linux_old1/drivers/net/vxge/vxge-main.c

4503 lines
118 KiB
C
Raw Normal View History

Neterion: New driver: Main entry points This patch implements all the driver entry point functions. - Definition of all module loadable paramters. - Implementation of all driver entry point functions. - Changes in this submission - - Fixed compilation error when enabling debug statements - Fixed few warnings when CONFIG_PCI_MSI is not defined - Removed unnecessary volatile variables - Removed compare_ether_addr as it causes unaligned memory access on the sparc64 platform. - Changes in previous submissions - - As per Stephen Hemminger's comments removed the following loadable parameters - gro, rx_& tx max_indicate_pkts, exec_mode, rx & tx pause_enable, tx_steering_type and intr_type. - Added Device ID definition in vxge-main.h instead of include/linux/pci_ids.h file - Reported by David Miller - Incorporated following review comments from Ben Hutchings - NAPI is always enabled (no option to turn it OFF). - Loadable parameters rx_steering_type: This loadable option is removed. ring_blocks: This loadable option is removed. The driver default settings work well in most if not all cases. Another patch to configure these parameters with ethtool will be released in the future. - LRO has been deprecated in favour of GRO - Bill Fink & Dave Miller's comment - Fixed sparse warnings - Reported by Andi Kleen - Removed unused variables Signed-off-by: Sivakumar Subramani <sivakumar.subramani@neterion.com> Signed-off-by: Rastapur Santosh <santosh.rastapur@neterion.com> Signed-off-by: Ramkrishna Vepa <ram.vepa@neterion.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-04-02 02:15:13 +08:00
/******************************************************************************
* This software may be used and distributed according to the terms of
* the GNU General Public License (GPL), incorporated herein by reference.
* Drivers based on or derived from this code fall under the GPL and must
* retain the authorship, copyright and license notice. This file is not
* a complete program and may only be used when the entire operating
* system is licensed under the GPL.
* See the file COPYING in this distribution for more information.
*
* vxge-main.c: Driver for Neterion Inc's X3100 Series 10GbE PCIe I/O
* Virtualized Server Adapter.
* Copyright(c) 2002-2009 Neterion Inc.
*
* The module loadable parameters that are supported by the driver and a brief
* explanation of all the variables:
* vlan_tag_strip:
* Strip VLAN Tag enable/disable. Instructs the device to remove
* the VLAN tag from all received tagged frames that are not
* replicated at the internal L2 switch.
* 0 - Do not strip the VLAN tag.
* 1 - Strip the VLAN tag.
*
* addr_learn_en:
* Enable learning the mac address of the guest OS interface in
* a virtualization environment.
* 0 - DISABLE
* 1 - ENABLE
*
* max_config_port:
* Maximum number of port to be supported.
* MIN -1 and MAX - 2
*
* max_config_vpath:
* This configures the maximum no of VPATH configures for each
* device function.
* MIN - 1 and MAX - 17
*
* max_config_dev:
* This configures maximum no of Device function to be enabled.
* MIN - 1 and MAX - 17
*
******************************************************************************/
#include <linux/if_vlan.h>
#include <linux/pci.h>
#include <net/ip.h>
#include <linux/netdevice.h>
#include <linux/etherdevice.h>
#include "vxge-main.h"
#include "vxge-reg.h"
MODULE_LICENSE("Dual BSD/GPL");
MODULE_DESCRIPTION("Neterion's X3100 Series 10GbE PCIe I/O"
"Virtualized Server Adapter");
static struct pci_device_id vxge_id_table[] __devinitdata = {
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_WIN, PCI_ANY_ID,
PCI_ANY_ID},
{PCI_VENDOR_ID_S2IO, PCI_DEVICE_ID_TITAN_UNI, PCI_ANY_ID,
PCI_ANY_ID},
{0}
};
MODULE_DEVICE_TABLE(pci, vxge_id_table);
VXGE_MODULE_PARAM_INT(vlan_tag_strip, VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE);
VXGE_MODULE_PARAM_INT(addr_learn_en, VXGE_HW_MAC_ADDR_LEARN_DEFAULT);
VXGE_MODULE_PARAM_INT(max_config_port, VXGE_MAX_CONFIG_PORT);
VXGE_MODULE_PARAM_INT(max_config_vpath, VXGE_USE_DEFAULT);
VXGE_MODULE_PARAM_INT(max_mac_vpath, VXGE_MAX_MAC_ADDR_COUNT);
VXGE_MODULE_PARAM_INT(max_config_dev, VXGE_MAX_CONFIG_DEV);
static u16 vpath_selector[VXGE_HW_MAX_VIRTUAL_PATHS] =
{0, 1, 3, 3, 7, 7, 7, 7, 15, 15, 15, 15, 15, 15, 15, 15, 31};
static unsigned int bw_percentage[VXGE_HW_MAX_VIRTUAL_PATHS] =
{[0 ...(VXGE_HW_MAX_VIRTUAL_PATHS - 1)] = 0xFF};
module_param_array(bw_percentage, uint, NULL, 0);
static struct vxge_drv_config *driver_config;
static inline int is_vxge_card_up(struct vxgedev *vdev)
{
return test_bit(__VXGE_STATE_CARD_UP, &vdev->state);
}
static inline void VXGE_COMPLETE_VPATH_TX(struct vxge_fifo *fifo)
{
unsigned long flags = 0;
struct sk_buff *skb_ptr = NULL;
struct sk_buff **temp, *head, *skb;
if (spin_trylock_irqsave(&fifo->tx_lock, flags)) {
vxge_hw_vpath_poll_tx(fifo->handle, (void **)&skb_ptr);
spin_unlock_irqrestore(&fifo->tx_lock, flags);
}
/* free SKBs */
head = skb_ptr;
while (head) {
skb = head;
temp = (struct sk_buff **)&skb->cb;
head = *temp;
*temp = NULL;
dev_kfree_skb_irq(skb);
}
}
static inline void VXGE_COMPLETE_ALL_TX(struct vxgedev *vdev)
{
int i;
/* Complete all transmits */
for (i = 0; i < vdev->no_of_vpath; i++)
VXGE_COMPLETE_VPATH_TX(&vdev->vpaths[i].fifo);
}
static inline void VXGE_COMPLETE_ALL_RX(struct vxgedev *vdev)
{
int i;
struct vxge_ring *ring;
/* Complete all receives*/
for (i = 0; i < vdev->no_of_vpath; i++) {
ring = &vdev->vpaths[i].ring;
vxge_hw_vpath_poll_rx(ring->handle);
}
}
/*
* MultiQ manipulation helper functions
*/
void vxge_stop_all_tx_queue(struct vxgedev *vdev)
{
int i;
struct net_device *dev = vdev->ndev;
if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) {
for (i = 0; i < vdev->no_of_vpath; i++)
vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_STOP;
}
netif_tx_stop_all_queues(dev);
}
void vxge_stop_tx_queue(struct vxge_fifo *fifo)
{
struct net_device *dev = fifo->ndev;
struct netdev_queue *txq = NULL;
if (fifo->tx_steering_type == TX_MULTIQ_STEERING)
txq = netdev_get_tx_queue(dev, fifo->driver_id);
else {
txq = netdev_get_tx_queue(dev, 0);
fifo->queue_state = VPATH_QUEUE_STOP;
}
netif_tx_stop_queue(txq);
}
void vxge_start_all_tx_queue(struct vxgedev *vdev)
{
int i;
struct net_device *dev = vdev->ndev;
if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) {
for (i = 0; i < vdev->no_of_vpath; i++)
vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_START;
}
netif_tx_start_all_queues(dev);
}
static void vxge_wake_all_tx_queue(struct vxgedev *vdev)
{
int i;
struct net_device *dev = vdev->ndev;
if (vdev->config.tx_steering_type != TX_MULTIQ_STEERING) {
for (i = 0; i < vdev->no_of_vpath; i++)
vdev->vpaths[i].fifo.queue_state = VPATH_QUEUE_START;
}
netif_tx_wake_all_queues(dev);
}
void vxge_wake_tx_queue(struct vxge_fifo *fifo, struct sk_buff *skb)
{
struct net_device *dev = fifo->ndev;
int vpath_no = fifo->driver_id;
struct netdev_queue *txq = NULL;
if (fifo->tx_steering_type == TX_MULTIQ_STEERING) {
txq = netdev_get_tx_queue(dev, vpath_no);
if (netif_tx_queue_stopped(txq))
netif_tx_wake_queue(txq);
} else {
txq = netdev_get_tx_queue(dev, 0);
if (fifo->queue_state == VPATH_QUEUE_STOP)
if (netif_tx_queue_stopped(txq)) {
fifo->queue_state = VPATH_QUEUE_START;
netif_tx_wake_queue(txq);
}
}
}
/*
* vxge_callback_link_up
*
* This function is called during interrupt context to notify link up state
* change.
*/
void
vxge_callback_link_up(struct __vxge_hw_device *hldev)
{
struct net_device *dev = hldev->ndev;
struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
vdev->ndev->name, __func__, __LINE__);
printk(KERN_NOTICE "%s: Link Up\n", vdev->ndev->name);
vdev->stats.link_up++;
netif_carrier_on(vdev->ndev);
vxge_wake_all_tx_queue(vdev);
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
}
/*
* vxge_callback_link_down
*
* This function is called during interrupt context to notify link down state
* change.
*/
void
vxge_callback_link_down(struct __vxge_hw_device *hldev)
{
struct net_device *dev = hldev->ndev;
struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
printk(KERN_NOTICE "%s: Link Down\n", vdev->ndev->name);
vdev->stats.link_down++;
netif_carrier_off(vdev->ndev);
vxge_stop_all_tx_queue(vdev);
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...", vdev->ndev->name, __func__, __LINE__);
}
/*
* vxge_rx_alloc
*
* Allocate SKB.
*/
static struct sk_buff*
vxge_rx_alloc(void *dtrh, struct vxge_ring *ring, const int skb_size)
{
struct net_device *dev;
struct sk_buff *skb;
struct vxge_rx_priv *rx_priv;
dev = ring->ndev;
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
ring->ndev->name, __func__, __LINE__);
rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
/* try to allocate skb first. this one may fail */
skb = netdev_alloc_skb(dev, skb_size +
VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
if (skb == NULL) {
vxge_debug_mem(VXGE_ERR,
"%s: out of memory to allocate SKB", dev->name);
ring->stats.skb_alloc_fail++;
return NULL;
}
vxge_debug_mem(VXGE_TRACE,
"%s: %s:%d Skb : 0x%p", ring->ndev->name,
__func__, __LINE__, skb);
skb_reserve(skb, VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
rx_priv->skb = skb;
rx_priv->data_size = skb_size;
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
return skb;
}
/*
* vxge_rx_map
*/
static int vxge_rx_map(void *dtrh, struct vxge_ring *ring)
{
struct vxge_rx_priv *rx_priv;
dma_addr_t dma_addr;
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
ring->ndev->name, __func__, __LINE__);
rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
dma_addr = pci_map_single(ring->pdev, rx_priv->skb->data,
rx_priv->data_size, PCI_DMA_FROMDEVICE);
if (dma_addr == 0) {
ring->stats.pci_map_fail++;
return -EIO;
}
vxge_debug_mem(VXGE_TRACE,
"%s: %s:%d 1 buffer mode dma_addr = 0x%llx",
ring->ndev->name, __func__, __LINE__,
(unsigned long long)dma_addr);
vxge_hw_ring_rxd_1b_set(dtrh, dma_addr, rx_priv->data_size);
rx_priv->data_dma = dma_addr;
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
return 0;
}
/*
* vxge_rx_initial_replenish
* Allocation of RxD as an initial replenish procedure.
*/
static enum vxge_hw_status
vxge_rx_initial_replenish(void *dtrh, void *userdata)
{
struct vxge_ring *ring = (struct vxge_ring *)userdata;
struct vxge_rx_priv *rx_priv;
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
ring->ndev->name, __func__, __LINE__);
if (vxge_rx_alloc(dtrh, ring,
VXGE_LL_MAX_FRAME_SIZE(ring->ndev)) == NULL)
return VXGE_HW_FAIL;
if (vxge_rx_map(dtrh, ring)) {
rx_priv = vxge_hw_ring_rxd_private_get(dtrh);
dev_kfree_skb(rx_priv->skb);
return VXGE_HW_FAIL;
}
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
return VXGE_HW_OK;
}
static inline void
vxge_rx_complete(struct vxge_ring *ring, struct sk_buff *skb, u16 vlan,
int pkt_length, struct vxge_hw_ring_rxd_info *ext_info)
{
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
ring->ndev->name, __func__, __LINE__);
skb_record_rx_queue(skb, ring->driver_id);
skb->protocol = eth_type_trans(skb, ring->ndev);
ring->stats.rx_frms++;
ring->stats.rx_bytes += pkt_length;
if (skb->pkt_type == PACKET_MULTICAST)
ring->stats.rx_mcast++;
vxge_debug_rx(VXGE_TRACE,
"%s: %s:%d skb protocol = %d",
ring->ndev->name, __func__, __LINE__, skb->protocol);
if (ring->gro_enable) {
if (ring->vlgrp && ext_info->vlan &&
(ring->vlan_tag_strip ==
VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE))
vlan_gro_receive(&ring->napi, ring->vlgrp,
ext_info->vlan, skb);
else
napi_gro_receive(&ring->napi, skb);
} else {
if (ring->vlgrp && vlan &&
(ring->vlan_tag_strip ==
VXGE_HW_VPATH_RPA_STRIP_VLAN_TAG_ENABLE))
vlan_hwaccel_receive_skb(skb, ring->vlgrp, vlan);
else
netif_receive_skb(skb);
}
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...", ring->ndev->name, __func__, __LINE__);
}
static inline void vxge_re_pre_post(void *dtr, struct vxge_ring *ring,
struct vxge_rx_priv *rx_priv)
{
pci_dma_sync_single_for_device(ring->pdev,
rx_priv->data_dma, rx_priv->data_size, PCI_DMA_FROMDEVICE);
vxge_hw_ring_rxd_1b_set(dtr, rx_priv->data_dma, rx_priv->data_size);
vxge_hw_ring_rxd_pre_post(ring->handle, dtr);
}
static inline void vxge_post(int *dtr_cnt, void **first_dtr,
void *post_dtr, struct __vxge_hw_ring *ringh)
{
int dtr_count = *dtr_cnt;
if ((*dtr_cnt % VXGE_HW_RXSYNC_FREQ_CNT) == 0) {
if (*first_dtr)
vxge_hw_ring_rxd_post_post_wmb(ringh, *first_dtr);
*first_dtr = post_dtr;
} else
vxge_hw_ring_rxd_post_post(ringh, post_dtr);
dtr_count++;
*dtr_cnt = dtr_count;
}
/*
* vxge_rx_1b_compl
*
* If the interrupt is because of a received frame or if the receive ring
* contains fresh as yet un-processed frames, this function is called.
*/
enum vxge_hw_status
vxge_rx_1b_compl(struct __vxge_hw_ring *ringh, void *dtr,
u8 t_code, void *userdata)
{
struct vxge_ring *ring = (struct vxge_ring *)userdata;
struct net_device *dev = ring->ndev;
unsigned int dma_sizes;
void *first_dtr = NULL;
int dtr_cnt = 0;
int data_size;
dma_addr_t data_dma;
int pkt_length;
struct sk_buff *skb;
struct vxge_rx_priv *rx_priv;
struct vxge_hw_ring_rxd_info ext_info;
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
ring->ndev->name, __func__, __LINE__);
ring->pkts_processed = 0;
vxge_hw_ring_replenish(ringh, 0);
do {
rx_priv = vxge_hw_ring_rxd_private_get(dtr);
skb = rx_priv->skb;
data_size = rx_priv->data_size;
data_dma = rx_priv->data_dma;
vxge_debug_rx(VXGE_TRACE,
"%s: %s:%d skb = 0x%p",
ring->ndev->name, __func__, __LINE__, skb);
vxge_hw_ring_rxd_1b_get(ringh, dtr, &dma_sizes);
pkt_length = dma_sizes;
vxge_debug_rx(VXGE_TRACE,
"%s: %s:%d Packet Length = %d",
ring->ndev->name, __func__, __LINE__, pkt_length);
vxge_hw_ring_rxd_1b_info_get(ringh, dtr, &ext_info);
/* check skb validity */
vxge_assert(skb);
prefetch((char *)skb + L1_CACHE_BYTES);
if (unlikely(t_code)) {
if (vxge_hw_ring_handle_tcode(ringh, dtr, t_code) !=
VXGE_HW_OK) {
ring->stats.rx_errors++;
vxge_debug_rx(VXGE_TRACE,
"%s: %s :%d Rx T_code is %d",
ring->ndev->name, __func__,
__LINE__, t_code);
/* If the t_code is not supported and if the
* t_code is other than 0x5 (unparseable packet
* such as unknown UPV6 header), Drop it !!!
*/
vxge_re_pre_post(dtr, ring, rx_priv);
vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
ring->stats.rx_dropped++;
continue;
}
}
if (pkt_length > VXGE_LL_RX_COPY_THRESHOLD) {
if (vxge_rx_alloc(dtr, ring, data_size) != NULL) {
if (!vxge_rx_map(dtr, ring)) {
skb_put(skb, pkt_length);
pci_unmap_single(ring->pdev, data_dma,
data_size, PCI_DMA_FROMDEVICE);
vxge_hw_ring_rxd_pre_post(ringh, dtr);
vxge_post(&dtr_cnt, &first_dtr, dtr,
ringh);
} else {
dev_kfree_skb(rx_priv->skb);
rx_priv->skb = skb;
rx_priv->data_size = data_size;
vxge_re_pre_post(dtr, ring, rx_priv);
vxge_post(&dtr_cnt, &first_dtr, dtr,
ringh);
ring->stats.rx_dropped++;
break;
}
} else {
vxge_re_pre_post(dtr, ring, rx_priv);
vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
ring->stats.rx_dropped++;
break;
}
} else {
struct sk_buff *skb_up;
skb_up = netdev_alloc_skb(dev, pkt_length +
VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
if (skb_up != NULL) {
skb_reserve(skb_up,
VXGE_HW_HEADER_ETHERNET_II_802_3_ALIGN);
pci_dma_sync_single_for_cpu(ring->pdev,
data_dma, data_size,
PCI_DMA_FROMDEVICE);
vxge_debug_mem(VXGE_TRACE,
"%s: %s:%d skb_up = %p",
ring->ndev->name, __func__,
__LINE__, skb);
memcpy(skb_up->data, skb->data, pkt_length);
vxge_re_pre_post(dtr, ring, rx_priv);
vxge_post(&dtr_cnt, &first_dtr, dtr,
ringh);
/* will netif_rx small SKB instead */
skb = skb_up;
skb_put(skb, pkt_length);
} else {
vxge_re_pre_post(dtr, ring, rx_priv);
vxge_post(&dtr_cnt, &first_dtr, dtr, ringh);
vxge_debug_rx(VXGE_ERR,
"%s: vxge_rx_1b_compl: out of "
"memory", dev->name);
ring->stats.skb_alloc_fail++;
break;
}
}
if ((ext_info.proto & VXGE_HW_FRAME_PROTO_TCP_OR_UDP) &&
!(ext_info.proto & VXGE_HW_FRAME_PROTO_IP_FRAG) &&
ring->rx_csum && /* Offload Rx side CSUM */
ext_info.l3_cksum == VXGE_HW_L3_CKSUM_OK &&
ext_info.l4_cksum == VXGE_HW_L4_CKSUM_OK)
skb->ip_summed = CHECKSUM_UNNECESSARY;
else
skb->ip_summed = CHECKSUM_NONE;
vxge_rx_complete(ring, skb, ext_info.vlan,
pkt_length, &ext_info);
ring->budget--;
ring->pkts_processed++;
if (!ring->budget)
break;
} while (vxge_hw_ring_rxd_next_completed(ringh, &dtr,
&t_code) == VXGE_HW_OK);
if (first_dtr)
vxge_hw_ring_rxd_post_post_wmb(ringh, first_dtr);
dev->last_rx = jiffies;
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...",
__func__, __LINE__);
return VXGE_HW_OK;
}
/*
* vxge_xmit_compl
*
* If an interrupt was raised to indicate DMA complete of the Tx packet,
* this function is called. It identifies the last TxD whose buffer was
* freed and frees all skbs whose data have already DMA'ed into the NICs
* internal memory.
*/
enum vxge_hw_status
vxge_xmit_compl(struct __vxge_hw_fifo *fifo_hw, void *dtr,
enum vxge_hw_fifo_tcode t_code, void *userdata,
void **skb_ptr)
{
struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
struct sk_buff *skb, *head = NULL;
struct sk_buff **temp;
int pkt_cnt = 0;
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Entered....", __func__, __LINE__);
do {
int frg_cnt;
skb_frag_t *frag;
int i = 0, j;
struct vxge_tx_priv *txd_priv =
vxge_hw_fifo_txdl_private_get(dtr);
skb = txd_priv->skb;
frg_cnt = skb_shinfo(skb)->nr_frags;
frag = &skb_shinfo(skb)->frags[0];
vxge_debug_tx(VXGE_TRACE,
"%s: %s:%d fifo_hw = %p dtr = %p "
"tcode = 0x%x", fifo->ndev->name, __func__,
__LINE__, fifo_hw, dtr, t_code);
/* check skb validity */
vxge_assert(skb);
vxge_debug_tx(VXGE_TRACE,
"%s: %s:%d skb = %p itxd_priv = %p frg_cnt = %d",
fifo->ndev->name, __func__, __LINE__,
skb, txd_priv, frg_cnt);
if (unlikely(t_code)) {
fifo->stats.tx_errors++;
vxge_debug_tx(VXGE_ERR,
"%s: tx: dtr %p completed due to "
"error t_code %01x", fifo->ndev->name,
dtr, t_code);
vxge_hw_fifo_handle_tcode(fifo_hw, dtr, t_code);
}
/* for unfragmented skb */
pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
skb_headlen(skb), PCI_DMA_TODEVICE);
for (j = 0; j < frg_cnt; j++) {
pci_unmap_page(fifo->pdev,
txd_priv->dma_buffers[i++],
frag->size, PCI_DMA_TODEVICE);
frag += 1;
}
vxge_hw_fifo_txdl_free(fifo_hw, dtr);
/* Updating the statistics block */
fifo->stats.tx_frms++;
fifo->stats.tx_bytes += skb->len;
temp = (struct sk_buff **)&skb->cb;
*temp = head;
head = skb;
pkt_cnt++;
if (pkt_cnt > fifo->indicate_max_pkts)
break;
} while (vxge_hw_fifo_txdl_next_completed(fifo_hw,
&dtr, &t_code) == VXGE_HW_OK);
vxge_wake_tx_queue(fifo, skb);
if (skb_ptr)
*skb_ptr = (void *) head;
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...",
fifo->ndev->name, __func__, __LINE__);
return VXGE_HW_OK;
}
/* select a vpath to trasmit the packet */
static u32 vxge_get_vpath_no(struct vxgedev *vdev, struct sk_buff *skb,
int *do_lock)
{
u16 queue_len, counter = 0;
if (skb->protocol == htons(ETH_P_IP)) {
struct iphdr *ip;
struct tcphdr *th;
ip = ip_hdr(skb);
if ((ip->frag_off & htons(IP_OFFSET|IP_MF)) == 0) {
th = (struct tcphdr *)(((unsigned char *)ip) +
ip->ihl*4);
queue_len = vdev->no_of_vpath;
counter = (ntohs(th->source) +
ntohs(th->dest)) &
vdev->vpath_selector[queue_len - 1];
if (counter >= queue_len)
counter = queue_len - 1;
if (ip->protocol == IPPROTO_UDP) {
#ifdef NETIF_F_LLTX
*do_lock = 0;
#endif
}
}
}
return counter;
}
static enum vxge_hw_status vxge_search_mac_addr_in_list(
struct vxge_vpath *vpath, u64 del_mac)
{
struct list_head *entry, *next;
list_for_each_safe(entry, next, &vpath->mac_addr_list) {
if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac)
return TRUE;
}
return FALSE;
}
static int vxge_learn_mac(struct vxgedev *vdev, u8 *mac_header)
{
struct macInfo mac_info;
u8 *mac_address = NULL;
u64 mac_addr = 0, vpath_vector = 0;
int vpath_idx = 0;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_vpath *vpath = NULL;
struct __vxge_hw_device *hldev;
hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
mac_address = (u8 *)&mac_addr;
memcpy(mac_address, mac_header, ETH_ALEN);
/* Is this mac address already in the list? */
for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
vpath = &vdev->vpaths[vpath_idx];
if (vxge_search_mac_addr_in_list(vpath, mac_addr))
return vpath_idx;
}
memset(&mac_info, 0, sizeof(struct macInfo));
memcpy(mac_info.macaddr, mac_header, ETH_ALEN);
/* Any vpath has room to add mac address to its da table? */
for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
vpath = &vdev->vpaths[vpath_idx];
if (vpath->mac_addr_cnt < vpath->max_mac_addr_cnt) {
/* Add this mac address to this vpath */
mac_info.vpath_no = vpath_idx;
mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
status = vxge_add_mac_addr(vdev, &mac_info);
if (status != VXGE_HW_OK)
return -EPERM;
return vpath_idx;
}
}
mac_info.state = VXGE_LL_MAC_ADDR_IN_LIST;
vpath_idx = 0;
mac_info.vpath_no = vpath_idx;
/* Is the first vpath already selected as catch-basin ? */
vpath = &vdev->vpaths[vpath_idx];
if (vpath->mac_addr_cnt > vpath->max_mac_addr_cnt) {
/* Add this mac address to this vpath */
if (FALSE == vxge_mac_list_add(vpath, &mac_info))
return -EPERM;
return vpath_idx;
}
/* Select first vpath as catch-basin */
vpath_vector = vxge_mBIT(vpath->device_id);
status = vxge_hw_mgmt_reg_write(vpath->vdev->devh,
vxge_hw_mgmt_reg_type_mrpcim,
0,
(ulong)offsetof(
struct vxge_hw_mrpcim_reg,
rts_mgr_cbasin_cfg),
vpath_vector);
if (status != VXGE_HW_OK) {
vxge_debug_tx(VXGE_ERR,
"%s: Unable to set the vpath-%d in catch-basin mode",
VXGE_DRIVER_NAME, vpath->device_id);
return -EPERM;
}
if (FALSE == vxge_mac_list_add(vpath, &mac_info))
return -EPERM;
return vpath_idx;
}
/**
* vxge_xmit
* @skb : the socket buffer containing the Tx data.
* @dev : device pointer.
*
* This function is the Tx entry point of the driver. Neterion NIC supports
* certain protocol assist features on Tx side, namely CSO, S/G, LSO.
* NOTE: when device cant queue the pkt, just the trans_start variable will
* not be upadted.
*/
static int
vxge_xmit(struct sk_buff *skb, struct net_device *dev)
{
struct vxge_fifo *fifo = NULL;
void *dtr_priv;
void *dtr = NULL;
struct vxgedev *vdev = NULL;
enum vxge_hw_status status;
int frg_cnt, first_frg_len;
skb_frag_t *frag;
int i = 0, j = 0, avail;
u64 dma_pointer;
struct vxge_tx_priv *txdl_priv = NULL;
struct __vxge_hw_fifo *fifo_hw;
u32 max_mss = 0x0;
int offload_type;
unsigned long flags = 0;
int vpath_no = 0;
int do_spin_tx_lock = 1;
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
dev->name, __func__, __LINE__);
/* A buffer with no data will be dropped */
if (unlikely(skb->len <= 0)) {
vxge_debug_tx(VXGE_ERR,
"%s: Buffer has no data..", dev->name);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
vdev = (struct vxgedev *)netdev_priv(dev);
if (unlikely(!is_vxge_card_up(vdev))) {
vxge_debug_tx(VXGE_ERR,
"%s: vdev not initialized", dev->name);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
if (vdev->config.addr_learn_en) {
vpath_no = vxge_learn_mac(vdev, skb->data + ETH_ALEN);
if (vpath_no == -EPERM) {
vxge_debug_tx(VXGE_ERR,
"%s: Failed to store the mac address",
dev->name);
dev_kfree_skb(skb);
return NETDEV_TX_OK;
}
}
if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING)
vpath_no = skb_get_queue_mapping(skb);
else if (vdev->config.tx_steering_type == TX_PORT_STEERING)
vpath_no = vxge_get_vpath_no(vdev, skb, &do_spin_tx_lock);
vxge_debug_tx(VXGE_TRACE, "%s: vpath_no= %d", dev->name, vpath_no);
if (vpath_no >= vdev->no_of_vpath)
vpath_no = 0;
fifo = &vdev->vpaths[vpath_no].fifo;
fifo_hw = fifo->handle;
if (do_spin_tx_lock)
spin_lock_irqsave(&fifo->tx_lock, flags);
else {
if (unlikely(!spin_trylock_irqsave(&fifo->tx_lock, flags)))
return NETDEV_TX_LOCKED;
}
if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING) {
if (netif_subqueue_stopped(dev, skb)) {
spin_unlock_irqrestore(&fifo->tx_lock, flags);
return NETDEV_TX_BUSY;
}
} else if (unlikely(fifo->queue_state == VPATH_QUEUE_STOP)) {
if (netif_queue_stopped(dev)) {
spin_unlock_irqrestore(&fifo->tx_lock, flags);
return NETDEV_TX_BUSY;
}
}
avail = vxge_hw_fifo_free_txdl_count_get(fifo_hw);
if (avail == 0) {
vxge_debug_tx(VXGE_ERR,
"%s: No free TXDs available", dev->name);
fifo->stats.txd_not_free++;
vxge_stop_tx_queue(fifo);
goto _exit2;
}
status = vxge_hw_fifo_txdl_reserve(fifo_hw, &dtr, &dtr_priv);
if (unlikely(status != VXGE_HW_OK)) {
vxge_debug_tx(VXGE_ERR,
"%s: Out of descriptors .", dev->name);
fifo->stats.txd_out_of_desc++;
vxge_stop_tx_queue(fifo);
goto _exit2;
}
vxge_debug_tx(VXGE_TRACE,
"%s: %s:%d fifo_hw = %p dtr = %p dtr_priv = %p",
dev->name, __func__, __LINE__,
fifo_hw, dtr, dtr_priv);
if (vdev->vlgrp && vlan_tx_tag_present(skb)) {
u16 vlan_tag = vlan_tx_tag_get(skb);
vxge_hw_fifo_txdl_vlan_set(dtr, vlan_tag);
}
first_frg_len = skb_headlen(skb);
dma_pointer = pci_map_single(fifo->pdev, skb->data, first_frg_len,
PCI_DMA_TODEVICE);
if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer))) {
vxge_hw_fifo_txdl_free(fifo_hw, dtr);
vxge_stop_tx_queue(fifo);
fifo->stats.pci_map_fail++;
goto _exit2;
}
txdl_priv = vxge_hw_fifo_txdl_private_get(dtr);
txdl_priv->skb = skb;
txdl_priv->dma_buffers[j] = dma_pointer;
frg_cnt = skb_shinfo(skb)->nr_frags;
vxge_debug_tx(VXGE_TRACE,
"%s: %s:%d skb = %p txdl_priv = %p "
"frag_cnt = %d dma_pointer = 0x%llx", dev->name,
__func__, __LINE__, skb, txdl_priv,
frg_cnt, (unsigned long long)dma_pointer);
vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
first_frg_len);
frag = &skb_shinfo(skb)->frags[0];
for (i = 0; i < frg_cnt; i++) {
/* ignore 0 length fragment */
if (!frag->size)
continue;
dma_pointer =
(u64)pci_map_page(fifo->pdev, frag->page,
frag->page_offset, frag->size,
PCI_DMA_TODEVICE);
if (unlikely(pci_dma_mapping_error(fifo->pdev, dma_pointer)))
goto _exit0;
vxge_debug_tx(VXGE_TRACE,
"%s: %s:%d frag = %d dma_pointer = 0x%llx",
dev->name, __func__, __LINE__, i,
(unsigned long long)dma_pointer);
txdl_priv->dma_buffers[j] = dma_pointer;
vxge_hw_fifo_txdl_buffer_set(fifo_hw, dtr, j++, dma_pointer,
frag->size);
frag += 1;
}
offload_type = vxge_offload_type(skb);
if (offload_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) {
int mss = vxge_tcp_mss(skb);
if (mss) {
max_mss = dev->mtu + ETH_HLEN -
VXGE_HW_TCPIP_HEADER_MAX_SIZE;
if (mss > max_mss)
mss = max_mss;
vxge_debug_tx(VXGE_TRACE,
"%s: %s:%d mss = %d",
dev->name, __func__, __LINE__, mss);
vxge_hw_fifo_txdl_mss_set(dtr, mss);
} else {
vxge_assert(skb->len <=
dev->mtu + VXGE_HW_MAC_HEADER_MAX_SIZE);
vxge_assert(0);
goto _exit1;
}
}
if (skb->ip_summed == CHECKSUM_PARTIAL)
vxge_hw_fifo_txdl_cksum_set_bits(dtr,
VXGE_HW_FIFO_TXD_TX_CKO_IPV4_EN |
VXGE_HW_FIFO_TXD_TX_CKO_TCP_EN |
VXGE_HW_FIFO_TXD_TX_CKO_UDP_EN);
vxge_hw_fifo_txdl_post(fifo_hw, dtr);
dev->trans_start = jiffies;
spin_unlock_irqrestore(&fifo->tx_lock, flags);
VXGE_COMPLETE_VPATH_TX(fifo);
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...",
dev->name, __func__, __LINE__);
return 0;
_exit0:
vxge_debug_tx(VXGE_TRACE, "%s: pci_map_page failed", dev->name);
_exit1:
j = 0;
frag = &skb_shinfo(skb)->frags[0];
pci_unmap_single(fifo->pdev, txdl_priv->dma_buffers[j++],
skb_headlen(skb), PCI_DMA_TODEVICE);
for (; j < i; j++) {
pci_unmap_page(fifo->pdev, txdl_priv->dma_buffers[j],
frag->size, PCI_DMA_TODEVICE);
frag += 1;
}
vxge_hw_fifo_txdl_free(fifo_hw, dtr);
_exit2:
dev_kfree_skb(skb);
spin_unlock_irqrestore(&fifo->tx_lock, flags);
VXGE_COMPLETE_VPATH_TX(fifo);
return 0;
}
/*
* vxge_rx_term
*
* Function will be called by hw function to abort all outstanding receive
* descriptors.
*/
static void
vxge_rx_term(void *dtrh, enum vxge_hw_rxd_state state, void *userdata)
{
struct vxge_ring *ring = (struct vxge_ring *)userdata;
struct vxge_rx_priv *rx_priv =
vxge_hw_ring_rxd_private_get(dtrh);
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
ring->ndev->name, __func__, __LINE__);
if (state != VXGE_HW_RXD_STATE_POSTED)
return;
pci_unmap_single(ring->pdev, rx_priv->data_dma,
rx_priv->data_size, PCI_DMA_FROMDEVICE);
dev_kfree_skb(rx_priv->skb);
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...",
ring->ndev->name, __func__, __LINE__);
}
/*
* vxge_tx_term
*
* Function will be called to abort all outstanding tx descriptors
*/
static void
vxge_tx_term(void *dtrh, enum vxge_hw_txdl_state state, void *userdata)
{
struct vxge_fifo *fifo = (struct vxge_fifo *)userdata;
skb_frag_t *frag;
int i = 0, j, frg_cnt;
struct vxge_tx_priv *txd_priv = vxge_hw_fifo_txdl_private_get(dtrh);
struct sk_buff *skb = txd_priv->skb;
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
if (state != VXGE_HW_TXDL_STATE_POSTED)
return;
/* check skb validity */
vxge_assert(skb);
frg_cnt = skb_shinfo(skb)->nr_frags;
frag = &skb_shinfo(skb)->frags[0];
/* for unfragmented skb */
pci_unmap_single(fifo->pdev, txd_priv->dma_buffers[i++],
skb_headlen(skb), PCI_DMA_TODEVICE);
for (j = 0; j < frg_cnt; j++) {
pci_unmap_page(fifo->pdev, txd_priv->dma_buffers[i++],
frag->size, PCI_DMA_TODEVICE);
frag += 1;
}
dev_kfree_skb(skb);
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
}
/**
* vxge_set_multicast
* @dev: pointer to the device structure
*
* Entry point for multicast address enable/disable
* This function is a driver entry point which gets called by the kernel
* whenever multicast addresses must be enabled/disabled. This also gets
* called to set/reset promiscuous mode. Depending on the deivce flag, we
* determine, if multicast address must be enabled or if promiscuous mode
* is to be disabled etc.
*/
static void vxge_set_multicast(struct net_device *dev)
{
struct dev_mc_list *mclist;
struct vxgedev *vdev;
int i, mcast_cnt = 0;
struct __vxge_hw_device *hldev;
enum vxge_hw_status status = VXGE_HW_OK;
struct macInfo mac_info;
int vpath_idx = 0;
struct vxge_mac_addrs *mac_entry;
struct list_head *list_head;
struct list_head *entry, *next;
u8 *mac_address = NULL;
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d", __func__, __LINE__);
vdev = (struct vxgedev *)netdev_priv(dev);
hldev = (struct __vxge_hw_device *)vdev->devh;
if (unlikely(!is_vxge_card_up(vdev)))
return;
if ((dev->flags & IFF_ALLMULTI) && (!vdev->all_multi_flg)) {
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_assert(vdev->vpaths[i].is_open);
status = vxge_hw_vpath_mcast_enable(
vdev->vpaths[i].handle);
vdev->all_multi_flg = 1;
}
} else if ((dev->flags & IFF_ALLMULTI) && (vdev->all_multi_flg)) {
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_assert(vdev->vpaths[i].is_open);
status = vxge_hw_vpath_mcast_disable(
vdev->vpaths[i].handle);
vdev->all_multi_flg = 1;
}
}
if (status != VXGE_HW_OK)
vxge_debug_init(VXGE_ERR,
"failed to %s multicast, status %d",
dev->flags & IFF_ALLMULTI ?
"enable" : "disable", status);
if (!vdev->config.addr_learn_en) {
if (dev->flags & IFF_PROMISC) {
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_assert(vdev->vpaths[i].is_open);
status = vxge_hw_vpath_promisc_enable(
vdev->vpaths[i].handle);
}
} else {
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_assert(vdev->vpaths[i].is_open);
status = vxge_hw_vpath_promisc_disable(
vdev->vpaths[i].handle);
}
}
}
memset(&mac_info, 0, sizeof(struct macInfo));
/* Update individual M_CAST address list */
if ((!vdev->all_multi_flg) && dev->mc_count) {
mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
list_head = &vdev->vpaths[0].mac_addr_list;
if ((dev->mc_count +
(vdev->vpaths[0].mac_addr_cnt - mcast_cnt)) >
vdev->vpaths[0].max_mac_addr_cnt)
goto _set_all_mcast;
/* Delete previous MC's */
for (i = 0; i < mcast_cnt; i++) {
if (!list_empty(list_head))
mac_entry = (struct vxge_mac_addrs *)
list_first_entry(list_head,
struct vxge_mac_addrs,
item);
list_for_each_safe(entry, next, list_head) {
mac_entry = (struct vxge_mac_addrs *) entry;
/* Copy the mac address to delete */
mac_address = (u8 *)&mac_entry->macaddr;
memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
/* Is this a multicast address */
if (0x01 & mac_info.macaddr[0]) {
for (vpath_idx = 0; vpath_idx <
vdev->no_of_vpath;
vpath_idx++) {
mac_info.vpath_no = vpath_idx;
status = vxge_del_mac_addr(
vdev,
&mac_info);
}
}
}
}
/* Add new ones */
for (i = 0, mclist = dev->mc_list; i < dev->mc_count;
i++, mclist = mclist->next) {
memcpy(mac_info.macaddr, mclist->dmi_addr, ETH_ALEN);
for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
vpath_idx++) {
mac_info.vpath_no = vpath_idx;
mac_info.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
status = vxge_add_mac_addr(vdev, &mac_info);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"%s:%d Setting individual"
"multicast address failed",
__func__, __LINE__);
goto _set_all_mcast;
}
}
}
return;
_set_all_mcast:
mcast_cnt = vdev->vpaths[0].mcast_addr_cnt;
/* Delete previous MC's */
for (i = 0; i < mcast_cnt; i++) {
list_for_each_safe(entry, next, list_head) {
mac_entry = (struct vxge_mac_addrs *) entry;
/* Copy the mac address to delete */
mac_address = (u8 *)&mac_entry->macaddr;
memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
/* Is this a multicast address */
if (0x01 & mac_info.macaddr[0])
break;
}
for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath;
vpath_idx++) {
mac_info.vpath_no = vpath_idx;
status = vxge_del_mac_addr(vdev, &mac_info);
}
}
/* Enable all multicast */
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_assert(vdev->vpaths[i].is_open);
status = vxge_hw_vpath_mcast_enable(
vdev->vpaths[i].handle);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"%s:%d Enabling all multicasts failed",
__func__, __LINE__);
}
vdev->all_multi_flg = 1;
}
dev->flags |= IFF_ALLMULTI;
}
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
}
/**
* vxge_set_mac_addr
* @dev: pointer to the device structure
*
* Update entry "0" (default MAC addr)
*/
static int vxge_set_mac_addr(struct net_device *dev, void *p)
{
struct sockaddr *addr = p;
struct vxgedev *vdev;
struct __vxge_hw_device *hldev;
enum vxge_hw_status status = VXGE_HW_OK;
struct macInfo mac_info_new, mac_info_old;
int vpath_idx = 0;
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
vdev = (struct vxgedev *)netdev_priv(dev);
hldev = vdev->devh;
if (!is_valid_ether_addr(addr->sa_data))
return -EINVAL;
memset(&mac_info_new, 0, sizeof(struct macInfo));
memset(&mac_info_old, 0, sizeof(struct macInfo));
vxge_debug_entryexit(VXGE_TRACE, "%s:%d Exiting...",
__func__, __LINE__);
/* Get the old address */
memcpy(mac_info_old.macaddr, dev->dev_addr, dev->addr_len);
/* Copy the new address */
memcpy(mac_info_new.macaddr, addr->sa_data, dev->addr_len);
/* First delete the old mac address from all the vpaths
as we can't specify the index while adding new mac address */
for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
struct vxge_vpath *vpath = &vdev->vpaths[vpath_idx];
if (!vpath->is_open) {
/* This can happen when this interface is added/removed
to the bonding interface. Delete this station address
from the linked list */
vxge_mac_list_del(vpath, &mac_info_old);
/* Add this new address to the linked list
for later restoring */
vxge_mac_list_add(vpath, &mac_info_new);
continue;
}
/* Delete the station address */
mac_info_old.vpath_no = vpath_idx;
status = vxge_del_mac_addr(vdev, &mac_info_old);
}
if (unlikely(!is_vxge_card_up(vdev))) {
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return VXGE_HW_OK;
}
/* Set this mac address to all the vpaths */
for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++) {
mac_info_new.vpath_no = vpath_idx;
mac_info_new.state = VXGE_LL_MAC_ADDR_IN_DA_TABLE;
status = vxge_add_mac_addr(vdev, &mac_info_new);
if (status != VXGE_HW_OK)
return -EINVAL;
}
memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
return status;
}
/*
* vxge_vpath_intr_enable
* @vdev: pointer to vdev
* @vp_id: vpath for which to enable the interrupts
*
* Enables the interrupts for the vpath
*/
void vxge_vpath_intr_enable(struct vxgedev *vdev, int vp_id)
{
struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
int msix_id, alarm_msix_id;
int tim_msix_id[4] = {[0 ...3] = 0};
vxge_hw_vpath_intr_enable(vpath->handle);
if (vdev->config.intr_type == INTA)
vxge_hw_vpath_inta_unmask_tx_rx(vpath->handle);
else {
msix_id = vp_id * VXGE_HW_VPATH_MSIX_ACTIVE;
alarm_msix_id =
VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
tim_msix_id[0] = msix_id;
tim_msix_id[1] = msix_id + 1;
vxge_hw_vpath_msix_set(vpath->handle, tim_msix_id,
alarm_msix_id);
vxge_hw_vpath_msix_unmask(vpath->handle, msix_id);
vxge_hw_vpath_msix_unmask(vpath->handle, msix_id + 1);
/* enable the alarm vector */
vxge_hw_vpath_msix_unmask(vpath->handle, alarm_msix_id);
}
}
/*
* vxge_vpath_intr_disable
* @vdev: pointer to vdev
* @vp_id: vpath for which to disable the interrupts
*
* Disables the interrupts for the vpath
*/
void vxge_vpath_intr_disable(struct vxgedev *vdev, int vp_id)
{
struct vxge_vpath *vpath = &vdev->vpaths[vp_id];
int msix_id;
vxge_hw_vpath_intr_disable(vpath->handle);
if (vdev->config.intr_type == INTA)
vxge_hw_vpath_inta_mask_tx_rx(vpath->handle);
else {
msix_id = vp_id * VXGE_HW_VPATH_MSIX_ACTIVE;
vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
vxge_hw_vpath_msix_mask(vpath->handle, msix_id + 1);
/* disable the alarm vector */
msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
vxge_hw_vpath_msix_mask(vpath->handle, msix_id);
}
}
/*
* vxge_reset_vpath
* @vdev: pointer to vdev
* @vp_id: vpath to reset
*
* Resets the vpath
*/
static int vxge_reset_vpath(struct vxgedev *vdev, int vp_id)
{
enum vxge_hw_status status = VXGE_HW_OK;
int ret = 0;
/* check if device is down already */
if (unlikely(!is_vxge_card_up(vdev)))
return 0;
/* is device reset already scheduled */
if (test_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
return 0;
if (vdev->vpaths[vp_id].handle) {
if (vxge_hw_vpath_reset(vdev->vpaths[vp_id].handle)
== VXGE_HW_OK) {
if (is_vxge_card_up(vdev) &&
vxge_hw_vpath_recover_from_reset(
vdev->vpaths[vp_id].handle)
!= VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"vxge_hw_vpath_recover_from_reset"
"failed for vpath:%d", vp_id);
return status;
}
} else {
vxge_debug_init(VXGE_ERR,
"vxge_hw_vpath_reset failed for"
"vpath:%d", vp_id);
return status;
}
} else
return VXGE_HW_FAIL;
vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]);
vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]);
/* Enable all broadcast */
vxge_hw_vpath_bcast_enable(vdev->vpaths[vp_id].handle);
/* Enable the interrupts */
vxge_vpath_intr_enable(vdev, vp_id);
smp_wmb();
/* Enable the flow of traffic through the vpath */
vxge_hw_vpath_enable(vdev->vpaths[vp_id].handle);
smp_wmb();
vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[vp_id].handle);
vdev->vpaths[vp_id].ring.last_status = VXGE_HW_OK;
/* Vpath reset done */
clear_bit(vp_id, &vdev->vp_reset);
/* Start the vpath queue */
vxge_wake_tx_queue(&vdev->vpaths[vp_id].fifo, NULL);
return ret;
}
static int do_vxge_reset(struct vxgedev *vdev, int event)
{
enum vxge_hw_status status;
int ret = 0, vp_id, i;
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET)) {
/* check if device is down already */
if (unlikely(!is_vxge_card_up(vdev)))
return 0;
/* is reset already scheduled */
if (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
return 0;
}
if (event == VXGE_LL_FULL_RESET) {
/* wait for all the vpath reset to complete */
for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
while (test_bit(vp_id, &vdev->vp_reset))
msleep(50);
}
/* if execution mode is set to debug, don't reset the adapter */
if (unlikely(vdev->exec_mode)) {
vxge_debug_init(VXGE_ERR,
"%s: execution mode is debug, returning..",
vdev->ndev->name);
clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
vxge_stop_all_tx_queue(vdev);
return 0;
}
}
if (event == VXGE_LL_FULL_RESET) {
vxge_hw_device_intr_disable(vdev->devh);
switch (vdev->cric_err_event) {
case VXGE_HW_EVENT_UNKNOWN:
vxge_stop_all_tx_queue(vdev);
vxge_debug_init(VXGE_ERR,
"fatal: %s: Disabling device due to"
"unknown error",
vdev->ndev->name);
ret = -EPERM;
goto out;
case VXGE_HW_EVENT_RESET_START:
break;
case VXGE_HW_EVENT_RESET_COMPLETE:
case VXGE_HW_EVENT_LINK_DOWN:
case VXGE_HW_EVENT_LINK_UP:
case VXGE_HW_EVENT_ALARM_CLEARED:
case VXGE_HW_EVENT_ECCERR:
case VXGE_HW_EVENT_MRPCIM_ECCERR:
ret = -EPERM;
goto out;
case VXGE_HW_EVENT_FIFO_ERR:
case VXGE_HW_EVENT_VPATH_ERR:
break;
case VXGE_HW_EVENT_CRITICAL_ERR:
vxge_stop_all_tx_queue(vdev);
vxge_debug_init(VXGE_ERR,
"fatal: %s: Disabling device due to"
"serious error",
vdev->ndev->name);
/* SOP or device reset required */
/* This event is not currently used */
ret = -EPERM;
goto out;
case VXGE_HW_EVENT_SERR:
vxge_stop_all_tx_queue(vdev);
vxge_debug_init(VXGE_ERR,
"fatal: %s: Disabling device due to"
"serious error",
vdev->ndev->name);
ret = -EPERM;
goto out;
case VXGE_HW_EVENT_SRPCIM_SERR:
case VXGE_HW_EVENT_MRPCIM_SERR:
ret = -EPERM;
goto out;
case VXGE_HW_EVENT_SLOT_FREEZE:
vxge_stop_all_tx_queue(vdev);
vxge_debug_init(VXGE_ERR,
"fatal: %s: Disabling device due to"
"slot freeze",
vdev->ndev->name);
ret = -EPERM;
goto out;
default:
break;
}
}
if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_START_RESET))
vxge_stop_all_tx_queue(vdev);
if (event == VXGE_LL_FULL_RESET) {
status = vxge_reset_all_vpaths(vdev);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"fatal: %s: can not reset vpaths",
vdev->ndev->name);
ret = -EPERM;
goto out;
}
}
if (event == VXGE_LL_COMPL_RESET) {
for (i = 0; i < vdev->no_of_vpath; i++)
if (vdev->vpaths[i].handle) {
if (vxge_hw_vpath_recover_from_reset(
vdev->vpaths[i].handle)
!= VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"vxge_hw_vpath_recover_"
"from_reset failed for vpath: "
"%d", i);
ret = -EPERM;
goto out;
}
} else {
vxge_debug_init(VXGE_ERR,
"vxge_hw_vpath_reset failed for "
"vpath:%d", i);
ret = -EPERM;
goto out;
}
}
if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET)) {
/* Reprogram the DA table with populated mac addresses */
for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
vxge_restore_vpath_mac_addr(&vdev->vpaths[vp_id]);
vxge_restore_vpath_vid_table(&vdev->vpaths[vp_id]);
}
/* enable vpath interrupts */
for (i = 0; i < vdev->no_of_vpath; i++)
vxge_vpath_intr_enable(vdev, i);
vxge_hw_device_intr_enable(vdev->devh);
smp_wmb();
/* Indicate card up */
set_bit(__VXGE_STATE_CARD_UP, &vdev->state);
/* Get the traffic to flow through the vpaths */
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_hw_vpath_enable(vdev->vpaths[i].handle);
smp_wmb();
vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle);
}
vxge_wake_all_tx_queue(vdev);
}
out:
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
/* Indicate reset done */
if ((event == VXGE_LL_FULL_RESET) || (event == VXGE_LL_COMPL_RESET))
clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);
return ret;
}
/*
* vxge_reset
* @vdev: pointer to ll device
*
* driver may reset the chip on events of serr, eccerr, etc
*/
int vxge_reset(struct vxgedev *vdev)
{
do_vxge_reset(vdev, VXGE_LL_FULL_RESET);
return 0;
}
/**
* vxge_poll - Receive handler when Receive Polling is used.
* @dev: pointer to the device structure.
* @budget: Number of packets budgeted to be processed in this iteration.
*
* This function comes into picture only if Receive side is being handled
* through polling (called NAPI in linux). It mostly does what the normal
* Rx interrupt handler does in terms of descriptor and packet processing
* but not in an interrupt context. Also it will process a specified number
* of packets at most in one iteration. This value is passed down by the
* kernel as the function argument 'budget'.
*/
static int vxge_poll_msix(struct napi_struct *napi, int budget)
{
struct vxge_ring *ring =
container_of(napi, struct vxge_ring, napi);
int budget_org = budget;
ring->budget = budget;
vxge_hw_vpath_poll_rx(ring->handle);
if (ring->pkts_processed < budget_org) {
napi_complete(napi);
/* Re enable the Rx interrupts for the vpath */
vxge_hw_channel_msix_unmask(
(struct __vxge_hw_channel *)ring->handle,
ring->rx_vector_no);
}
return ring->pkts_processed;
}
static int vxge_poll_inta(struct napi_struct *napi, int budget)
{
struct vxgedev *vdev = container_of(napi, struct vxgedev, napi);
int pkts_processed = 0;
int i;
int budget_org = budget;
struct vxge_ring *ring;
struct __vxge_hw_device *hldev = (struct __vxge_hw_device *)
pci_get_drvdata(vdev->pdev);
for (i = 0; i < vdev->no_of_vpath; i++) {
ring = &vdev->vpaths[i].ring;
ring->budget = budget;
vxge_hw_vpath_poll_rx(ring->handle);
pkts_processed += ring->pkts_processed;
budget -= ring->pkts_processed;
if (budget <= 0)
break;
}
VXGE_COMPLETE_ALL_TX(vdev);
if (pkts_processed < budget_org) {
napi_complete(napi);
/* Re enable the Rx interrupts for the ring */
vxge_hw_device_unmask_all(hldev);
vxge_hw_device_flush_io(hldev);
}
return pkts_processed;
}
#ifdef CONFIG_NET_POLL_CONTROLLER
/**
* vxge_netpoll - netpoll event handler entry point
* @dev : pointer to the device structure.
* Description:
* This function will be called by upper layer to check for events on the
* interface in situations where interrupts are disabled. It is used for
* specific in-kernel networking tasks, such as remote consoles and kernel
* debugging over the network (example netdump in RedHat).
*/
static void vxge_netpoll(struct net_device *dev)
{
struct __vxge_hw_device *hldev;
struct vxgedev *vdev;
vdev = (struct vxgedev *)netdev_priv(dev);
hldev = (struct __vxge_hw_device *)pci_get_drvdata(vdev->pdev);
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
if (pci_channel_offline(vdev->pdev))
return;
disable_irq(dev->irq);
vxge_hw_device_clear_tx_rx(hldev);
vxge_hw_device_clear_tx_rx(hldev);
VXGE_COMPLETE_ALL_RX(vdev);
VXGE_COMPLETE_ALL_TX(vdev);
enable_irq(dev->irq);
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
return;
}
#endif
/* RTH configuration */
static enum vxge_hw_status vxge_rth_configure(struct vxgedev *vdev)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_hw_rth_hash_types hash_types;
u8 itable[256] = {0}; /* indirection table */
u8 mtable[256] = {0}; /* CPU to vpath mapping */
int index;
/*
* Filling
* - itable with bucket numbers
* - mtable with bucket-to-vpath mapping
*/
for (index = 0; index < (1 << vdev->config.rth_bkt_sz); index++) {
itable[index] = index;
mtable[index] = index % vdev->no_of_vpath;
}
/* Fill RTH hash types */
hash_types.hash_type_tcpipv4_en = vdev->config.rth_hash_type_tcpipv4;
hash_types.hash_type_ipv4_en = vdev->config.rth_hash_type_ipv4;
hash_types.hash_type_tcpipv6_en = vdev->config.rth_hash_type_tcpipv6;
hash_types.hash_type_ipv6_en = vdev->config.rth_hash_type_ipv6;
hash_types.hash_type_tcpipv6ex_en =
vdev->config.rth_hash_type_tcpipv6ex;
hash_types.hash_type_ipv6ex_en = vdev->config.rth_hash_type_ipv6ex;
/* set indirection table, bucket-to-vpath mapping */
status = vxge_hw_vpath_rts_rth_itable_set(vdev->vp_handles,
vdev->no_of_vpath,
mtable, itable,
vdev->config.rth_bkt_sz);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"RTH indirection table configuration failed "
"for vpath:%d", vdev->vpaths[0].device_id);
return status;
}
/*
* Because the itable_set() method uses the active_table field
* for the target virtual path the RTH config should be updated
* for all VPATHs. The h/w only uses the lowest numbered VPATH
* when steering frames.
*/
for (index = 0; index < vdev->no_of_vpath; index++) {
status = vxge_hw_vpath_rts_rth_set(
vdev->vpaths[index].handle,
vdev->config.rth_algorithm,
&hash_types,
vdev->config.rth_bkt_sz);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"RTH configuration failed for vpath:%d",
vdev->vpaths[index].device_id);
return status;
}
}
return status;
}
int vxge_mac_list_add(struct vxge_vpath *vpath, struct macInfo *mac)
{
struct vxge_mac_addrs *new_mac_entry;
u8 *mac_address = NULL;
if (vpath->mac_addr_cnt >= VXGE_MAX_LEARN_MAC_ADDR_CNT)
return TRUE;
new_mac_entry = kzalloc(sizeof(struct vxge_mac_addrs), GFP_ATOMIC);
if (!new_mac_entry) {
vxge_debug_mem(VXGE_ERR,
"%s: memory allocation failed",
VXGE_DRIVER_NAME);
return FALSE;
}
list_add(&new_mac_entry->item, &vpath->mac_addr_list);
/* Copy the new mac address to the list */
mac_address = (u8 *)&new_mac_entry->macaddr;
memcpy(mac_address, mac->macaddr, ETH_ALEN);
new_mac_entry->state = mac->state;
vpath->mac_addr_cnt++;
/* Is this a multicast address */
if (0x01 & mac->macaddr[0])
vpath->mcast_addr_cnt++;
return TRUE;
}
/* Add a mac address to DA table */
enum vxge_hw_status vxge_add_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_vpath *vpath;
enum vxge_hw_vpath_mac_addr_add_mode duplicate_mode;
if (0x01 & mac->macaddr[0]) /* multicast address */
duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE;
else
duplicate_mode = VXGE_HW_VPATH_MAC_ADDR_REPLACE_DUPLICATE;
vpath = &vdev->vpaths[mac->vpath_no];
status = vxge_hw_vpath_mac_addr_add(vpath->handle, mac->macaddr,
mac->macmask, duplicate_mode);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"DA config add entry failed for vpath:%d",
vpath->device_id);
} else
if (FALSE == vxge_mac_list_add(vpath, mac))
status = -EPERM;
return status;
}
int vxge_mac_list_del(struct vxge_vpath *vpath, struct macInfo *mac)
{
struct list_head *entry, *next;
u64 del_mac = 0;
u8 *mac_address = (u8 *) (&del_mac);
/* Copy the mac address to delete from the list */
memcpy(mac_address, mac->macaddr, ETH_ALEN);
list_for_each_safe(entry, next, &vpath->mac_addr_list) {
if (((struct vxge_mac_addrs *)entry)->macaddr == del_mac) {
list_del(entry);
kfree((struct vxge_mac_addrs *)entry);
vpath->mac_addr_cnt--;
/* Is this a multicast address */
if (0x01 & mac->macaddr[0])
vpath->mcast_addr_cnt--;
return TRUE;
}
}
return FALSE;
}
/* delete a mac address from DA table */
enum vxge_hw_status vxge_del_mac_addr(struct vxgedev *vdev, struct macInfo *mac)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct vxge_vpath *vpath;
vpath = &vdev->vpaths[mac->vpath_no];
status = vxge_hw_vpath_mac_addr_delete(vpath->handle, mac->macaddr,
mac->macmask);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"DA config delete entry failed for vpath:%d",
vpath->device_id);
} else
vxge_mac_list_del(vpath, mac);
return status;
}
/* list all mac addresses from DA table */
enum vxge_hw_status
static vxge_search_mac_addr_in_da_table(struct vxge_vpath *vpath,
struct macInfo *mac)
{
enum vxge_hw_status status = VXGE_HW_OK;
unsigned char macmask[ETH_ALEN];
unsigned char macaddr[ETH_ALEN];
status = vxge_hw_vpath_mac_addr_get(vpath->handle,
macaddr, macmask);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"DA config list entry failed for vpath:%d",
vpath->device_id);
return status;
}
while (memcmp(mac->macaddr, macaddr, ETH_ALEN)) {
status = vxge_hw_vpath_mac_addr_get_next(vpath->handle,
macaddr, macmask);
if (status != VXGE_HW_OK)
break;
}
return status;
}
/* Store all vlan ids from the list to the vid table */
enum vxge_hw_status vxge_restore_vpath_vid_table(struct vxge_vpath *vpath)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct vxgedev *vdev = vpath->vdev;
u16 vid;
if (vdev->vlgrp && vpath->is_open) {
for (vid = 0; vid < VLAN_GROUP_ARRAY_LEN; vid++) {
if (!vlan_group_get_device(vdev->vlgrp, vid))
continue;
/* Add these vlan to the vid table */
status = vxge_hw_vpath_vid_add(vpath->handle, vid);
}
}
return status;
}
/* Store all mac addresses from the list to the DA table */
enum vxge_hw_status vxge_restore_vpath_mac_addr(struct vxge_vpath *vpath)
{
enum vxge_hw_status status = VXGE_HW_OK;
struct macInfo mac_info;
u8 *mac_address = NULL;
struct list_head *entry, *next;
memset(&mac_info, 0, sizeof(struct macInfo));
if (vpath->is_open) {
list_for_each_safe(entry, next, &vpath->mac_addr_list) {
mac_address =
(u8 *)&
((struct vxge_mac_addrs *)entry)->macaddr;
memcpy(mac_info.macaddr, mac_address, ETH_ALEN);
((struct vxge_mac_addrs *)entry)->state =
VXGE_LL_MAC_ADDR_IN_DA_TABLE;
/* does this mac address already exist in da table? */
status = vxge_search_mac_addr_in_da_table(vpath,
&mac_info);
if (status != VXGE_HW_OK) {
/* Add this mac address to the DA table */
status = vxge_hw_vpath_mac_addr_add(
vpath->handle, mac_info.macaddr,
mac_info.macmask,
VXGE_HW_VPATH_MAC_ADDR_ADD_DUPLICATE);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"DA add entry failed for vpath:%d",
vpath->device_id);
((struct vxge_mac_addrs *)entry)->state
= VXGE_LL_MAC_ADDR_IN_LIST;
}
}
}
}
return status;
}
/* reset vpaths */
enum vxge_hw_status vxge_reset_all_vpaths(struct vxgedev *vdev)
{
int i;
enum vxge_hw_status status = VXGE_HW_OK;
for (i = 0; i < vdev->no_of_vpath; i++)
if (vdev->vpaths[i].handle) {
if (vxge_hw_vpath_reset(vdev->vpaths[i].handle)
== VXGE_HW_OK) {
if (is_vxge_card_up(vdev) &&
vxge_hw_vpath_recover_from_reset(
vdev->vpaths[i].handle)
!= VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"vxge_hw_vpath_recover_"
"from_reset failed for vpath: "
"%d", i);
return status;
}
} else {
vxge_debug_init(VXGE_ERR,
"vxge_hw_vpath_reset failed for "
"vpath:%d", i);
return status;
}
}
return status;
}
/* close vpaths */
void vxge_close_vpaths(struct vxgedev *vdev, int index)
{
int i;
for (i = index; i < vdev->no_of_vpath; i++) {
if (vdev->vpaths[i].handle && vdev->vpaths[i].is_open) {
vxge_hw_vpath_close(vdev->vpaths[i].handle);
vdev->stats.vpaths_open--;
}
vdev->vpaths[i].is_open = 0;
vdev->vpaths[i].handle = NULL;
}
}
/* open vpaths */
int vxge_open_vpaths(struct vxgedev *vdev)
{
enum vxge_hw_status status;
int i;
u32 vp_id = 0;
struct vxge_hw_vpath_attr attr;
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_assert(vdev->vpaths[i].is_configured);
attr.vp_id = vdev->vpaths[i].device_id;
attr.fifo_attr.callback = vxge_xmit_compl;
attr.fifo_attr.txdl_term = vxge_tx_term;
attr.fifo_attr.per_txdl_space = sizeof(struct vxge_tx_priv);
attr.fifo_attr.userdata = (void *)&vdev->vpaths[i].fifo;
attr.ring_attr.callback = vxge_rx_1b_compl;
attr.ring_attr.rxd_init = vxge_rx_initial_replenish;
attr.ring_attr.rxd_term = vxge_rx_term;
attr.ring_attr.per_rxd_space = sizeof(struct vxge_rx_priv);
attr.ring_attr.userdata = (void *)&vdev->vpaths[i].ring;
vdev->vpaths[i].ring.ndev = vdev->ndev;
vdev->vpaths[i].ring.pdev = vdev->pdev;
status = vxge_hw_vpath_open(vdev->devh, &attr,
&(vdev->vpaths[i].handle));
if (status == VXGE_HW_OK) {
vdev->vpaths[i].fifo.handle =
(struct __vxge_hw_fifo *)attr.fifo_attr.userdata;
vdev->vpaths[i].ring.handle =
(struct __vxge_hw_ring *)attr.ring_attr.userdata;
vdev->vpaths[i].fifo.tx_steering_type =
vdev->config.tx_steering_type;
vdev->vpaths[i].fifo.ndev = vdev->ndev;
vdev->vpaths[i].fifo.pdev = vdev->pdev;
vdev->vpaths[i].fifo.indicate_max_pkts =
vdev->config.fifo_indicate_max_pkts;
vdev->vpaths[i].ring.rx_vector_no = 0;
vdev->vpaths[i].ring.rx_csum = vdev->rx_csum;
vdev->vpaths[i].is_open = 1;
vdev->vp_handles[i] = vdev->vpaths[i].handle;
vdev->vpaths[i].ring.gro_enable =
vdev->config.gro_enable;
vdev->vpaths[i].ring.vlan_tag_strip =
vdev->vlan_tag_strip;
vdev->stats.vpaths_open++;
} else {
vdev->stats.vpath_open_fail++;
vxge_debug_init(VXGE_ERR,
"%s: vpath: %d failed to open "
"with status: %d",
vdev->ndev->name, vdev->vpaths[i].device_id,
status);
vxge_close_vpaths(vdev, 0);
return -EPERM;
}
vp_id =
((struct __vxge_hw_vpath_handle *)vdev->vpaths[i].handle)->
vpath->vp_id;
vdev->vpaths_deployed |= vxge_mBIT(vp_id);
}
return VXGE_HW_OK;
}
/*
* vxge_isr_napi
* @irq: the irq of the device.
* @dev_id: a void pointer to the hldev structure of the Titan device
* @ptregs: pointer to the registers pushed on the stack.
*
* This function is the ISR handler of the device when napi is enabled. It
* identifies the reason for the interrupt and calls the relevant service
* routines.
*/
static irqreturn_t vxge_isr_napi(int irq, void *dev_id)
{
struct __vxge_hw_device *hldev = (struct __vxge_hw_device *)dev_id;
struct vxgedev *vdev;
struct net_device *dev;
u64 reason;
enum vxge_hw_status status;
vxge_debug_intr(VXGE_TRACE, "%s:%d", __func__, __LINE__);
dev = hldev->ndev;
vdev = netdev_priv(dev);
if (pci_channel_offline(vdev->pdev))
return IRQ_NONE;
if (unlikely(!is_vxge_card_up(vdev)))
return IRQ_NONE;
status = vxge_hw_device_begin_irq(hldev, vdev->exec_mode,
&reason);
if (status == VXGE_HW_OK) {
vxge_hw_device_mask_all(hldev);
if (reason &
VXGE_HW_TITAN_GENERAL_INT_STATUS_VPATH_TRAFFIC_INT(
vdev->vpaths_deployed >>
(64 - VXGE_HW_MAX_VIRTUAL_PATHS))) {
vxge_hw_device_clear_tx_rx(hldev);
napi_schedule(&vdev->napi);
vxge_debug_intr(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
return IRQ_HANDLED;
} else
vxge_hw_device_unmask_all(hldev);
} else if (unlikely((status == VXGE_HW_ERR_VPATH) ||
(status == VXGE_HW_ERR_CRITICAL) ||
(status == VXGE_HW_ERR_FIFO))) {
vxge_hw_device_mask_all(hldev);
vxge_hw_device_flush_io(hldev);
return IRQ_HANDLED;
} else if (unlikely(status == VXGE_HW_ERR_SLOT_FREEZE))
return IRQ_HANDLED;
vxge_debug_intr(VXGE_TRACE, "%s:%d Exiting...", __func__, __LINE__);
return IRQ_NONE;
}
#ifdef CONFIG_PCI_MSI
static irqreturn_t
vxge_tx_msix_handle(int irq, void *dev_id)
{
struct vxge_fifo *fifo = (struct vxge_fifo *)dev_id;
VXGE_COMPLETE_VPATH_TX(fifo);
return IRQ_HANDLED;
}
static irqreturn_t
vxge_rx_msix_napi_handle(int irq, void *dev_id)
{
struct vxge_ring *ring = (struct vxge_ring *)dev_id;
/* MSIX_IDX for Rx is 1 */
vxge_hw_channel_msix_mask((struct __vxge_hw_channel *)ring->handle,
ring->rx_vector_no);
napi_schedule(&ring->napi);
return IRQ_HANDLED;
}
static irqreturn_t
vxge_alarm_msix_handle(int irq, void *dev_id)
{
int i;
enum vxge_hw_status status;
struct vxge_vpath *vpath = (struct vxge_vpath *)dev_id;
struct vxgedev *vdev = vpath->vdev;
int alarm_msix_id =
VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_hw_vpath_msix_mask(vdev->vpaths[i].handle,
alarm_msix_id);
status = vxge_hw_vpath_alarm_process(vdev->vpaths[i].handle,
vdev->exec_mode);
if (status == VXGE_HW_OK) {
vxge_hw_vpath_msix_unmask(vdev->vpaths[i].handle,
alarm_msix_id);
continue;
}
vxge_debug_intr(VXGE_ERR,
"%s: vxge_hw_vpath_alarm_process failed %x ",
VXGE_DRIVER_NAME, status);
}
return IRQ_HANDLED;
}
static int vxge_alloc_msix(struct vxgedev *vdev)
{
int j, i, ret = 0;
int intr_cnt = 0;
int alarm_msix_id = 0, msix_intr_vect = 0;
vdev->intr_cnt = 0;
/* Tx/Rx MSIX Vectors count */
vdev->intr_cnt = vdev->no_of_vpath * 2;
/* Alarm MSIX Vectors count */
vdev->intr_cnt++;
intr_cnt = (vdev->max_vpath_supported * 2) + 1;
vdev->entries = kzalloc(intr_cnt * sizeof(struct msix_entry),
GFP_KERNEL);
if (!vdev->entries) {
vxge_debug_init(VXGE_ERR,
"%s: memory allocation failed",
VXGE_DRIVER_NAME);
return -ENOMEM;
}
vdev->vxge_entries = kzalloc(intr_cnt * sizeof(struct vxge_msix_entry),
GFP_KERNEL);
if (!vdev->vxge_entries) {
vxge_debug_init(VXGE_ERR, "%s: memory allocation failed",
VXGE_DRIVER_NAME);
kfree(vdev->entries);
return -ENOMEM;
}
/* Last vector in the list is used for alarm */
alarm_msix_id = VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
for (i = 0, j = 0; i < vdev->max_vpath_supported; i++) {
msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE;
/* Initialize the fifo vector */
vdev->entries[j].entry = msix_intr_vect;
vdev->vxge_entries[j].entry = msix_intr_vect;
vdev->vxge_entries[j].in_use = 0;
j++;
/* Initialize the ring vector */
vdev->entries[j].entry = msix_intr_vect + 1;
vdev->vxge_entries[j].entry = msix_intr_vect + 1;
vdev->vxge_entries[j].in_use = 0;
j++;
}
/* Initialize the alarm vector */
vdev->entries[j].entry = alarm_msix_id;
vdev->vxge_entries[j].entry = alarm_msix_id;
vdev->vxge_entries[j].in_use = 0;
ret = pci_enable_msix(vdev->pdev, vdev->entries, intr_cnt);
/* if driver request exceeeds available irq's, request with a small
* number.
*/
if (ret > 0) {
vxge_debug_init(VXGE_ERR,
"%s: MSI-X enable failed for %d vectors, available: %d",
VXGE_DRIVER_NAME, intr_cnt, ret);
vdev->max_vpath_supported = vdev->no_of_vpath;
intr_cnt = (vdev->max_vpath_supported * 2) + 1;
/* Reset the alarm vector setting */
vdev->entries[j].entry = 0;
vdev->vxge_entries[j].entry = 0;
/* Initialize the alarm vector with new setting */
vdev->entries[intr_cnt - 1].entry = alarm_msix_id;
vdev->vxge_entries[intr_cnt - 1].entry = alarm_msix_id;
vdev->vxge_entries[intr_cnt - 1].in_use = 0;
ret = pci_enable_msix(vdev->pdev, vdev->entries, intr_cnt);
if (!ret)
vxge_debug_init(VXGE_ERR,
"%s: MSI-X enabled for %d vectors",
VXGE_DRIVER_NAME, intr_cnt);
}
if (ret) {
vxge_debug_init(VXGE_ERR,
"%s: MSI-X enable failed for %d vectors, ret: %d",
VXGE_DRIVER_NAME, intr_cnt, ret);
kfree(vdev->entries);
kfree(vdev->vxge_entries);
vdev->entries = NULL;
vdev->vxge_entries = NULL;
return -ENODEV;
}
return 0;
}
static int vxge_enable_msix(struct vxgedev *vdev)
{
int i, ret = 0;
enum vxge_hw_status status;
/* 0 - Tx, 1 - Rx */
int tim_msix_id[4];
int alarm_msix_id = 0, msix_intr_vect = 0;;
vdev->intr_cnt = 0;
/* allocate msix vectors */
ret = vxge_alloc_msix(vdev);
if (!ret) {
/* Last vector in the list is used for alarm */
alarm_msix_id =
VXGE_HW_VPATH_MSIX_ACTIVE * vdev->no_of_vpath - 2;
for (i = 0; i < vdev->no_of_vpath; i++) {
/* If fifo or ring are not enabled
the MSIX vector for that should be set to 0
Hence initializeing this array to all 0s.
*/
memset(tim_msix_id, 0, sizeof(tim_msix_id));
msix_intr_vect = i * VXGE_HW_VPATH_MSIX_ACTIVE;
tim_msix_id[0] = msix_intr_vect;
tim_msix_id[1] = msix_intr_vect + 1;
vdev->vpaths[i].ring.rx_vector_no = tim_msix_id[1];
status = vxge_hw_vpath_msix_set(
vdev->vpaths[i].handle,
tim_msix_id, alarm_msix_id);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"vxge_hw_vpath_msix_set "
"failed with status : %x", status);
kfree(vdev->entries);
kfree(vdev->vxge_entries);
pci_disable_msix(vdev->pdev);
return -ENODEV;
}
}
}
return ret;
}
static void vxge_rem_msix_isr(struct vxgedev *vdev)
{
int intr_cnt;
for (intr_cnt = 0; intr_cnt < (vdev->max_vpath_supported * 2 + 1);
intr_cnt++) {
if (vdev->vxge_entries[intr_cnt].in_use) {
synchronize_irq(vdev->entries[intr_cnt].vector);
free_irq(vdev->entries[intr_cnt].vector,
vdev->vxge_entries[intr_cnt].arg);
vdev->vxge_entries[intr_cnt].in_use = 0;
}
}
kfree(vdev->entries);
kfree(vdev->vxge_entries);
vdev->entries = NULL;
vdev->vxge_entries = NULL;
if (vdev->config.intr_type == MSI_X)
pci_disable_msix(vdev->pdev);
}
#endif
static void vxge_rem_isr(struct vxgedev *vdev)
{
struct __vxge_hw_device *hldev;
hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
#ifdef CONFIG_PCI_MSI
if (vdev->config.intr_type == MSI_X) {
vxge_rem_msix_isr(vdev);
} else
#endif
if (vdev->config.intr_type == INTA) {
synchronize_irq(vdev->pdev->irq);
free_irq(vdev->pdev->irq, hldev);
}
}
static int vxge_add_isr(struct vxgedev *vdev)
{
int ret = 0;
struct __vxge_hw_device *hldev =
(struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
#ifdef CONFIG_PCI_MSI
int vp_idx = 0, intr_idx = 0, intr_cnt = 0, msix_idx = 0, irq_req = 0;
u64 function_mode = vdev->config.device_hw_info.function_mode;
int pci_fun = PCI_FUNC(vdev->pdev->devfn);
if (vdev->config.intr_type == MSI_X)
ret = vxge_enable_msix(vdev);
if (ret) {
vxge_debug_init(VXGE_ERR,
"%s: Enabling MSI-X Failed", VXGE_DRIVER_NAME);
if ((function_mode == VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
test_and_set_bit(__VXGE_STATE_CARD_UP,
&driver_config->inta_dev_open))
return VXGE_HW_FAIL;
else {
vxge_debug_init(VXGE_ERR,
"%s: Defaulting to INTA", VXGE_DRIVER_NAME);
vdev->config.intr_type = INTA;
vxge_hw_device_set_intr_type(vdev->devh,
VXGE_HW_INTR_MODE_IRQLINE);
vxge_close_vpaths(vdev, 1);
vdev->no_of_vpath = 1;
vdev->stats.vpaths_open = 1;
}
}
if (vdev->config.intr_type == MSI_X) {
for (intr_idx = 0;
intr_idx < (vdev->no_of_vpath *
VXGE_HW_VPATH_MSIX_ACTIVE); intr_idx++) {
msix_idx = intr_idx % VXGE_HW_VPATH_MSIX_ACTIVE;
irq_req = 0;
switch (msix_idx) {
case 0:
snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
"%s:vxge fn: %d vpath: %d Tx MSI-X: %d",
vdev->ndev->name, pci_fun, vp_idx,
vdev->entries[intr_cnt].entry);
ret = request_irq(
vdev->entries[intr_cnt].vector,
vxge_tx_msix_handle, 0,
vdev->desc[intr_cnt],
&vdev->vpaths[vp_idx].fifo);
vdev->vxge_entries[intr_cnt].arg =
&vdev->vpaths[vp_idx].fifo;
irq_req = 1;
break;
case 1:
snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
"%s:vxge fn: %d vpath: %d Rx MSI-X: %d",
vdev->ndev->name, pci_fun, vp_idx,
vdev->entries[intr_cnt].entry);
ret = request_irq(
vdev->entries[intr_cnt].vector,
vxge_rx_msix_napi_handle,
0,
vdev->desc[intr_cnt],
&vdev->vpaths[vp_idx].ring);
vdev->vxge_entries[intr_cnt].arg =
&vdev->vpaths[vp_idx].ring;
irq_req = 1;
break;
}
if (ret) {
vxge_debug_init(VXGE_ERR,
"%s: MSIX - %d Registration failed",
vdev->ndev->name, intr_cnt);
vxge_rem_msix_isr(vdev);
if ((function_mode ==
VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
test_and_set_bit(__VXGE_STATE_CARD_UP,
&driver_config->inta_dev_open))
return VXGE_HW_FAIL;
else {
vxge_hw_device_set_intr_type(
vdev->devh,
VXGE_HW_INTR_MODE_IRQLINE);
vdev->config.intr_type = INTA;
vxge_debug_init(VXGE_ERR,
"%s: Defaulting to INTA"
, vdev->ndev->name);
vxge_close_vpaths(vdev, 1);
vdev->no_of_vpath = 1;
vdev->stats.vpaths_open = 1;
goto INTA_MODE;
}
}
if (irq_req) {
/* We requested for this msix interrupt */
vdev->vxge_entries[intr_cnt].in_use = 1;
vxge_hw_vpath_msix_unmask(
vdev->vpaths[vp_idx].handle,
intr_idx);
intr_cnt++;
}
/* Point to next vpath handler */
if (((intr_idx + 1) % VXGE_HW_VPATH_MSIX_ACTIVE == 0)
&& (vp_idx < (vdev->no_of_vpath - 1)))
vp_idx++;
}
intr_cnt = vdev->max_vpath_supported * 2;
snprintf(vdev->desc[intr_cnt], VXGE_INTR_STRLEN,
"%s:vxge Alarm fn: %d MSI-X: %d",
vdev->ndev->name, pci_fun,
vdev->entries[intr_cnt].entry);
/* For Alarm interrupts */
ret = request_irq(vdev->entries[intr_cnt].vector,
vxge_alarm_msix_handle, 0,
vdev->desc[intr_cnt],
&vdev->vpaths[vp_idx]);
if (ret) {
vxge_debug_init(VXGE_ERR,
"%s: MSIX - %d Registration failed",
vdev->ndev->name, intr_cnt);
vxge_rem_msix_isr(vdev);
if ((function_mode ==
VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
test_and_set_bit(__VXGE_STATE_CARD_UP,
&driver_config->inta_dev_open))
return VXGE_HW_FAIL;
else {
vxge_hw_device_set_intr_type(vdev->devh,
VXGE_HW_INTR_MODE_IRQLINE);
vdev->config.intr_type = INTA;
vxge_debug_init(VXGE_ERR,
"%s: Defaulting to INTA",
vdev->ndev->name);
vxge_close_vpaths(vdev, 1);
vdev->no_of_vpath = 1;
vdev->stats.vpaths_open = 1;
goto INTA_MODE;
}
}
vxge_hw_vpath_msix_unmask(vdev->vpaths[vp_idx].handle,
intr_idx - 2);
vdev->vxge_entries[intr_cnt].in_use = 1;
vdev->vxge_entries[intr_cnt].arg = &vdev->vpaths[vp_idx];
}
INTA_MODE:
#endif
snprintf(vdev->desc[0], VXGE_INTR_STRLEN, "%s:vxge", vdev->ndev->name);
if (vdev->config.intr_type == INTA) {
ret = request_irq((int) vdev->pdev->irq,
vxge_isr_napi,
IRQF_SHARED, vdev->desc[0], hldev);
if (ret) {
vxge_debug_init(VXGE_ERR,
"%s %s-%d: ISR registration failed",
VXGE_DRIVER_NAME, "IRQ", vdev->pdev->irq);
return -ENODEV;
}
vxge_debug_init(VXGE_TRACE,
"new %s-%d line allocated",
"IRQ", vdev->pdev->irq);
}
return VXGE_HW_OK;
}
static void vxge_poll_vp_reset(unsigned long data)
{
struct vxgedev *vdev = (struct vxgedev *)data;
int i, j = 0;
for (i = 0; i < vdev->no_of_vpath; i++) {
if (test_bit(i, &vdev->vp_reset)) {
vxge_reset_vpath(vdev, i);
j++;
}
}
if (j && (vdev->config.intr_type != MSI_X)) {
vxge_hw_device_unmask_all(vdev->devh);
vxge_hw_device_flush_io(vdev->devh);
}
mod_timer(&vdev->vp_reset_timer, jiffies + HZ / 2);
}
static void vxge_poll_vp_lockup(unsigned long data)
{
struct vxgedev *vdev = (struct vxgedev *)data;
int i;
struct vxge_ring *ring;
enum vxge_hw_status status = VXGE_HW_OK;
for (i = 0; i < vdev->no_of_vpath; i++) {
ring = &vdev->vpaths[i].ring;
/* Did this vpath received any packets */
if (ring->stats.prev_rx_frms == ring->stats.rx_frms) {
status = vxge_hw_vpath_check_leak(ring->handle);
/* Did it received any packets last time */
if ((VXGE_HW_FAIL == status) &&
(VXGE_HW_FAIL == ring->last_status)) {
/* schedule vpath reset */
if (!test_and_set_bit(i, &vdev->vp_reset)) {
/* disable interrupts for this vpath */
vxge_vpath_intr_disable(vdev, i);
/* stop the queue for this vpath */
vxge_stop_tx_queue(&vdev->vpaths[i].
fifo);
continue;
}
}
}
ring->stats.prev_rx_frms = ring->stats.rx_frms;
ring->last_status = status;
}
/* Check every 1 milli second */
mod_timer(&vdev->vp_lockup_timer, jiffies + HZ / 1000);
}
/**
* vxge_open
* @dev: pointer to the device structure.
*
* This function is the open entry point of the driver. It mainly calls a
* function to allocate Rx buffers and inserts them into the buffer
* descriptors and then enables the Rx part of the NIC.
* Return value: '0' on success and an appropriate (-)ve integer as
* defined in errno.h file on failure.
*/
int
vxge_open(struct net_device *dev)
{
enum vxge_hw_status status;
struct vxgedev *vdev;
struct __vxge_hw_device *hldev;
int ret = 0;
int i;
u64 val64, function_mode;
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d", dev->name, __func__, __LINE__);
vdev = (struct vxgedev *)netdev_priv(dev);
hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
function_mode = vdev->config.device_hw_info.function_mode;
/* make sure you have link off by default every time Nic is
* initialized */
netif_carrier_off(dev);
/* Check for another device already opn with INTA */
if ((function_mode == VXGE_HW_FUNCTION_MODE_MULTI_FUNCTION) &&
test_bit(__VXGE_STATE_CARD_UP, &driver_config->inta_dev_open)) {
ret = -EPERM;
goto out0;
}
/* Open VPATHs */
status = vxge_open_vpaths(vdev);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"%s: fatal: Vpath open failed", vdev->ndev->name);
ret = -EPERM;
goto out0;
}
vdev->mtu = dev->mtu;
status = vxge_add_isr(vdev);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"%s: fatal: ISR add failed", dev->name);
ret = -EPERM;
goto out1;
}
if (vdev->config.intr_type != MSI_X) {
netif_napi_add(dev, &vdev->napi, vxge_poll_inta,
vdev->config.napi_weight);
napi_enable(&vdev->napi);
} else {
for (i = 0; i < vdev->no_of_vpath; i++) {
netif_napi_add(dev, &vdev->vpaths[i].ring.napi,
vxge_poll_msix, vdev->config.napi_weight);
napi_enable(&vdev->vpaths[i].ring.napi);
}
}
/* configure RTH */
if (vdev->config.rth_steering) {
status = vxge_rth_configure(vdev);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"%s: fatal: RTH configuration failed",
dev->name);
ret = -EPERM;
goto out2;
}
}
for (i = 0; i < vdev->no_of_vpath; i++) {
/* set initial mtu before enabling the device */
status = vxge_hw_vpath_mtu_set(vdev->vpaths[i].handle,
vdev->mtu);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"%s: fatal: can not set new MTU", dev->name);
ret = -EPERM;
goto out2;
}
}
VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_TRACE, VXGE_COMPONENT_LL, vdev);
vxge_debug_init(vdev->level_trace,
"%s: MTU is %d", vdev->ndev->name, vdev->mtu);
VXGE_DEVICE_DEBUG_LEVEL_SET(VXGE_ERR, VXGE_COMPONENT_LL, vdev);
/* Reprogram the DA table with populated mac addresses */
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_restore_vpath_mac_addr(&vdev->vpaths[i]);
vxge_restore_vpath_vid_table(&vdev->vpaths[i]);
}
/* Enable vpath to sniff all unicast/multicast traffic that not
* addressed to them. We allow promiscous mode for PF only
*/
val64 = 0;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
val64 |= VXGE_HW_RXMAC_AUTHORIZE_ALL_ADDR_VP(i);
vxge_hw_mgmt_reg_write(vdev->devh,
vxge_hw_mgmt_reg_type_mrpcim,
0,
(ulong)offsetof(struct vxge_hw_mrpcim_reg,
rxmac_authorize_all_addr),
val64);
vxge_hw_mgmt_reg_write(vdev->devh,
vxge_hw_mgmt_reg_type_mrpcim,
0,
(ulong)offsetof(struct vxge_hw_mrpcim_reg,
rxmac_authorize_all_vid),
val64);
vxge_set_multicast(dev);
/* Enabling Bcast and mcast for all vpath */
for (i = 0; i < vdev->no_of_vpath; i++) {
status = vxge_hw_vpath_bcast_enable(vdev->vpaths[i].handle);
if (status != VXGE_HW_OK)
vxge_debug_init(VXGE_ERR,
"%s : Can not enable bcast for vpath "
"id %d", dev->name, i);
if (vdev->config.addr_learn_en) {
status =
vxge_hw_vpath_mcast_enable(vdev->vpaths[i].handle);
if (status != VXGE_HW_OK)
vxge_debug_init(VXGE_ERR,
"%s : Can not enable mcast for vpath "
"id %d", dev->name, i);
}
}
vxge_hw_device_setpause_data(vdev->devh, 0,
vdev->config.tx_pause_enable,
vdev->config.rx_pause_enable);
if (vdev->vp_reset_timer.function == NULL)
vxge_os_timer(vdev->vp_reset_timer,
vxge_poll_vp_reset, vdev, (HZ/2));
if (vdev->vp_lockup_timer.function == NULL)
vxge_os_timer(vdev->vp_lockup_timer,
vxge_poll_vp_lockup, vdev, (HZ/2));
set_bit(__VXGE_STATE_CARD_UP, &vdev->state);
smp_wmb();
if (vxge_hw_device_link_state_get(vdev->devh) == VXGE_HW_LINK_UP) {
netif_carrier_on(vdev->ndev);
printk(KERN_NOTICE "%s: Link Up\n", vdev->ndev->name);
vdev->stats.link_up++;
}
vxge_hw_device_intr_enable(vdev->devh);
smp_wmb();
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_hw_vpath_enable(vdev->vpaths[i].handle);
smp_wmb();
vxge_hw_vpath_rx_doorbell_init(vdev->vpaths[i].handle);
}
vxge_start_all_tx_queue(vdev);
goto out0;
out2:
vxge_rem_isr(vdev);
/* Disable napi */
if (vdev->config.intr_type != MSI_X)
napi_disable(&vdev->napi);
else {
for (i = 0; i < vdev->no_of_vpath; i++)
napi_disable(&vdev->vpaths[i].ring.napi);
}
out1:
vxge_close_vpaths(vdev, 0);
out0:
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...",
dev->name, __func__, __LINE__);
return ret;
}
/* Loop throught the mac address list and delete all the entries */
void vxge_free_mac_add_list(struct vxge_vpath *vpath)
{
struct list_head *entry, *next;
if (list_empty(&vpath->mac_addr_list))
return;
list_for_each_safe(entry, next, &vpath->mac_addr_list) {
list_del(entry);
kfree((struct vxge_mac_addrs *)entry);
}
}
static void vxge_napi_del_all(struct vxgedev *vdev)
{
int i;
if (vdev->config.intr_type != MSI_X)
netif_napi_del(&vdev->napi);
else {
for (i = 0; i < vdev->no_of_vpath; i++)
netif_napi_del(&vdev->vpaths[i].ring.napi);
}
return;
}
int do_vxge_close(struct net_device *dev, int do_io)
{
enum vxge_hw_status status;
struct vxgedev *vdev;
struct __vxge_hw_device *hldev;
int i;
u64 val64, vpath_vector;
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d",
dev->name, __func__, __LINE__);
vdev = (struct vxgedev *)netdev_priv(dev);
hldev = (struct __vxge_hw_device *) pci_get_drvdata(vdev->pdev);
/* If vxge_handle_crit_err task is executing,
* wait till it completes. */
while (test_and_set_bit(__VXGE_STATE_RESET_CARD, &vdev->state))
msleep(50);
clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
if (do_io) {
/* Put the vpath back in normal mode */
vpath_vector = vxge_mBIT(vdev->vpaths[0].device_id);
status = vxge_hw_mgmt_reg_read(vdev->devh,
vxge_hw_mgmt_reg_type_mrpcim,
0,
(ulong)offsetof(
struct vxge_hw_mrpcim_reg,
rts_mgr_cbasin_cfg),
&val64);
if (status == VXGE_HW_OK) {
val64 &= ~vpath_vector;
status = vxge_hw_mgmt_reg_write(vdev->devh,
vxge_hw_mgmt_reg_type_mrpcim,
0,
(ulong)offsetof(
struct vxge_hw_mrpcim_reg,
rts_mgr_cbasin_cfg),
val64);
}
/* Remove the function 0 from promiscous mode */
vxge_hw_mgmt_reg_write(vdev->devh,
vxge_hw_mgmt_reg_type_mrpcim,
0,
(ulong)offsetof(struct vxge_hw_mrpcim_reg,
rxmac_authorize_all_addr),
0);
vxge_hw_mgmt_reg_write(vdev->devh,
vxge_hw_mgmt_reg_type_mrpcim,
0,
(ulong)offsetof(struct vxge_hw_mrpcim_reg,
rxmac_authorize_all_vid),
0);
smp_wmb();
}
del_timer_sync(&vdev->vp_lockup_timer);
del_timer_sync(&vdev->vp_reset_timer);
/* Disable napi */
if (vdev->config.intr_type != MSI_X)
napi_disable(&vdev->napi);
else {
for (i = 0; i < vdev->no_of_vpath; i++)
napi_disable(&vdev->vpaths[i].ring.napi);
}
netif_carrier_off(vdev->ndev);
printk(KERN_NOTICE "%s: Link Down\n", vdev->ndev->name);
vxge_stop_all_tx_queue(vdev);
/* Note that at this point xmit() is stopped by upper layer */
if (do_io)
vxge_hw_device_intr_disable(vdev->devh);
mdelay(1000);
vxge_rem_isr(vdev);
vxge_napi_del_all(vdev);
if (do_io)
vxge_reset_all_vpaths(vdev);
vxge_close_vpaths(vdev, 0);
vxge_debug_entryexit(VXGE_TRACE,
"%s: %s:%d Exiting...", dev->name, __func__, __LINE__);
clear_bit(__VXGE_STATE_CARD_UP, &driver_config->inta_dev_open);
clear_bit(__VXGE_STATE_RESET_CARD, &vdev->state);
return 0;
}
/**
* vxge_close
* @dev: device pointer.
*
* This is the stop entry point of the driver. It needs to undo exactly
* whatever was done by the open entry point, thus it's usually referred to
* as the close function.Among other things this function mainly stops the
* Rx side of the NIC and frees all the Rx buffers in the Rx rings.
* Return value: '0' on success and an appropriate (-)ve integer as
* defined in errno.h file on failure.
*/
int
vxge_close(struct net_device *dev)
{
do_vxge_close(dev, 1);
return 0;
}
/**
* vxge_change_mtu
* @dev: net device pointer.
* @new_mtu :the new MTU size for the device.
*
* A driver entry point to change MTU size for the device. Before changing
* the MTU the device must be stopped.
*/
static int vxge_change_mtu(struct net_device *dev, int new_mtu)
{
struct vxgedev *vdev = netdev_priv(dev);
vxge_debug_entryexit(vdev->level_trace,
"%s:%d", __func__, __LINE__);
if ((new_mtu < VXGE_HW_MIN_MTU) || (new_mtu > VXGE_HW_MAX_MTU)) {
vxge_debug_init(vdev->level_err,
"%s: mtu size is invalid", dev->name);
return -EPERM;
}
/* check if device is down already */
if (unlikely(!is_vxge_card_up(vdev))) {
/* just store new value, will use later on open() */
dev->mtu = new_mtu;
vxge_debug_init(vdev->level_err,
"%s", "device is down on MTU change");
return 0;
}
vxge_debug_init(vdev->level_trace,
"trying to apply new MTU %d", new_mtu);
if (vxge_close(dev))
return -EIO;
dev->mtu = new_mtu;
vdev->mtu = new_mtu;
if (vxge_open(dev))
return -EIO;
vxge_debug_init(vdev->level_trace,
"%s: MTU changed to %d", vdev->ndev->name, new_mtu);
vxge_debug_entryexit(vdev->level_trace,
"%s:%d Exiting...", __func__, __LINE__);
return 0;
}
/**
* vxge_get_stats
* @dev: pointer to the device structure
*
* Updates the device statistics structure. This function updates the device
* statistics structure in the net_device structure and returns a pointer
* to the same.
*/
static struct net_device_stats *
vxge_get_stats(struct net_device *dev)
{
struct vxgedev *vdev;
struct net_device_stats *net_stats;
int k;
vdev = netdev_priv(dev);
net_stats = &vdev->stats.net_stats;
memset(net_stats, 0, sizeof(struct net_device_stats));
for (k = 0; k < vdev->no_of_vpath; k++) {
net_stats->rx_packets += vdev->vpaths[k].ring.stats.rx_frms;
net_stats->rx_bytes += vdev->vpaths[k].ring.stats.rx_bytes;
net_stats->rx_errors += vdev->vpaths[k].ring.stats.rx_errors;
net_stats->multicast += vdev->vpaths[k].ring.stats.rx_mcast;
net_stats->rx_dropped +=
vdev->vpaths[k].ring.stats.rx_dropped;
net_stats->tx_packets += vdev->vpaths[k].fifo.stats.tx_frms;
net_stats->tx_bytes += vdev->vpaths[k].fifo.stats.tx_bytes;
net_stats->tx_errors += vdev->vpaths[k].fifo.stats.tx_errors;
}
return net_stats;
}
/**
* vxge_ioctl
* @dev: Device pointer.
* @ifr: An IOCTL specific structure, that can contain a pointer to
* a proprietary structure used to pass information to the driver.
* @cmd: This is used to distinguish between the different commands that
* can be passed to the IOCTL functions.
*
* Entry point for the Ioctl.
*/
static int vxge_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
{
return -EOPNOTSUPP;
}
/**
* vxge_tx_watchdog
* @dev: pointer to net device structure
*
* Watchdog for transmit side.
* This function is triggered if the Tx Queue is stopped
* for a pre-defined amount of time when the Interface is still up.
*/
static void
vxge_tx_watchdog(struct net_device *dev)
{
struct vxgedev *vdev;
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
vdev = (struct vxgedev *)netdev_priv(dev);
vdev->cric_err_event = VXGE_HW_EVENT_RESET_START;
vxge_reset(vdev);
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
}
/**
* vxge_vlan_rx_register
* @dev: net device pointer.
* @grp: vlan group
*
* Vlan group registration
*/
static void
vxge_vlan_rx_register(struct net_device *dev, struct vlan_group *grp)
{
struct vxgedev *vdev;
struct vxge_vpath *vpath;
int vp;
u64 vid;
enum vxge_hw_status status;
int i;
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
vdev = (struct vxgedev *)netdev_priv(dev);
vpath = &vdev->vpaths[0];
if ((NULL == grp) && (vpath->is_open)) {
/* Get the first vlan */
status = vxge_hw_vpath_vid_get(vpath->handle, &vid);
while (status == VXGE_HW_OK) {
/* Delete this vlan from the vid table */
for (vp = 0; vp < vdev->no_of_vpath; vp++) {
vpath = &vdev->vpaths[vp];
if (!vpath->is_open)
continue;
vxge_hw_vpath_vid_delete(vpath->handle, vid);
}
/* Get the next vlan to be deleted */
vpath = &vdev->vpaths[0];
status = vxge_hw_vpath_vid_get(vpath->handle, &vid);
}
}
vdev->vlgrp = grp;
for (i = 0; i < vdev->no_of_vpath; i++) {
if (vdev->vpaths[i].is_configured)
vdev->vpaths[i].ring.vlgrp = grp;
}
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
}
/**
* vxge_vlan_rx_add_vid
* @dev: net device pointer.
* @vid: vid
*
* Add the vlan id to the devices vlan id table
*/
static void
vxge_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
{
struct vxgedev *vdev;
struct vxge_vpath *vpath;
int vp_id;
vdev = (struct vxgedev *)netdev_priv(dev);
/* Add these vlan to the vid table */
for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
vpath = &vdev->vpaths[vp_id];
if (!vpath->is_open)
continue;
vxge_hw_vpath_vid_add(vpath->handle, vid);
}
}
/**
* vxge_vlan_rx_add_vid
* @dev: net device pointer.
* @vid: vid
*
* Remove the vlan id from the device's vlan id table
*/
static void
vxge_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
{
struct vxgedev *vdev;
struct vxge_vpath *vpath;
int vp_id;
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
vdev = (struct vxgedev *)netdev_priv(dev);
vlan_group_set_device(vdev->vlgrp, vid, NULL);
/* Delete this vlan from the vid table */
for (vp_id = 0; vp_id < vdev->no_of_vpath; vp_id++) {
vpath = &vdev->vpaths[vp_id];
if (!vpath->is_open)
continue;
vxge_hw_vpath_vid_delete(vpath->handle, vid);
}
vxge_debug_entryexit(VXGE_TRACE,
"%s:%d Exiting...", __func__, __LINE__);
}
static const struct net_device_ops vxge_netdev_ops = {
.ndo_open = vxge_open,
.ndo_stop = vxge_close,
.ndo_get_stats = vxge_get_stats,
.ndo_start_xmit = vxge_xmit,
.ndo_validate_addr = eth_validate_addr,
.ndo_set_multicast_list = vxge_set_multicast,
.ndo_do_ioctl = vxge_ioctl,
.ndo_set_mac_address = vxge_set_mac_addr,
.ndo_change_mtu = vxge_change_mtu,
.ndo_vlan_rx_register = vxge_vlan_rx_register,
.ndo_vlan_rx_kill_vid = vxge_vlan_rx_kill_vid,
.ndo_vlan_rx_add_vid = vxge_vlan_rx_add_vid,
.ndo_tx_timeout = vxge_tx_watchdog,
#ifdef CONFIG_NET_POLL_CONTROLLER
.ndo_poll_controller = vxge_netpoll,
#endif
};
int __devinit vxge_device_register(struct __vxge_hw_device *hldev,
struct vxge_config *config,
int high_dma, int no_of_vpath,
struct vxgedev **vdev_out)
{
struct net_device *ndev;
enum vxge_hw_status status = VXGE_HW_OK;
struct vxgedev *vdev;
int i, ret = 0, no_of_queue = 1;
u64 stat;
*vdev_out = NULL;
if (config->tx_steering_type == TX_MULTIQ_STEERING)
no_of_queue = no_of_vpath;
ndev = alloc_etherdev_mq(sizeof(struct vxgedev),
no_of_queue);
if (ndev == NULL) {
vxge_debug_init(
vxge_hw_device_trace_level_get(hldev),
"%s : device allocation failed", __func__);
ret = -ENODEV;
goto _out0;
}
vxge_debug_entryexit(
vxge_hw_device_trace_level_get(hldev),
"%s: %s:%d Entering...",
ndev->name, __func__, __LINE__);
vdev = netdev_priv(ndev);
memset(vdev, 0, sizeof(struct vxgedev));
vdev->ndev = ndev;
vdev->devh = hldev;
vdev->pdev = hldev->pdev;
memcpy(&vdev->config, config, sizeof(struct vxge_config));
vdev->rx_csum = 1; /* Enable Rx CSUM by default. */
SET_NETDEV_DEV(ndev, &vdev->pdev->dev);
ndev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX |
NETIF_F_HW_VLAN_FILTER;
/* Driver entry points */
ndev->irq = vdev->pdev->irq;
ndev->base_addr = (unsigned long) hldev->bar0;
ndev->netdev_ops = &vxge_netdev_ops;
ndev->watchdog_timeo = VXGE_LL_WATCH_DOG_TIMEOUT;
initialize_ethtool_ops(ndev);
/* Allocate memory for vpath */
vdev->vpaths = kzalloc((sizeof(struct vxge_vpath)) *
no_of_vpath, GFP_KERNEL);
if (!vdev->vpaths) {
vxge_debug_init(VXGE_ERR,
"%s: vpath memory allocation failed",
vdev->ndev->name);
ret = -ENODEV;
goto _out1;
}
ndev->features |= NETIF_F_SG;
ndev->features |= NETIF_F_HW_CSUM;
vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
"%s : checksuming enabled", __func__);
if (high_dma) {
ndev->features |= NETIF_F_HIGHDMA;
vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
"%s : using High DMA", __func__);
}
ndev->features |= NETIF_F_TSO | NETIF_F_TSO6;
if (vdev->config.gro_enable)
ndev->features |= NETIF_F_GRO;
if (vdev->config.tx_steering_type == TX_MULTIQ_STEERING)
ndev->real_num_tx_queues = no_of_vpath;
#ifdef NETIF_F_LLTX
ndev->features |= NETIF_F_LLTX;
#endif
for (i = 0; i < no_of_vpath; i++)
spin_lock_init(&vdev->vpaths[i].fifo.tx_lock);
if (register_netdev(ndev)) {
vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
"%s: %s : device registration failed!",
ndev->name, __func__);
ret = -ENODEV;
goto _out2;
}
/* Set the factory defined MAC address initially */
ndev->addr_len = ETH_ALEN;
/* Make Link state as off at this point, when the Link change
* interrupt comes the state will be automatically changed to
* the right state.
*/
netif_carrier_off(ndev);
vxge_debug_init(vxge_hw_device_trace_level_get(hldev),
"%s: Ethernet device registered",
ndev->name);
*vdev_out = vdev;
/* Resetting the Device stats */
status = vxge_hw_mrpcim_stats_access(
hldev,
VXGE_HW_STATS_OP_CLEAR_ALL_STATS,
0,
0,
&stat);
if (status == VXGE_HW_ERR_PRIVILAGED_OPEARATION)
vxge_debug_init(
vxge_hw_device_trace_level_get(hldev),
"%s: device stats clear returns"
"VXGE_HW_ERR_PRIVILAGED_OPEARATION", ndev->name);
vxge_debug_entryexit(vxge_hw_device_trace_level_get(hldev),
"%s: %s:%d Exiting...",
ndev->name, __func__, __LINE__);
return ret;
_out2:
kfree(vdev->vpaths);
_out1:
free_netdev(ndev);
_out0:
return ret;
}
/*
* vxge_device_unregister
*
* This function will unregister and free network device
*/
void
vxge_device_unregister(struct __vxge_hw_device *hldev)
{
struct vxgedev *vdev;
struct net_device *dev;
char buf[IFNAMSIZ];
#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
(VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
u32 level_trace;
#endif
dev = hldev->ndev;
vdev = netdev_priv(dev);
#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
(VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
level_trace = vdev->level_trace;
#endif
vxge_debug_entryexit(level_trace,
"%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
memcpy(buf, vdev->ndev->name, IFNAMSIZ);
/* in 2.6 will call stop() if device is up */
unregister_netdev(dev);
flush_scheduled_work();
vxge_debug_init(level_trace, "%s: ethernet device unregistered", buf);
vxge_debug_entryexit(level_trace,
"%s: %s:%d Exiting...", buf, __func__, __LINE__);
}
/*
* vxge_callback_crit_err
*
* This function is called by the alarm handler in interrupt context.
* Driver must analyze it based on the event type.
*/
static void
vxge_callback_crit_err(struct __vxge_hw_device *hldev,
enum vxge_hw_event type, u64 vp_id)
{
struct net_device *dev = hldev->ndev;
struct vxgedev *vdev = (struct vxgedev *)netdev_priv(dev);
int vpath_idx;
vxge_debug_entryexit(vdev->level_trace,
"%s: %s:%d", vdev->ndev->name, __func__, __LINE__);
/* Note: This event type should be used for device wide
* indications only - Serious errors, Slot freeze and critical errors
*/
vdev->cric_err_event = type;
for (vpath_idx = 0; vpath_idx < vdev->no_of_vpath; vpath_idx++)
if (vdev->vpaths[vpath_idx].device_id == vp_id)
break;
if (!test_bit(__VXGE_STATE_RESET_CARD, &vdev->state)) {
if (type == VXGE_HW_EVENT_SLOT_FREEZE) {
vxge_debug_init(VXGE_ERR,
"%s: Slot is frozen", vdev->ndev->name);
} else if (type == VXGE_HW_EVENT_SERR) {
vxge_debug_init(VXGE_ERR,
"%s: Encountered Serious Error",
vdev->ndev->name);
} else if (type == VXGE_HW_EVENT_CRITICAL_ERR)
vxge_debug_init(VXGE_ERR,
"%s: Encountered Critical Error",
vdev->ndev->name);
}
if ((type == VXGE_HW_EVENT_SERR) ||
(type == VXGE_HW_EVENT_SLOT_FREEZE)) {
if (unlikely(vdev->exec_mode))
clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
} else if (type == VXGE_HW_EVENT_CRITICAL_ERR) {
vxge_hw_device_mask_all(hldev);
if (unlikely(vdev->exec_mode))
clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
} else if ((type == VXGE_HW_EVENT_FIFO_ERR) ||
(type == VXGE_HW_EVENT_VPATH_ERR)) {
if (unlikely(vdev->exec_mode))
clear_bit(__VXGE_STATE_CARD_UP, &vdev->state);
else {
/* check if this vpath is already set for reset */
if (!test_and_set_bit(vpath_idx, &vdev->vp_reset)) {
/* disable interrupts for this vpath */
vxge_vpath_intr_disable(vdev, vpath_idx);
/* stop the queue for this vpath */
vxge_stop_tx_queue(&vdev->vpaths[vpath_idx].
fifo);
}
}
}
vxge_debug_entryexit(vdev->level_trace,
"%s: %s:%d Exiting...",
vdev->ndev->name, __func__, __LINE__);
}
static void verify_bandwidth(void)
{
int i, band_width, total = 0, equal_priority = 0;
/* 1. If user enters 0 for some fifo, give equal priority to all */
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (bw_percentage[i] == 0) {
equal_priority = 1;
break;
}
}
if (!equal_priority) {
/* 2. If sum exceeds 100, give equal priority to all */
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (bw_percentage[i] == 0xFF)
break;
total += bw_percentage[i];
if (total > VXGE_HW_VPATH_BANDWIDTH_MAX) {
equal_priority = 1;
break;
}
}
}
if (!equal_priority) {
/* Is all the bandwidth consumed? */
if (total < VXGE_HW_VPATH_BANDWIDTH_MAX) {
if (i < VXGE_HW_MAX_VIRTUAL_PATHS) {
/* Split rest of bw equally among next VPs*/
band_width =
(VXGE_HW_VPATH_BANDWIDTH_MAX - total) /
(VXGE_HW_MAX_VIRTUAL_PATHS - i);
if (band_width < 2) /* min of 2% */
equal_priority = 1;
else {
for (; i < VXGE_HW_MAX_VIRTUAL_PATHS;
i++)
bw_percentage[i] =
band_width;
}
}
} else if (i < VXGE_HW_MAX_VIRTUAL_PATHS)
equal_priority = 1;
}
if (equal_priority) {
vxge_debug_init(VXGE_ERR,
"%s: Assigning equal bandwidth to all the vpaths",
VXGE_DRIVER_NAME);
bw_percentage[0] = VXGE_HW_VPATH_BANDWIDTH_MAX /
VXGE_HW_MAX_VIRTUAL_PATHS;
for (i = 1; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
bw_percentage[i] = bw_percentage[0];
}
return;
}
/*
* Vpath configuration
*/
static int __devinit vxge_config_vpaths(
struct vxge_hw_device_config *device_config,
u64 vpath_mask, struct vxge_config *config_param)
{
int i, no_of_vpaths = 0, default_no_vpath = 0, temp;
u32 txdl_size, txdl_per_memblock;
temp = driver_config->vpath_per_dev;
if ((driver_config->vpath_per_dev == VXGE_USE_DEFAULT) &&
(max_config_dev == VXGE_MAX_CONFIG_DEV)) {
/* No more CPU. Return vpath number as zero.*/
if (driver_config->g_no_cpus == -1)
return 0;
if (!driver_config->g_no_cpus)
driver_config->g_no_cpus = num_online_cpus();
driver_config->vpath_per_dev = driver_config->g_no_cpus >> 1;
if (!driver_config->vpath_per_dev)
driver_config->vpath_per_dev = 1;
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
if (!vxge_bVALn(vpath_mask, i, 1))
continue;
else
default_no_vpath++;
if (default_no_vpath < driver_config->vpath_per_dev)
driver_config->vpath_per_dev = default_no_vpath;
driver_config->g_no_cpus = driver_config->g_no_cpus -
(driver_config->vpath_per_dev * 2);
if (driver_config->g_no_cpus <= 0)
driver_config->g_no_cpus = -1;
}
if (driver_config->vpath_per_dev == 1) {
vxge_debug_ll_config(VXGE_TRACE,
"%s: Disable tx and rx steering, "
"as single vpath is configured", VXGE_DRIVER_NAME);
config_param->rth_steering = NO_STEERING;
config_param->tx_steering_type = NO_STEERING;
device_config->rth_en = 0;
}
/* configure bandwidth */
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++)
device_config->vp_config[i].min_bandwidth = bw_percentage[i];
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
device_config->vp_config[i].vp_id = i;
device_config->vp_config[i].mtu = VXGE_HW_DEFAULT_MTU;
if (no_of_vpaths < driver_config->vpath_per_dev) {
if (!vxge_bVALn(vpath_mask, i, 1)) {
vxge_debug_ll_config(VXGE_TRACE,
"%s: vpath: %d is not available",
VXGE_DRIVER_NAME, i);
continue;
} else {
vxge_debug_ll_config(VXGE_TRACE,
"%s: vpath: %d available",
VXGE_DRIVER_NAME, i);
no_of_vpaths++;
}
} else {
vxge_debug_ll_config(VXGE_TRACE,
"%s: vpath: %d is not configured, "
"max_config_vpath exceeded",
VXGE_DRIVER_NAME, i);
break;
}
/* Configure Tx fifo's */
device_config->vp_config[i].fifo.enable =
VXGE_HW_FIFO_ENABLE;
device_config->vp_config[i].fifo.max_frags =
MAX_SKB_FRAGS;
device_config->vp_config[i].fifo.memblock_size =
VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE;
txdl_size = MAX_SKB_FRAGS * sizeof(struct vxge_hw_fifo_txd);
txdl_per_memblock = VXGE_HW_MIN_FIFO_MEMBLOCK_SIZE / txdl_size;
device_config->vp_config[i].fifo.fifo_blocks =
((VXGE_DEF_FIFO_LENGTH - 1) / txdl_per_memblock) + 1;
device_config->vp_config[i].fifo.intr =
VXGE_HW_FIFO_QUEUE_INTR_DISABLE;
/* Configure tti properties */
device_config->vp_config[i].tti.intr_enable =
VXGE_HW_TIM_INTR_ENABLE;
device_config->vp_config[i].tti.btimer_val =
(VXGE_TTI_BTIMER_VAL * 1000) / 272;
device_config->vp_config[i].tti.timer_ac_en =
VXGE_HW_TIM_TIMER_AC_ENABLE;
/* For msi-x with napi (each vector
has a handler of its own) -
Set CI to OFF for all vpaths */
device_config->vp_config[i].tti.timer_ci_en =
VXGE_HW_TIM_TIMER_CI_DISABLE;
device_config->vp_config[i].tti.timer_ri_en =
VXGE_HW_TIM_TIMER_RI_DISABLE;
device_config->vp_config[i].tti.util_sel =
VXGE_HW_TIM_UTIL_SEL_LEGACY_TX_NET_UTIL;
device_config->vp_config[i].tti.ltimer_val =
(VXGE_TTI_LTIMER_VAL * 1000) / 272;
device_config->vp_config[i].tti.rtimer_val =
(VXGE_TTI_RTIMER_VAL * 1000) / 272;
device_config->vp_config[i].tti.urange_a = TTI_TX_URANGE_A;
device_config->vp_config[i].tti.urange_b = TTI_TX_URANGE_B;
device_config->vp_config[i].tti.urange_c = TTI_TX_URANGE_C;
device_config->vp_config[i].tti.uec_a = TTI_TX_UFC_A;
device_config->vp_config[i].tti.uec_b = TTI_TX_UFC_B;
device_config->vp_config[i].tti.uec_c = TTI_TX_UFC_C;
device_config->vp_config[i].tti.uec_d = TTI_TX_UFC_D;
/* Configure Rx rings */
device_config->vp_config[i].ring.enable =
VXGE_HW_RING_ENABLE;
device_config->vp_config[i].ring.ring_blocks =
VXGE_HW_DEF_RING_BLOCKS;
device_config->vp_config[i].ring.buffer_mode =
VXGE_HW_RING_RXD_BUFFER_MODE_1;
device_config->vp_config[i].ring.rxds_limit =
VXGE_HW_DEF_RING_RXDS_LIMIT;
device_config->vp_config[i].ring.scatter_mode =
VXGE_HW_RING_SCATTER_MODE_A;
/* Configure rti properties */
device_config->vp_config[i].rti.intr_enable =
VXGE_HW_TIM_INTR_ENABLE;
device_config->vp_config[i].rti.btimer_val =
(VXGE_RTI_BTIMER_VAL * 1000)/272;
device_config->vp_config[i].rti.timer_ac_en =
VXGE_HW_TIM_TIMER_AC_ENABLE;
device_config->vp_config[i].rti.timer_ci_en =
VXGE_HW_TIM_TIMER_CI_DISABLE;
device_config->vp_config[i].rti.timer_ri_en =
VXGE_HW_TIM_TIMER_RI_DISABLE;
device_config->vp_config[i].rti.util_sel =
VXGE_HW_TIM_UTIL_SEL_LEGACY_RX_NET_UTIL;
device_config->vp_config[i].rti.urange_a =
RTI_RX_URANGE_A;
device_config->vp_config[i].rti.urange_b =
RTI_RX_URANGE_B;
device_config->vp_config[i].rti.urange_c =
RTI_RX_URANGE_C;
device_config->vp_config[i].rti.uec_a = RTI_RX_UFC_A;
device_config->vp_config[i].rti.uec_b = RTI_RX_UFC_B;
device_config->vp_config[i].rti.uec_c = RTI_RX_UFC_C;
device_config->vp_config[i].rti.uec_d = RTI_RX_UFC_D;
device_config->vp_config[i].rti.rtimer_val =
(VXGE_RTI_RTIMER_VAL * 1000) / 272;
device_config->vp_config[i].rti.ltimer_val =
(VXGE_RTI_LTIMER_VAL * 1000) / 272;
device_config->vp_config[i].rpa_strip_vlan_tag =
vlan_tag_strip;
}
driver_config->vpath_per_dev = temp;
return no_of_vpaths;
}
/* initialize device configuratrions */
static void __devinit vxge_device_config_init(
struct vxge_hw_device_config *device_config,
int *intr_type)
{
/* Used for CQRQ/SRQ. */
device_config->dma_blockpool_initial =
VXGE_HW_INITIAL_DMA_BLOCK_POOL_SIZE;
device_config->dma_blockpool_max =
VXGE_HW_MAX_DMA_BLOCK_POOL_SIZE;
if (max_mac_vpath > VXGE_MAX_MAC_ADDR_COUNT)
max_mac_vpath = VXGE_MAX_MAC_ADDR_COUNT;
#ifndef CONFIG_PCI_MSI
vxge_debug_init(VXGE_ERR,
"%s: This Kernel does not support "
"MSI-X. Defaulting to INTA", VXGE_DRIVER_NAME);
*intr_type = INTA;
#endif
/* Configure whether MSI-X or IRQL. */
switch (*intr_type) {
case INTA:
device_config->intr_mode = VXGE_HW_INTR_MODE_IRQLINE;
break;
case MSI_X:
device_config->intr_mode = VXGE_HW_INTR_MODE_MSIX;
break;
}
/* Timer period between device poll */
device_config->device_poll_millis = VXGE_TIMER_DELAY;
/* Configure mac based steering. */
device_config->rts_mac_en = addr_learn_en;
/* Configure Vpaths */
device_config->rth_it_type = VXGE_HW_RTH_IT_TYPE_MULTI_IT;
vxge_debug_ll_config(VXGE_TRACE, "%s : Device Config Params ",
__func__);
vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_initial : %d",
device_config->dma_blockpool_initial);
vxge_debug_ll_config(VXGE_TRACE, "dma_blockpool_max : %d",
device_config->dma_blockpool_max);
vxge_debug_ll_config(VXGE_TRACE, "intr_mode : %d",
device_config->intr_mode);
vxge_debug_ll_config(VXGE_TRACE, "device_poll_millis : %d",
device_config->device_poll_millis);
vxge_debug_ll_config(VXGE_TRACE, "rts_mac_en : %d",
device_config->rts_mac_en);
vxge_debug_ll_config(VXGE_TRACE, "rth_en : %d",
device_config->rth_en);
vxge_debug_ll_config(VXGE_TRACE, "rth_it_type : %d",
device_config->rth_it_type);
}
static void __devinit vxge_print_parm(struct vxgedev *vdev, u64 vpath_mask)
{
int i;
vxge_debug_init(VXGE_TRACE,
"%s: %d Vpath(s) opened",
vdev->ndev->name, vdev->no_of_vpath);
switch (vdev->config.intr_type) {
case INTA:
vxge_debug_init(VXGE_TRACE,
"%s: Interrupt type INTA", vdev->ndev->name);
break;
case MSI_X:
vxge_debug_init(VXGE_TRACE,
"%s: Interrupt type MSI-X", vdev->ndev->name);
break;
}
if (vdev->config.rth_steering) {
vxge_debug_init(VXGE_TRACE,
"%s: RTH steering enabled for TCP_IPV4",
vdev->ndev->name);
} else {
vxge_debug_init(VXGE_TRACE,
"%s: RTH steering disabled", vdev->ndev->name);
}
switch (vdev->config.tx_steering_type) {
case NO_STEERING:
vxge_debug_init(VXGE_TRACE,
"%s: Tx steering disabled", vdev->ndev->name);
break;
case TX_PRIORITY_STEERING:
vxge_debug_init(VXGE_TRACE,
"%s: Unsupported tx steering option",
vdev->ndev->name);
vxge_debug_init(VXGE_TRACE,
"%s: Tx steering disabled", vdev->ndev->name);
vdev->config.tx_steering_type = 0;
break;
case TX_VLAN_STEERING:
vxge_debug_init(VXGE_TRACE,
"%s: Unsupported tx steering option",
vdev->ndev->name);
vxge_debug_init(VXGE_TRACE,
"%s: Tx steering disabled", vdev->ndev->name);
vdev->config.tx_steering_type = 0;
break;
case TX_MULTIQ_STEERING:
vxge_debug_init(VXGE_TRACE,
"%s: Tx multiqueue steering enabled",
vdev->ndev->name);
break;
case TX_PORT_STEERING:
vxge_debug_init(VXGE_TRACE,
"%s: Tx port steering enabled",
vdev->ndev->name);
break;
default:
vxge_debug_init(VXGE_ERR,
"%s: Unsupported tx steering type",
vdev->ndev->name);
vxge_debug_init(VXGE_TRACE,
"%s: Tx steering disabled", vdev->ndev->name);
vdev->config.tx_steering_type = 0;
}
if (vdev->config.gro_enable) {
vxge_debug_init(VXGE_ERR,
"%s: Generic receive offload enabled",
vdev->ndev->name);
} else
vxge_debug_init(VXGE_TRACE,
"%s: Generic receive offload disabled",
vdev->ndev->name);
if (vdev->config.addr_learn_en)
vxge_debug_init(VXGE_TRACE,
"%s: MAC Address learning enabled", vdev->ndev->name);
vxge_debug_init(VXGE_TRACE,
"%s: Rx doorbell mode enabled", vdev->ndev->name);
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!vxge_bVALn(vpath_mask, i, 1))
continue;
vxge_debug_ll_config(VXGE_TRACE,
"%s: MTU size - %d", vdev->ndev->name,
((struct __vxge_hw_device *)(vdev->devh))->
config.vp_config[i].mtu);
vxge_debug_init(VXGE_TRACE,
"%s: VLAN tag stripping %s", vdev->ndev->name,
((struct __vxge_hw_device *)(vdev->devh))->
config.vp_config[i].rpa_strip_vlan_tag
? "Enabled" : "Disabled");
vxge_debug_init(VXGE_TRACE,
"%s: Ring blocks : %d", vdev->ndev->name,
((struct __vxge_hw_device *)(vdev->devh))->
config.vp_config[i].ring.ring_blocks);
vxge_debug_init(VXGE_TRACE,
"%s: Fifo blocks : %d", vdev->ndev->name,
((struct __vxge_hw_device *)(vdev->devh))->
config.vp_config[i].fifo.fifo_blocks);
vxge_debug_ll_config(VXGE_TRACE,
"%s: Max frags : %d", vdev->ndev->name,
((struct __vxge_hw_device *)(vdev->devh))->
config.vp_config[i].fifo.max_frags);
break;
}
}
#ifdef CONFIG_PM
/**
* vxge_pm_suspend - vxge power management suspend entry point
*
*/
static int vxge_pm_suspend(struct pci_dev *pdev, pm_message_t state)
{
return -ENOSYS;
}
/**
* vxge_pm_resume - vxge power management resume entry point
*
*/
static int vxge_pm_resume(struct pci_dev *pdev)
{
return -ENOSYS;
}
#endif
/**
* vxge_io_error_detected - called when PCI error is detected
* @pdev: Pointer to PCI device
* @state: The current pci connection state
*
* This function is called after a PCI bus error affecting
* this device has been detected.
*/
static pci_ers_result_t vxge_io_error_detected(struct pci_dev *pdev,
pci_channel_state_t state)
{
struct __vxge_hw_device *hldev =
(struct __vxge_hw_device *) pci_get_drvdata(pdev);
struct net_device *netdev = hldev->ndev;
netif_device_detach(netdev);
if (netif_running(netdev)) {
/* Bring down the card, while avoiding PCI I/O */
do_vxge_close(netdev, 0);
}
pci_disable_device(pdev);
return PCI_ERS_RESULT_NEED_RESET;
}
/**
* vxge_io_slot_reset - called after the pci bus has been reset.
* @pdev: Pointer to PCI device
*
* Restart the card from scratch, as if from a cold-boot.
* At this point, the card has exprienced a hard reset,
* followed by fixups by BIOS, and has its config space
* set up identically to what it was at cold boot.
*/
static pci_ers_result_t vxge_io_slot_reset(struct pci_dev *pdev)
{
struct __vxge_hw_device *hldev =
(struct __vxge_hw_device *) pci_get_drvdata(pdev);
struct net_device *netdev = hldev->ndev;
struct vxgedev *vdev = netdev_priv(netdev);
if (pci_enable_device(pdev)) {
printk(KERN_ERR "%s: "
"Cannot re-enable device after reset\n",
VXGE_DRIVER_NAME);
return PCI_ERS_RESULT_DISCONNECT;
}
pci_set_master(pdev);
vxge_reset(vdev);
return PCI_ERS_RESULT_RECOVERED;
}
/**
* vxge_io_resume - called when traffic can start flowing again.
* @pdev: Pointer to PCI device
*
* This callback is called when the error recovery driver tells
* us that its OK to resume normal operation.
*/
static void vxge_io_resume(struct pci_dev *pdev)
{
struct __vxge_hw_device *hldev =
(struct __vxge_hw_device *) pci_get_drvdata(pdev);
struct net_device *netdev = hldev->ndev;
if (netif_running(netdev)) {
if (vxge_open(netdev)) {
printk(KERN_ERR "%s: "
"Can't bring device back up after reset\n",
VXGE_DRIVER_NAME);
return;
}
}
netif_device_attach(netdev);
}
/**
* vxge_probe
* @pdev : structure containing the PCI related information of the device.
* @pre: List of PCI devices supported by the driver listed in vxge_id_table.
* Description:
* This function is called when a new PCI device gets detected and initializes
* it.
* Return value:
* returns 0 on success and negative on failure.
*
*/
static int __devinit
vxge_probe(struct pci_dev *pdev, const struct pci_device_id *pre)
{
struct __vxge_hw_device *hldev;
enum vxge_hw_status status;
int ret;
int high_dma = 0;
u64 vpath_mask = 0;
struct vxgedev *vdev;
struct vxge_config ll_config;
struct vxge_hw_device_config *device_config = NULL;
struct vxge_hw_device_attr attr;
int i, j, no_of_vpath = 0, max_vpath_supported = 0;
u8 *macaddr;
struct vxge_mac_addrs *entry;
static int bus = -1, device = -1;
u8 new_device = 0;
vxge_debug_entryexit(VXGE_TRACE, "%s:%d", __func__, __LINE__);
attr.pdev = pdev;
if (bus != pdev->bus->number)
new_device = 1;
if (device != PCI_SLOT(pdev->devfn))
new_device = 1;
bus = pdev->bus->number;
device = PCI_SLOT(pdev->devfn);
if (new_device) {
if (driver_config->config_dev_cnt &&
(driver_config->config_dev_cnt !=
driver_config->total_dev_cnt))
vxge_debug_init(VXGE_ERR,
"%s: Configured %d of %d devices",
VXGE_DRIVER_NAME,
driver_config->config_dev_cnt,
driver_config->total_dev_cnt);
driver_config->config_dev_cnt = 0;
driver_config->total_dev_cnt = 0;
driver_config->g_no_cpus = 0;
driver_config->vpath_per_dev = max_config_vpath;
}
driver_config->total_dev_cnt++;
if (++driver_config->config_dev_cnt > max_config_dev) {
ret = 0;
goto _exit0;
}
device_config = kzalloc(sizeof(struct vxge_hw_device_config),
GFP_KERNEL);
if (!device_config) {
ret = -ENOMEM;
vxge_debug_init(VXGE_ERR,
"device_config : malloc failed %s %d",
__FILE__, __LINE__);
goto _exit0;
}
memset(&ll_config, 0, sizeof(struct vxge_config));
ll_config.tx_steering_type = TX_MULTIQ_STEERING;
ll_config.intr_type = MSI_X;
ll_config.napi_weight = NEW_NAPI_WEIGHT;
ll_config.rth_steering = RTH_STEERING;
/* get the default configuration parameters */
vxge_hw_device_config_default_get(device_config);
/* initialize configuration parameters */
vxge_device_config_init(device_config, &ll_config.intr_type);
ret = pci_enable_device(pdev);
if (ret) {
vxge_debug_init(VXGE_ERR,
"%s : can not enable PCI device", __func__);
goto _exit0;
}
if (!pci_set_dma_mask(pdev, 0xffffffffffffffffULL)) {
vxge_debug_ll_config(VXGE_TRACE,
"%s : using 64bit DMA", __func__);
high_dma = 1;
if (pci_set_consistent_dma_mask(pdev,
0xffffffffffffffffULL)) {
vxge_debug_init(VXGE_ERR,
"%s : unable to obtain 64bit DMA for "
"consistent allocations", __func__);
ret = -ENOMEM;
goto _exit1;
}
} else if (!pci_set_dma_mask(pdev, 0xffffffffUL)) {
vxge_debug_ll_config(VXGE_TRACE,
"%s : using 32bit DMA", __func__);
} else {
ret = -ENOMEM;
goto _exit1;
}
if (pci_request_regions(pdev, VXGE_DRIVER_NAME)) {
vxge_debug_init(VXGE_ERR,
"%s : request regions failed", __func__);
ret = -ENODEV;
goto _exit1;
}
pci_set_master(pdev);
attr.bar0 = pci_ioremap_bar(pdev, 0);
if (!attr.bar0) {
vxge_debug_init(VXGE_ERR,
"%s : cannot remap io memory bar0", __func__);
ret = -ENODEV;
goto _exit2;
}
vxge_debug_ll_config(VXGE_TRACE,
"pci ioremap bar0: %p:0x%llx",
attr.bar0,
(unsigned long long)pci_resource_start(pdev, 0));
attr.bar1 = pci_ioremap_bar(pdev, 2);
if (!attr.bar1) {
vxge_debug_init(VXGE_ERR,
"%s : cannot remap io memory bar2", __func__);
ret = -ENODEV;
goto _exit3;
}
vxge_debug_ll_config(VXGE_TRACE,
"pci ioremap bar1: %p:0x%llx",
attr.bar1,
(unsigned long long)pci_resource_start(pdev, 2));
status = vxge_hw_device_hw_info_get(attr.bar0,
&ll_config.device_hw_info);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"%s: Reading of hardware info failed."
"Please try upgrading the firmware.", VXGE_DRIVER_NAME);
ret = -EINVAL;
goto _exit4;
}
if (ll_config.device_hw_info.fw_version.major !=
VXGE_DRIVER_VERSION_MAJOR) {
vxge_debug_init(VXGE_ERR,
"FW Ver.(maj): %d not driver's expected version: %d",
ll_config.device_hw_info.fw_version.major,
VXGE_DRIVER_VERSION_MAJOR);
ret = -EINVAL;
goto _exit4;
}
vpath_mask = ll_config.device_hw_info.vpath_mask;
if (vpath_mask == 0) {
vxge_debug_ll_config(VXGE_TRACE,
"%s: No vpaths available in device", VXGE_DRIVER_NAME);
ret = -EINVAL;
goto _exit4;
}
vxge_debug_ll_config(VXGE_TRACE,
"%s:%d Vpath mask = %llx", __func__, __LINE__,
(unsigned long long)vpath_mask);
/* Check how many vpaths are available */
for (i = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!((vpath_mask) & vxge_mBIT(i)))
continue;
max_vpath_supported++;
}
/*
* Configure vpaths and get driver configured number of vpaths
* which is less than or equal to the maximum vpaths per function.
*/
no_of_vpath = vxge_config_vpaths(device_config, vpath_mask, &ll_config);
if (!no_of_vpath) {
vxge_debug_ll_config(VXGE_ERR,
"%s: No more vpaths to configure", VXGE_DRIVER_NAME);
ret = 0;
goto _exit4;
}
/* Setting driver callbacks */
attr.uld_callbacks.link_up = vxge_callback_link_up;
attr.uld_callbacks.link_down = vxge_callback_link_down;
attr.uld_callbacks.crit_err = vxge_callback_crit_err;
status = vxge_hw_device_initialize(&hldev, &attr, device_config);
if (status != VXGE_HW_OK) {
vxge_debug_init(VXGE_ERR,
"Failed to initialize device (%d)", status);
ret = -EINVAL;
goto _exit4;
}
vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);
/* set private device info */
pci_set_drvdata(pdev, hldev);
ll_config.gro_enable = VXGE_GRO_ALWAYS_AGGREGATE;
ll_config.fifo_indicate_max_pkts = VXGE_FIFO_INDICATE_MAX_PKTS;
ll_config.addr_learn_en = addr_learn_en;
ll_config.rth_algorithm = RTH_ALG_JENKINS;
ll_config.rth_hash_type_tcpipv4 = VXGE_HW_RING_HASH_TYPE_TCP_IPV4;
ll_config.rth_hash_type_ipv4 = VXGE_HW_RING_HASH_TYPE_NONE;
ll_config.rth_hash_type_tcpipv6 = VXGE_HW_RING_HASH_TYPE_NONE;
ll_config.rth_hash_type_ipv6 = VXGE_HW_RING_HASH_TYPE_NONE;
ll_config.rth_hash_type_tcpipv6ex = VXGE_HW_RING_HASH_TYPE_NONE;
ll_config.rth_hash_type_ipv6ex = VXGE_HW_RING_HASH_TYPE_NONE;
ll_config.rth_bkt_sz = RTH_BUCKET_SIZE;
ll_config.tx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;
ll_config.rx_pause_enable = VXGE_PAUSE_CTRL_ENABLE;
if (vxge_device_register(hldev, &ll_config, high_dma, no_of_vpath,
&vdev)) {
ret = -EINVAL;
goto _exit5;
}
vxge_hw_device_debug_set(hldev, VXGE_TRACE, VXGE_COMPONENT_LL);
VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
vxge_hw_device_trace_level_get(hldev));
/* set private HW device info */
hldev->ndev = vdev->ndev;
vdev->mtu = VXGE_HW_DEFAULT_MTU;
vdev->bar0 = attr.bar0;
vdev->bar1 = attr.bar1;
vdev->max_vpath_supported = max_vpath_supported;
vdev->no_of_vpath = no_of_vpath;
/* Virtual Path count */
for (i = 0, j = 0; i < VXGE_HW_MAX_VIRTUAL_PATHS; i++) {
if (!vxge_bVALn(vpath_mask, i, 1))
continue;
if (j >= vdev->no_of_vpath)
break;
vdev->vpaths[j].is_configured = 1;
vdev->vpaths[j].device_id = i;
vdev->vpaths[j].fifo.driver_id = j;
vdev->vpaths[j].ring.driver_id = j;
vdev->vpaths[j].vdev = vdev;
vdev->vpaths[j].max_mac_addr_cnt = max_mac_vpath;
memcpy((u8 *)vdev->vpaths[j].macaddr,
(u8 *)ll_config.device_hw_info.mac_addrs[i],
ETH_ALEN);
/* Initialize the mac address list header */
INIT_LIST_HEAD(&vdev->vpaths[j].mac_addr_list);
vdev->vpaths[j].mac_addr_cnt = 0;
vdev->vpaths[j].mcast_addr_cnt = 0;
j++;
}
vdev->exec_mode = VXGE_EXEC_MODE_DISABLE;
vdev->max_config_port = max_config_port;
vdev->vlan_tag_strip = vlan_tag_strip;
/* map the hashing selector table to the configured vpaths */
for (i = 0; i < vdev->no_of_vpath; i++)
vdev->vpath_selector[i] = vpath_selector[i];
macaddr = (u8 *)vdev->vpaths[0].macaddr;
ll_config.device_hw_info.serial_number[VXGE_HW_INFO_LEN - 1] = '\0';
ll_config.device_hw_info.product_desc[VXGE_HW_INFO_LEN - 1] = '\0';
ll_config.device_hw_info.part_number[VXGE_HW_INFO_LEN - 1] = '\0';
vxge_debug_init(VXGE_TRACE, "%s: SERIAL NUMBER: %s",
vdev->ndev->name, ll_config.device_hw_info.serial_number);
vxge_debug_init(VXGE_TRACE, "%s: PART NUMBER: %s",
vdev->ndev->name, ll_config.device_hw_info.part_number);
vxge_debug_init(VXGE_TRACE, "%s: Neterion %s Server Adapter",
vdev->ndev->name, ll_config.device_hw_info.product_desc);
vxge_debug_init(VXGE_TRACE,
"%s: MAC ADDR: %02X:%02X:%02X:%02X:%02X:%02X",
vdev->ndev->name, macaddr[0], macaddr[1], macaddr[2],
macaddr[3], macaddr[4], macaddr[5]);
vxge_debug_init(VXGE_TRACE, "%s: Link Width x%d",
vdev->ndev->name, vxge_hw_device_link_width_get(hldev));
vxge_debug_init(VXGE_TRACE,
"%s: Firmware version : %s Date : %s", vdev->ndev->name,
ll_config.device_hw_info.fw_version.version,
ll_config.device_hw_info.fw_date.date);
vxge_print_parm(vdev, vpath_mask);
/* Store the fw version for ethttool option */
strcpy(vdev->fw_version, ll_config.device_hw_info.fw_version.version);
memcpy(vdev->ndev->dev_addr, (u8 *)vdev->vpaths[0].macaddr, ETH_ALEN);
memcpy(vdev->ndev->perm_addr, vdev->ndev->dev_addr, ETH_ALEN);
/* Copy the station mac address to the list */
for (i = 0; i < vdev->no_of_vpath; i++) {
entry = (struct vxge_mac_addrs *)
kzalloc(sizeof(struct vxge_mac_addrs),
GFP_KERNEL);
if (NULL == entry) {
vxge_debug_init(VXGE_ERR,
"%s: mac_addr_list : memory allocation failed",
vdev->ndev->name);
ret = -EPERM;
goto _exit6;
}
macaddr = (u8 *)&entry->macaddr;
memcpy(macaddr, vdev->ndev->dev_addr, ETH_ALEN);
list_add(&entry->item, &vdev->vpaths[i].mac_addr_list);
vdev->vpaths[i].mac_addr_cnt = 1;
}
vxge_debug_entryexit(VXGE_TRACE, "%s: %s:%d Exiting...",
vdev->ndev->name, __func__, __LINE__);
vxge_hw_device_debug_set(hldev, VXGE_ERR, VXGE_COMPONENT_LL);
VXGE_COPY_DEBUG_INFO_TO_LL(vdev, vxge_hw_device_error_level_get(hldev),
vxge_hw_device_trace_level_get(hldev));
return 0;
_exit6:
for (i = 0; i < vdev->no_of_vpath; i++)
vxge_free_mac_add_list(&vdev->vpaths[i]);
vxge_device_unregister(hldev);
_exit5:
vxge_hw_device_terminate(hldev);
_exit4:
iounmap(attr.bar1);
_exit3:
iounmap(attr.bar0);
_exit2:
pci_release_regions(pdev);
_exit1:
pci_disable_device(pdev);
_exit0:
kfree(device_config);
driver_config->config_dev_cnt--;
pci_set_drvdata(pdev, NULL);
return ret;
}
/**
* vxge_rem_nic - Free the PCI device
* @pdev: structure containing the PCI related information of the device.
* Description: This function is called by the Pci subsystem to release a
* PCI device and free up all resource held up by the device.
*/
static void __devexit
vxge_remove(struct pci_dev *pdev)
{
struct __vxge_hw_device *hldev;
struct vxgedev *vdev = NULL;
struct net_device *dev;
int i = 0;
#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
(VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
u32 level_trace;
#endif
hldev = (struct __vxge_hw_device *) pci_get_drvdata(pdev);
if (hldev == NULL)
return;
dev = hldev->ndev;
vdev = netdev_priv(dev);
#if ((VXGE_DEBUG_INIT & VXGE_DEBUG_MASK) || \
(VXGE_DEBUG_ENTRYEXIT & VXGE_DEBUG_MASK))
level_trace = vdev->level_trace;
#endif
vxge_debug_entryexit(level_trace,
"%s:%d", __func__, __LINE__);
vxge_debug_init(level_trace,
"%s : removing PCI device...", __func__);
vxge_device_unregister(hldev);
for (i = 0; i < vdev->no_of_vpath; i++) {
vxge_free_mac_add_list(&vdev->vpaths[i]);
vdev->vpaths[i].mcast_addr_cnt = 0;
vdev->vpaths[i].mac_addr_cnt = 0;
}
kfree(vdev->vpaths);
iounmap(vdev->bar0);
iounmap(vdev->bar1);
/* we are safe to free it now */
free_netdev(dev);
vxge_debug_init(level_trace,
"%s:%d Device unregistered", __func__, __LINE__);
vxge_hw_device_terminate(hldev);
pci_disable_device(pdev);
pci_release_regions(pdev);
pci_set_drvdata(pdev, NULL);
vxge_debug_entryexit(level_trace,
"%s:%d Exiting...", __func__, __LINE__);
}
static struct pci_error_handlers vxge_err_handler = {
.error_detected = vxge_io_error_detected,
.slot_reset = vxge_io_slot_reset,
.resume = vxge_io_resume,
};
static struct pci_driver vxge_driver = {
.name = VXGE_DRIVER_NAME,
.id_table = vxge_id_table,
.probe = vxge_probe,
.remove = __devexit_p(vxge_remove),
#ifdef CONFIG_PM
.suspend = vxge_pm_suspend,
.resume = vxge_pm_resume,
#endif
.err_handler = &vxge_err_handler,
};
static int __init
vxge_starter(void)
{
int ret = 0;
char version[32];
snprintf(version, 32, "%s", DRV_VERSION);
printk(KERN_CRIT "%s: Copyright(c) 2002-2009 Neterion Inc\n",
VXGE_DRIVER_NAME);
printk(KERN_CRIT "%s: Driver version: %s\n",
VXGE_DRIVER_NAME, version);
verify_bandwidth();
driver_config = kzalloc(sizeof(struct vxge_drv_config), GFP_KERNEL);
if (!driver_config)
return -ENOMEM;
ret = pci_register_driver(&vxge_driver);
if (driver_config->config_dev_cnt &&
(driver_config->config_dev_cnt != driver_config->total_dev_cnt))
vxge_debug_init(VXGE_ERR,
"%s: Configured %d of %d devices",
VXGE_DRIVER_NAME, driver_config->config_dev_cnt,
driver_config->total_dev_cnt);
if (ret)
kfree(driver_config);
return ret;
}
static void __exit
vxge_closer(void)
{
pci_unregister_driver(&vxge_driver);
kfree(driver_config);
}
module_init(vxge_starter);
module_exit(vxge_closer);