc[cpu]);
kfree(hv_context.msg_dpc[cpu]);
kfree(hv_context.clk_evt[cpu]);
if (hv_context.synic_event_page[cpu])
free_page((unsigned long)hv_context.synic_event_page[cpu]);
if (hv_context.synic_message_page[cpu])
free_page((unsigned long)hv_context.synic_message_page[cpu]);
if (hv_context.post_msg_page[cpu])
free_page((unsigned long)hv_context.post_msg_page[cpu]);
}
void hv_synic_free(void)
{
int cpu;
kfree(hv_context.hv_numa_map);
for_each_online_cpu(cpu)
hv_synic_free_cpu(cpu);
}
/*
* hv_synic_init - Initialize the Synthethic Interrupt Controller.
*
* If it is already initialized by another entity (ie x2v shim), we need to
* retrieve the initialized message and event pages. Otherwise, we create and
* initialize the message and event pages.
*/
void hv_synic_init(void *arg)
{
u64 version;
union hv_synic_simp simp;
union hv_synic_siefp siefp;
union hv_synic_sint shared_sint;
union hv_synic_scontrol sctrl;
u64 vp_index;
int cpu = smp_processor_id();
if (!hv_context.hypercall_page)
return;
/* Check the version */
rdmsrl(HV_X64_MSR_SVERSION, version);
/* Setup the Synic's message page */
rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
simp.simp_enabled = 1;
simp.base_simp_gpa = virt_to_phys(hv_context.synic_message_page[cpu])
>> PAGE_SHIFT;
wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
/* Setup the Synic's event page */
rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
siefp.siefp_enabled = 1;
siefp.base_siefp_gpa = virt_to_phys(hv_context.synic_event_page[cpu])
>> PAGE_SHIFT;
wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
/* Setup the shared SINT. */
rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
shared_sint.as_uint64 = 0;
shared_sint.vector = HYPERVISOR_CALLBACK_VECTOR;
shared_sint.masked = false;
shared_sint.auto_eoi = true;
wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
/* Enable the global synic bit */
rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
sctrl.enable = 1;
wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
hv_context.synic_initialized = true;
/*
* Setup the mapping between Hyper-V's notion
* of cpuid and Linux' notion of cpuid.
* This array will be indexed using Linux cpuid.
*/
rdmsrl(HV_X64_MSR_VP_INDEX, vp_index);
hv_context.vp_index[cpu] = (u32)vp_index;
INIT_LIST_HEAD(&hv_context.percpu_list[cpu]);
/*
* Register the per-cpu clockevent source.
*/
if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE)
clockevents_config_and_register(hv_context.clk_evt[cpu],
HV_TIMER_FREQUENCY,
HV_MIN_DELTA_TICKS,
HV_MAX_MAX_DELTA_TICKS);
return;
}
/*
* hv_synic_clockevents_cleanup - Cleanup clockevent devices
*/
void hv_synic_clockevents_cleanup(void)
{
int cpu;
if (!(ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE))
return;
for_each_present_cpu(cpu)
clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
}
/*
* hv_synic_cleanup - Cleanup routine for hv_synic_init().
*/
void hv_synic_cleanup(void *arg)
{
union hv_synic_sint shared_sint;
union hv_synic_simp simp;
union hv_synic_siefp siefp;
drivers: hv: vmbus: Teardown synthetic interrupt controllers on module unload SynIC has to be switched off when we unload the module, otherwise registered memory pages can get corrupted after (as Hyper-V host still writes there) and we see the following crashes for random processes: [ 89.116774] BUG: Bad page map in process sh pte:4989c716 pmd:36f81067 [ 89.159454] addr:0000000000437000 vm_flags:00000875 anon_vma: (null) mapping:ffff88007bba55a0 index:37 [ 89.226146] vma->vm_ops->fault: filemap_fault+0x0/0x410 [ 89.257776] vma->vm_file->f_op->mmap: generic_file_mmap+0x0/0x60 [ 89.297570] CPU: 0 PID: 215 Comm: sh Tainted: G B 3.19.0-rc5_bug923184+ #488 [ 89.353738] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090006 05/23/2012 [ 89.409138] 0000000000000000 000000004e083d7b ffff880036e9fa18 ffffffff81a68d31 [ 89.468724] 0000000000000000 0000000000437000 ffff880036e9fa68 ffffffff811a1e3a [ 89.519233] 000000004989c716 0000000000000037 ffffea0001edc340 0000000000437000 [ 89.575751] Call Trace: [ 89.591060] [<ffffffff81a68d31>] dump_stack+0x45/0x57 [ 89.625164] [<ffffffff811a1e3a>] print_bad_pte+0x1aa/0x250 [ 89.667234] [<ffffffff811a2c95>] vm_normal_page+0x55/0xa0 [ 89.703818] [<ffffffff811a3105>] unmap_page_range+0x425/0x8a0 [ 89.737982] [<ffffffff811a3601>] unmap_single_vma+0x81/0xf0 [ 89.780385] [<ffffffff81184320>] ? lru_deactivate_fn+0x190/0x190 [ 89.820130] [<ffffffff811a4131>] unmap_vmas+0x51/0xa0 [ 89.860168] [<ffffffff811ad12c>] exit_mmap+0xac/0x1a0 [ 89.890588] [<ffffffff810763c3>] mmput+0x63/0x100 [ 89.919205] [<ffffffff811eba48>] flush_old_exec+0x3f8/0x8b0 [ 89.962135] [<ffffffff8123b5bb>] load_elf_binary+0x32b/0x1260 [ 89.998581] [<ffffffff811a14f2>] ? get_user_pages+0x52/0x60 hv_synic_cleanup() function exists but noone calls it now. Do the following: - call hv_synic_cleanup() on each cpu from vmbus_exit(); - write global disable bit through MSR; - use hv_synic_free_cpu() to avoid memory leask and code duplication. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-02-28 03:25:55 +08:00
union hv_synic_scontrol sctrl;
int cpu = smp_processor_id();
if (!hv_context.synic_initialized)
return;
/* Turn off clockevent device */
if (ms_hyperv.features & HV_X64_MSR_SYNTIMER_AVAILABLE) {
clockevents_unbind_device(hv_context.clk_evt[cpu], cpu);
hv_ce_shutdown(hv_context.clk_evt[cpu]);
}
rdmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
shared_sint.masked = 1;
/* Need to correctly cleanup in the case of SMP!!! */
/* Disable the interrupt */
wrmsrl(HV_X64_MSR_SINT0 + VMBUS_MESSAGE_SINT, shared_sint.as_uint64);
rdmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
simp.simp_enabled = 0;
simp.base_simp_gpa = 0;
wrmsrl(HV_X64_MSR_SIMP, simp.as_uint64);
rdmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
siefp.siefp_enabled = 0;
siefp.base_siefp_gpa = 0;
wrmsrl(HV_X64_MSR_SIEFP, siefp.as_uint64);
drivers: hv: vmbus: Teardown synthetic interrupt controllers on module unload SynIC has to be switched off when we unload the module, otherwise registered memory pages can get corrupted after (as Hyper-V host still writes there) and we see the following crashes for random processes: [ 89.116774] BUG: Bad page map in process sh pte:4989c716 pmd:36f81067 [ 89.159454] addr:0000000000437000 vm_flags:00000875 anon_vma: (null) mapping:ffff88007bba55a0 index:37 [ 89.226146] vma->vm_ops->fault: filemap_fault+0x0/0x410 [ 89.257776] vma->vm_file->f_op->mmap: generic_file_mmap+0x0/0x60 [ 89.297570] CPU: 0 PID: 215 Comm: sh Tainted: G B 3.19.0-rc5_bug923184+ #488 [ 89.353738] Hardware name: Microsoft Corporation Virtual Machine/Virtual Machine, BIOS 090006 05/23/2012 [ 89.409138] 0000000000000000 000000004e083d7b ffff880036e9fa18 ffffffff81a68d31 [ 89.468724] 0000000000000000 0000000000437000 ffff880036e9fa68 ffffffff811a1e3a [ 89.519233] 000000004989c716 0000000000000037 ffffea0001edc340 0000000000437000 [ 89.575751] Call Trace: [ 89.591060] [<ffffffff81a68d31>] dump_stack+0x45/0x57 [ 89.625164] [<ffffffff811a1e3a>] print_bad_pte+0x1aa/0x250 [ 89.667234] [<ffffffff811a2c95>] vm_normal_page+0x55/0xa0 [ 89.703818] [<ffffffff811a3105>] unmap_page_range+0x425/0x8a0 [ 89.737982] [<ffffffff811a3601>] unmap_single_vma+0x81/0xf0 [ 89.780385] [<ffffffff81184320>] ? lru_deactivate_fn+0x190/0x190 [ 89.820130] [<ffffffff811a4131>] unmap_vmas+0x51/0xa0 [ 89.860168] [<ffffffff811ad12c>] exit_mmap+0xac/0x1a0 [ 89.890588] [<ffffffff810763c3>] mmput+0x63/0x100 [ 89.919205] [<ffffffff811eba48>] flush_old_exec+0x3f8/0x8b0 [ 89.962135] [<ffffffff8123b5bb>] load_elf_binary+0x32b/0x1260 [ 89.998581] [<ffffffff811a14f2>] ? get_user_pages+0x52/0x60 hv_synic_cleanup() function exists but noone calls it now. Do the following: - call hv_synic_cleanup() on each cpu from vmbus_exit(); - write global disable bit through MSR; - use hv_synic_free_cpu() to avoid memory leask and code duplication. Signed-off-by: Vitaly Kuznetsov <vkuznets@redhat.com> Signed-off-by: K. Y. Srinivasan <kys@microsoft.com> Signed-off-by: Greg Kroah-Hartman <gregkh@linuxfoundation.org>
2015-02-28 03:25:55 +08:00
/* Disable the global synic bit */
rdmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
sctrl.enable = 0;
wrmsrl(HV_X64_MSR_SCONTROL, sctrl.as_uint64);
}