linux_old1/drivers/net/wireless/ath/ath9k/ar9003_phy.c

727 lines
20 KiB
C
Raw Normal View History

/*
* Copyright (c) 2010 Atheros Communications Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
#include "hw.h"
#include "ar9003_phy.h"
/**
* ar9003_hw_set_channel - set channel on single-chip device
* @ah: atheros hardware structure
* @chan:
*
* This is the function to change channel on single-chip devices, that is
* all devices after ar9280.
*
* This function takes the channel value in MHz and sets
* hardware channel value. Assumes writes have been enabled to analog bus.
*
* Actual Expression,
*
* For 2GHz channel,
* Channel Frequency = (3/4) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*
* For 5GHz channel,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^10)
* (freq_ref = 40MHz/(24>>amodeRefSel))
*
* For 5GHz channels which are 5MHz spaced,
* Channel Frequency = (3/2) * freq_ref * (chansel[8:0] + chanfrac[16:0]/2^17)
* (freq_ref = 40MHz)
*/
static int ar9003_hw_set_channel(struct ath_hw *ah, struct ath9k_channel *chan)
{
u16 bMode, fracMode = 0, aModeRefSel = 0;
u32 freq, channelSel = 0, reg32 = 0;
struct chan_centers centers;
int loadSynthChannel;
ath9k_hw_get_channel_centers(ah, chan, &centers);
freq = centers.synth_center;
if (freq < 4800) { /* 2 GHz, fractional mode */
channelSel = CHANSEL_2G(freq);
/* Set to 2G mode */
bMode = 1;
} else {
channelSel = CHANSEL_5G(freq);
/* Doubler is ON, so, divide channelSel by 2. */
channelSel >>= 1;
/* Set to 5G mode */
bMode = 0;
}
/* Enable fractional mode for all channels */
fracMode = 1;
aModeRefSel = 0;
loadSynthChannel = 0;
reg32 = (bMode << 29);
REG_WRITE(ah, AR_PHY_SYNTH_CONTROL, reg32);
/* Enable Long shift Select for Synthesizer */
REG_RMW_FIELD(ah, AR_PHY_65NM_CH0_SYNTH4,
AR_PHY_SYNTH4_LONG_SHIFT_SELECT, 1);
/* Program Synth. setting */
reg32 = (channelSel << 2) | (fracMode << 30) |
(aModeRefSel << 28) | (loadSynthChannel << 31);
REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
/* Toggle Load Synth channel bit */
loadSynthChannel = 1;
reg32 = (channelSel << 2) | (fracMode << 30) |
(aModeRefSel << 28) | (loadSynthChannel << 31);
REG_WRITE(ah, AR_PHY_65NM_CH0_SYNTH7, reg32);
ah->curchan = chan;
ah->curchan_rad_index = -1;
return 0;
}
/**
* ar9003_hw_spur_mitigate - convert baseband spur frequency
* @ah: atheros hardware structure
* @chan:
*
* For single-chip solutions. Converts to baseband spur frequency given the
* input channel frequency and compute register settings below.
*
* Spur mitigation for MRC CCK
*/
static void ar9003_hw_spur_mitigate(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 spur_freq[4] = { 2420, 2440, 2464, 2480 };
int cur_bb_spur, negative = 0, cck_spur_freq;
int i;
/*
* Need to verify range +/- 10 MHz in control channel, otherwise spur
* is out-of-band and can be ignored.
*/
for (i = 0; i < 4; i++) {
negative = 0;
cur_bb_spur = spur_freq[i] - chan->channel;
if (cur_bb_spur < 0) {
negative = 1;
cur_bb_spur = -cur_bb_spur;
}
if (cur_bb_spur < 10) {
cck_spur_freq = (int)((cur_bb_spur << 19) / 11);
if (negative == 1)
cck_spur_freq = -cck_spur_freq;
cck_spur_freq = cck_spur_freq & 0xfffff;
REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_YCOK_MAX, 0x7);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_SPUR_RSSI_THR, 0x7f);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_SPUR_FILTER_TYPE,
0x2);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT,
0x1);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ,
cck_spur_freq);
return;
}
}
REG_RMW_FIELD(ah, AR_PHY_AGC_CONTROL,
AR_PHY_AGC_CONTROL_YCOK_MAX, 0x5);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_USE_CCK_SPUR_MIT, 0x0);
REG_RMW_FIELD(ah, AR_PHY_CCK_SPUR_MIT,
AR_PHY_CCK_SPUR_MIT_CCK_SPUR_FREQ, 0x0);
}
static u32 ar9003_hw_compute_pll_control(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 pll;
pll = SM(0x5, AR_RTC_9300_PLL_REFDIV);
if (chan && IS_CHAN_HALF_RATE(chan))
pll |= SM(0x1, AR_RTC_9300_PLL_CLKSEL);
else if (chan && IS_CHAN_QUARTER_RATE(chan))
pll |= SM(0x2, AR_RTC_9300_PLL_CLKSEL);
if (chan && IS_CHAN_5GHZ(chan)) {
pll |= SM(0x28, AR_RTC_9300_PLL_DIV);
/*
* When doing fast clock, set PLL to 0x142c
*/
if (IS_CHAN_A_5MHZ_SPACED(chan))
pll = 0x142c;
} else
pll |= SM(0x2c, AR_RTC_9300_PLL_DIV);
return pll;
}
static void ar9003_hw_set_channel_regs(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 phymode;
u32 enableDacFifo = 0;
enableDacFifo =
(REG_READ(ah, AR_PHY_GEN_CTRL) & AR_PHY_GC_ENABLE_DAC_FIFO);
/* Enable 11n HT, 20 MHz */
phymode = AR_PHY_GC_HT_EN | AR_PHY_GC_SINGLE_HT_LTF1 | AR_PHY_GC_WALSH |
AR_PHY_GC_SHORT_GI_40 | enableDacFifo;
/* Configure baseband for dynamic 20/40 operation */
if (IS_CHAN_HT40(chan)) {
phymode |= AR_PHY_GC_DYN2040_EN;
/* Configure control (primary) channel at +-10MHz */
if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
(chan->chanmode == CHANNEL_G_HT40PLUS))
phymode |= AR_PHY_GC_DYN2040_PRI_CH;
}
/* make sure we preserve INI settings */
phymode |= REG_READ(ah, AR_PHY_GEN_CTRL);
/* turn off Green Field detection for STA for now */
phymode &= ~AR_PHY_GC_GF_DETECT_EN;
REG_WRITE(ah, AR_PHY_GEN_CTRL, phymode);
/* Configure MAC for 20/40 operation */
ath9k_hw_set11nmac2040(ah);
/* global transmit timeout (25 TUs default)*/
REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
/* carrier sense timeout */
REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
}
static void ar9003_hw_init_bb(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 synthDelay;
/*
* Wait for the frequency synth to settle (synth goes on
* via AR_PHY_ACTIVE_EN). Read the phy active delay register.
* Value is in 100ns increments.
*/
synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(chan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
/* Activate the PHY (includes baseband activate + synthesizer on) */
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
/*
* There is an issue if the AP starts the calibration before
* the base band timeout completes. This could result in the
* rx_clear false triggering. As a workaround we add delay an
* extra BASE_ACTIVATE_DELAY usecs to ensure this condition
* does not happen.
*/
udelay(synthDelay + BASE_ACTIVATE_DELAY);
}
void ar9003_hw_set_chain_masks(struct ath_hw *ah, u8 rx, u8 tx)
{
switch (rx) {
case 0x5:
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
case 0x3:
case 0x1:
case 0x2:
case 0x7:
REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx);
REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx);
break;
default:
break;
}
REG_WRITE(ah, AR_SELFGEN_MASK, tx);
if (tx == 0x5) {
REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
AR_PHY_SWAP_ALT_CHAIN);
}
}
/*
* Override INI values with chip specific configuration.
*/
static void ar9003_hw_override_ini(struct ath_hw *ah)
{
u32 val;
/*
* Set the RX_ABORT and RX_DIS and clear it only after
* RXE is set for MAC. This prevents frames with
* corrupted descriptor status.
*/
REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
/*
* For AR9280 and above, there is a new feature that allows
* Multicast search based on both MAC Address and Key ID. By default,
* this feature is enabled. But since the driver is not using this
* feature, we switch it off; otherwise multicast search based on
* MAC addr only will fail.
*/
val = REG_READ(ah, AR_PCU_MISC_MODE2) & (~AR_ADHOC_MCAST_KEYID_ENABLE);
REG_WRITE(ah, AR_PCU_MISC_MODE2,
val | AR_AGG_WEP_ENABLE_FIX | AR_AGG_WEP_ENABLE);
}
static void ar9003_hw_prog_ini(struct ath_hw *ah,
struct ar5416IniArray *iniArr,
int column)
{
unsigned int i, regWrites = 0;
/* New INI format: Array may be undefined (pre, core, post arrays) */
if (!iniArr->ia_array)
return;
/*
* New INI format: Pre, core, and post arrays for a given subsystem
* may be modal (> 2 columns) or non-modal (2 columns). Determine if
* the array is non-modal and force the column to 1.
*/
if (column >= iniArr->ia_columns)
column = 1;
for (i = 0; i < iniArr->ia_rows; i++) {
u32 reg = INI_RA(iniArr, i, 0);
u32 val = INI_RA(iniArr, i, column);
REG_WRITE(ah, reg, val);
/*
* Determine if this is a shift register value, and insert the
* configured delay if so.
*/
if (reg >= 0x16000 && reg < 0x17000
&& ah->config.analog_shiftreg)
udelay(100);
DO_DELAY(regWrites);
}
}
static int ar9003_hw_process_ini(struct ath_hw *ah,
struct ath9k_channel *chan)
{
struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
unsigned int regWrites = 0, i;
struct ieee80211_channel *channel = chan->chan;
u32 modesIndex, freqIndex;
switch (chan->chanmode) {
case CHANNEL_A:
case CHANNEL_A_HT20:
modesIndex = 1;
freqIndex = 1;
break;
case CHANNEL_A_HT40PLUS:
case CHANNEL_A_HT40MINUS:
modesIndex = 2;
freqIndex = 1;
break;
case CHANNEL_G:
case CHANNEL_G_HT20:
case CHANNEL_B:
modesIndex = 4;
freqIndex = 2;
break;
case CHANNEL_G_HT40PLUS:
case CHANNEL_G_HT40MINUS:
modesIndex = 3;
freqIndex = 2;
break;
default:
return -EINVAL;
}
for (i = 0; i < ATH_INI_NUM_SPLIT; i++) {
ar9003_hw_prog_ini(ah, &ah->iniSOC[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniMac[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniBB[i], modesIndex);
ar9003_hw_prog_ini(ah, &ah->iniRadio[i], modesIndex);
}
REG_WRITE_ARRAY(&ah->iniModesRxGain, 1, regWrites);
REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
/*
* For 5GHz channels requiring Fast Clock, apply
* different modal values.
*/
if (IS_CHAN_A_5MHZ_SPACED(chan))
REG_WRITE_ARRAY(&ah->iniModesAdditional,
modesIndex, regWrites);
ar9003_hw_override_ini(ah);
ar9003_hw_set_channel_regs(ah, chan);
ar9003_hw_set_chain_masks(ah, ah->rxchainmask, ah->txchainmask);
/* Set TX power */
ah->eep_ops->set_txpower(ah, chan,
ath9k_regd_get_ctl(regulatory, chan),
channel->max_antenna_gain * 2,
channel->max_power * 2,
min((u32) MAX_RATE_POWER,
(u32) regulatory->power_limit));
return 0;
}
static void ar9003_hw_set_rfmode(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 rfMode = 0;
if (chan == NULL)
return;
rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
if (IS_CHAN_A_5MHZ_SPACED(chan))
rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
REG_WRITE(ah, AR_PHY_MODE, rfMode);
}
static void ar9003_hw_mark_phy_inactive(struct ath_hw *ah)
{
REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
}
static void ar9003_hw_set_delta_slope(struct ath_hw *ah,
struct ath9k_channel *chan)
{
u32 coef_scaled, ds_coef_exp, ds_coef_man;
u32 clockMhzScaled = 0x64000000;
struct chan_centers centers;
/*
* half and quarter rate can divide the scaled clock by 2 or 4
* scale for selected channel bandwidth
*/
if (IS_CHAN_HALF_RATE(chan))
clockMhzScaled = clockMhzScaled >> 1;
else if (IS_CHAN_QUARTER_RATE(chan))
clockMhzScaled = clockMhzScaled >> 2;
/*
* ALGO -> coef = 1e8/fcarrier*fclock/40;
* scaled coef to provide precision for this floating calculation
*/
ath9k_hw_get_channel_centers(ah, chan, &centers);
coef_scaled = clockMhzScaled / centers.synth_center;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_TIMING3,
AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
/*
* For Short GI,
* scaled coeff is 9/10 that of normal coeff
*/
coef_scaled = (9 * coef_scaled) / 10;
ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
&ds_coef_exp);
/* for short gi */
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_MAN, ds_coef_man);
REG_RMW_FIELD(ah, AR_PHY_SGI_DELTA,
AR_PHY_SGI_DSC_EXP, ds_coef_exp);
}
static bool ar9003_hw_rfbus_req(struct ath_hw *ah)
{
REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
return ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT);
}
/*
* Wait for the frequency synth to settle (synth goes on via PHY_ACTIVE_EN).
* Read the phy active delay register. Value is in 100ns increments.
*/
static void ar9003_hw_rfbus_done(struct ath_hw *ah)
{
u32 synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
if (IS_CHAN_B(ah->curchan))
synthDelay = (4 * synthDelay) / 22;
else
synthDelay /= 10;
udelay(synthDelay + BASE_ACTIVATE_DELAY);
REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
}
/*
* Set the interrupt and GPIO values so the ISR can disable RF
* on a switch signal. Assumes GPIO port and interrupt polarity
* are set prior to call.
*/
static void ar9003_hw_enable_rfkill(struct ath_hw *ah)
{
/* Connect rfsilent_bb_l to baseband */
REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
/* Set input mux for rfsilent_bb_l to GPIO #0 */
REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
AR_GPIO_INPUT_MUX2_RFSILENT);
/*
* Configure the desired GPIO port for input and
* enable baseband rf silence.
*/
ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
}
static void ar9003_hw_set_diversity(struct ath_hw *ah, bool value)
{
u32 v = REG_READ(ah, AR_PHY_CCK_DETECT);
if (value)
v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
else
v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
}
static bool ar9003_hw_ani_control(struct ath_hw *ah,
enum ath9k_ani_cmd cmd, int param)
{
struct ar5416AniState *aniState = ah->curani;
struct ath_common *common = ath9k_hw_common(ah);
switch (cmd & ah->ani_function) {
case ATH9K_ANI_NOISE_IMMUNITY_LEVEL:{
u32 level = param;
if (level >= ARRAY_SIZE(ah->totalSizeDesired)) {
ath_print(common, ATH_DBG_ANI,
"level out of range (%u > %u)\n",
level,
(unsigned)ARRAY_SIZE(ah->totalSizeDesired));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
AR_PHY_DESIRED_SZ_TOT_DES,
ah->totalSizeDesired[level]);
REG_RMW_FIELD(ah, AR_PHY_AGC,
AR_PHY_AGC_COARSE_LOW,
ah->coarse_low[level]);
REG_RMW_FIELD(ah, AR_PHY_AGC,
AR_PHY_AGC_COARSE_HIGH,
ah->coarse_high[level]);
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRPWR, ah->firpwr[level]);
if (level > aniState->noiseImmunityLevel)
ah->stats.ast_ani_niup++;
else if (level < aniState->noiseImmunityLevel)
ah->stats.ast_ani_nidown++;
aniState->noiseImmunityLevel = level;
break;
}
case ATH9K_ANI_OFDM_WEAK_SIGNAL_DETECTION:{
const int m1ThreshLow[] = { 127, 50 };
const int m2ThreshLow[] = { 127, 40 };
const int m1Thresh[] = { 127, 0x4d };
const int m2Thresh[] = { 127, 0x40 };
const int m2CountThr[] = { 31, 16 };
const int m2CountThrLow[] = { 63, 48 };
u32 on = param ? 1 : 0;
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M1_THRESH_LOW,
m1ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2_THRESH_LOW,
m2ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M1_THRESH, m1Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2_THRESH, m2Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR,
AR_PHY_SFCORR_M2COUNT_THR, m2CountThr[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_M2COUNT_THR_LOW,
m2CountThrLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH_LOW, m1ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH_LOW, m2ThreshLow[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M1_THRESH, m1Thresh[on]);
REG_RMW_FIELD(ah, AR_PHY_SFCORR_EXT,
AR_PHY_SFCORR_EXT_M2_THRESH, m2Thresh[on]);
if (on)
REG_SET_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
else
REG_CLR_BIT(ah, AR_PHY_SFCORR_LOW,
AR_PHY_SFCORR_LOW_USE_SELF_CORR_LOW);
if (!on != aniState->ofdmWeakSigDetectOff) {
if (on)
ah->stats.ast_ani_ofdmon++;
else
ah->stats.ast_ani_ofdmoff++;
aniState->ofdmWeakSigDetectOff = !on;
}
break;
}
case ATH9K_ANI_CCK_WEAK_SIGNAL_THR:{
const int weakSigThrCck[] = { 8, 6 };
u32 high = param ? 1 : 0;
REG_RMW_FIELD(ah, AR_PHY_CCK_DETECT,
AR_PHY_CCK_DETECT_WEAK_SIG_THR_CCK,
weakSigThrCck[high]);
if (high != aniState->cckWeakSigThreshold) {
if (high)
ah->stats.ast_ani_cckhigh++;
else
ah->stats.ast_ani_ccklow++;
aniState->cckWeakSigThreshold = high;
}
break;
}
case ATH9K_ANI_FIRSTEP_LEVEL:{
const int firstep[] = { 0, 4, 8 };
u32 level = param;
if (level >= ARRAY_SIZE(firstep)) {
ath_print(common, ATH_DBG_ANI,
"level out of range (%u > %u)\n",
level,
(unsigned) ARRAY_SIZE(firstep));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_FIND_SIG,
AR_PHY_FIND_SIG_FIRSTEP,
firstep[level]);
if (level > aniState->firstepLevel)
ah->stats.ast_ani_stepup++;
else if (level < aniState->firstepLevel)
ah->stats.ast_ani_stepdown++;
aniState->firstepLevel = level;
break;
}
case ATH9K_ANI_SPUR_IMMUNITY_LEVEL:{
const int cycpwrThr1[] = { 2, 4, 6, 8, 10, 12, 14, 16 };
u32 level = param;
if (level >= ARRAY_SIZE(cycpwrThr1)) {
ath_print(common, ATH_DBG_ANI,
"level out of range (%u > %u)\n",
level,
(unsigned) ARRAY_SIZE(cycpwrThr1));
return false;
}
REG_RMW_FIELD(ah, AR_PHY_TIMING5,
AR_PHY_TIMING5_CYCPWR_THR1,
cycpwrThr1[level]);
if (level > aniState->spurImmunityLevel)
ah->stats.ast_ani_spurup++;
else if (level < aniState->spurImmunityLevel)
ah->stats.ast_ani_spurdown++;
aniState->spurImmunityLevel = level;
break;
}
case ATH9K_ANI_PRESENT:
break;
default:
ath_print(common, ATH_DBG_ANI,
"invalid cmd %u\n", cmd);
return false;
}
ath_print(common, ATH_DBG_ANI, "ANI parameters:\n");
ath_print(common, ATH_DBG_ANI,
"noiseImmunityLevel=%d, spurImmunityLevel=%d, "
"ofdmWeakSigDetectOff=%d\n",
aniState->noiseImmunityLevel,
aniState->spurImmunityLevel,
!aniState->ofdmWeakSigDetectOff);
ath_print(common, ATH_DBG_ANI,
"cckWeakSigThreshold=%d, "
"firstepLevel=%d, listenTime=%d\n",
aniState->cckWeakSigThreshold,
aniState->firstepLevel,
aniState->listenTime);
ath_print(common, ATH_DBG_ANI,
"cycleCount=%d, ofdmPhyErrCount=%d, cckPhyErrCount=%d\n\n",
aniState->cycleCount,
aniState->ofdmPhyErrCount,
aniState->cckPhyErrCount);
return true;
}
void ar9003_hw_attach_phy_ops(struct ath_hw *ah)
{
struct ath_hw_private_ops *priv_ops = ath9k_hw_private_ops(ah);
priv_ops->rf_set_freq = ar9003_hw_set_channel;
priv_ops->spur_mitigate_freq = ar9003_hw_spur_mitigate;
priv_ops->compute_pll_control = ar9003_hw_compute_pll_control;
priv_ops->set_channel_regs = ar9003_hw_set_channel_regs;
priv_ops->init_bb = ar9003_hw_init_bb;
priv_ops->process_ini = ar9003_hw_process_ini;
priv_ops->set_rfmode = ar9003_hw_set_rfmode;
priv_ops->mark_phy_inactive = ar9003_hw_mark_phy_inactive;
priv_ops->set_delta_slope = ar9003_hw_set_delta_slope;
priv_ops->rfbus_req = ar9003_hw_rfbus_req;
priv_ops->rfbus_done = ar9003_hw_rfbus_done;
priv_ops->enable_rfkill = ar9003_hw_enable_rfkill;
priv_ops->set_diversity = ar9003_hw_set_diversity;
priv_ops->ani_control = ar9003_hw_ani_control;
}