linux_old1/arch/sh/kernel/dwarf.c

874 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* This is an implementation of a DWARF unwinder. Its main purpose is
* for generating stacktrace information. Based on the DWARF 3
* specification from http://www.dwarfstd.org.
*
* TODO:
* - DWARF64 doesn't work.
*/
/* #define DEBUG */
#include <linux/kernel.h>
#include <linux/io.h>
#include <linux/list.h>
#include <linux/mm.h>
#include <asm/dwarf.h>
#include <asm/unwinder.h>
#include <asm/sections.h>
#include <asm/unaligned.h>
#include <asm/dwarf.h>
#include <asm/stacktrace.h>
static LIST_HEAD(dwarf_cie_list);
DEFINE_SPINLOCK(dwarf_cie_lock);
static LIST_HEAD(dwarf_fde_list);
DEFINE_SPINLOCK(dwarf_fde_lock);
static struct dwarf_cie *cached_cie;
/*
* Figure out whether we need to allocate some dwarf registers. If dwarf
* registers have already been allocated then we may need to realloc
* them. "reg" is a register number that we need to be able to access
* after this call.
*
* Register numbers start at zero, therefore we need to allocate space
* for "reg" + 1 registers.
*/
static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
unsigned int reg)
{
struct dwarf_reg *regs;
unsigned int num_regs = reg + 1;
size_t new_size;
size_t old_size;
new_size = num_regs * sizeof(*regs);
old_size = frame->num_regs * sizeof(*regs);
/* Fast path: don't allocate any regs if we've already got enough. */
if (frame->num_regs >= num_regs)
return;
regs = kzalloc(new_size, GFP_ATOMIC);
if (!regs) {
printk(KERN_WARNING "Unable to allocate DWARF registers\n");
/*
* Let's just bomb hard here, we have no way to
* gracefully recover.
*/
BUG();
}
if (frame->regs) {
memcpy(regs, frame->regs, old_size);
kfree(frame->regs);
}
frame->regs = regs;
frame->num_regs = num_regs;
}
/**
* dwarf_read_addr - read dwarf data
* @src: source address of data
* @dst: destination address to store the data to
*
* Read 'n' bytes from @src, where 'n' is the size of an address on
* the native machine. We return the number of bytes read, which
* should always be 'n'. We also have to be careful when reading
* from @src and writing to @dst, because they can be arbitrarily
* aligned. Return 'n' - the number of bytes read.
*/
static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
{
u32 val = get_unaligned(src);
put_unaligned(val, dst);
return sizeof(unsigned long *);
}
/**
* dwarf_read_uleb128 - read unsigned LEB128 data
* @addr: the address where the ULEB128 data is stored
* @ret: address to store the result
*
* Decode an unsigned LEB128 encoded datum. The algorithm is taken
* from Appendix C of the DWARF 3 spec. For information on the
* encodings refer to section "7.6 - Variable Length Data". Return
* the number of bytes read.
*/
static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
{
unsigned int result;
unsigned char byte;
int shift, count;
result = 0;
shift = 0;
count = 0;
while (1) {
byte = __raw_readb(addr);
addr++;
count++;
result |= (byte & 0x7f) << shift;
shift += 7;
if (!(byte & 0x80))
break;
}
*ret = result;
return count;
}
/**
* dwarf_read_leb128 - read signed LEB128 data
* @addr: the address of the LEB128 encoded data
* @ret: address to store the result
*
* Decode signed LEB128 data. The algorithm is taken from Appendix
* C of the DWARF 3 spec. Return the number of bytes read.
*/
static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
{
unsigned char byte;
int result, shift;
int num_bits;
int count;
result = 0;
shift = 0;
count = 0;
while (1) {
byte = __raw_readb(addr);
addr++;
result |= (byte & 0x7f) << shift;
shift += 7;
count++;
if (!(byte & 0x80))
break;
}
/* The number of bits in a signed integer. */
num_bits = 8 * sizeof(result);
if ((shift < num_bits) && (byte & 0x40))
result |= (-1 << shift);
*ret = result;
return count;
}
/**
* dwarf_read_encoded_value - return the decoded value at @addr
* @addr: the address of the encoded value
* @val: where to write the decoded value
* @encoding: the encoding with which we can decode @addr
*
* GCC emits encoded address in the .eh_frame FDE entries. Decode
* the value at @addr using @encoding. The decoded value is written
* to @val and the number of bytes read is returned.
*/
static int dwarf_read_encoded_value(char *addr, unsigned long *val,
char encoding)
{
unsigned long decoded_addr = 0;
int count = 0;
switch (encoding & 0x70) {
case DW_EH_PE_absptr:
break;
case DW_EH_PE_pcrel:
decoded_addr = (unsigned long)addr;
break;
default:
pr_debug("encoding=0x%x\n", (encoding & 0x70));
BUG();
}
if ((encoding & 0x07) == 0x00)
encoding |= DW_EH_PE_udata4;
switch (encoding & 0x0f) {
case DW_EH_PE_sdata4:
case DW_EH_PE_udata4:
count += 4;
decoded_addr += get_unaligned((u32 *)addr);
__raw_writel(decoded_addr, val);
break;
default:
pr_debug("encoding=0x%x\n", encoding);
BUG();
}
return count;
}
/**
* dwarf_entry_len - return the length of an FDE or CIE
* @addr: the address of the entry
* @len: the length of the entry
*
* Read the initial_length field of the entry and store the size of
* the entry in @len. We return the number of bytes read. Return a
* count of 0 on error.
*/
static inline int dwarf_entry_len(char *addr, unsigned long *len)
{
u32 initial_len;
int count;
initial_len = get_unaligned((u32 *)addr);
count = 4;
/*
* An initial length field value in the range DW_LEN_EXT_LO -
* DW_LEN_EXT_HI indicates an extension, and should not be
* interpreted as a length. The only extension that we currently
* understand is the use of DWARF64 addresses.
*/
if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
/*
* The 64-bit length field immediately follows the
* compulsory 32-bit length field.
*/
if (initial_len == DW_EXT_DWARF64) {
*len = get_unaligned((u64 *)addr + 4);
count = 12;
} else {
printk(KERN_WARNING "Unknown DWARF extension\n");
count = 0;
}
} else
*len = initial_len;
return count;
}
/**
* dwarf_lookup_cie - locate the cie
* @cie_ptr: pointer to help with lookup
*/
static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
{
struct dwarf_cie *cie, *n;
unsigned long flags;
spin_lock_irqsave(&dwarf_cie_lock, flags);
/*
* We've cached the last CIE we looked up because chances are
* that the FDE wants this CIE.
*/
if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
cie = cached_cie;
goto out;
}
list_for_each_entry_safe(cie, n, &dwarf_cie_list, link) {
if (cie->cie_pointer == cie_ptr) {
cached_cie = cie;
break;
}
}
/* Couldn't find the entry in the list. */
if (&cie->link == &dwarf_cie_list)
cie = NULL;
out:
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
return cie;
}
/**
* dwarf_lookup_fde - locate the FDE that covers pc
* @pc: the program counter
*/
struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
{
unsigned long flags;
struct dwarf_fde *fde, *n;
spin_lock_irqsave(&dwarf_fde_lock, flags);
list_for_each_entry_safe(fde, n, &dwarf_fde_list, link) {
unsigned long start, end;
start = fde->initial_location;
end = fde->initial_location + fde->address_range;
if (pc >= start && pc < end)
break;
}
/* Couldn't find the entry in the list. */
if (&fde->link == &dwarf_fde_list)
fde = NULL;
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
return fde;
}
/**
* dwarf_cfa_execute_insns - execute instructions to calculate a CFA
* @insn_start: address of the first instruction
* @insn_end: address of the last instruction
* @cie: the CIE for this function
* @fde: the FDE for this function
* @frame: the instructions calculate the CFA for this frame
* @pc: the program counter of the address we're interested in
*
* Execute the Call Frame instruction sequence starting at
* @insn_start and ending at @insn_end. The instructions describe
* how to calculate the Canonical Frame Address of a stackframe.
* Store the results in @frame.
*/
static int dwarf_cfa_execute_insns(unsigned char *insn_start,
unsigned char *insn_end,
struct dwarf_cie *cie,
struct dwarf_fde *fde,
struct dwarf_frame *frame,
unsigned long pc)
{
unsigned char insn;
unsigned char *current_insn;
unsigned int count, delta, reg, expr_len, offset;
current_insn = insn_start;
while (current_insn < insn_end && frame->pc <= pc) {
insn = __raw_readb(current_insn++);
/*
* Firstly, handle the opcodes that embed their operands
* in the instructions.
*/
switch (DW_CFA_opcode(insn)) {
case DW_CFA_advance_loc:
delta = DW_CFA_operand(insn);
delta *= cie->code_alignment_factor;
frame->pc += delta;
continue;
/* NOTREACHED */
case DW_CFA_offset:
reg = DW_CFA_operand(insn);
count = dwarf_read_uleb128(current_insn, &offset);
current_insn += count;
offset *= cie->data_alignment_factor;
dwarf_frame_alloc_regs(frame, reg);
frame->regs[reg].addr = offset;
frame->regs[reg].flags |= DWARF_REG_OFFSET;
continue;
/* NOTREACHED */
case DW_CFA_restore:
reg = DW_CFA_operand(insn);
continue;
/* NOTREACHED */
}
/*
* Secondly, handle the opcodes that don't embed their
* operands in the instruction.
*/
switch (insn) {
case DW_CFA_nop:
continue;
case DW_CFA_advance_loc1:
delta = *current_insn++;
frame->pc += delta * cie->code_alignment_factor;
break;
case DW_CFA_advance_loc2:
delta = get_unaligned((u16 *)current_insn);
current_insn += 2;
frame->pc += delta * cie->code_alignment_factor;
break;
case DW_CFA_advance_loc4:
delta = get_unaligned((u32 *)current_insn);
current_insn += 4;
frame->pc += delta * cie->code_alignment_factor;
break;
case DW_CFA_offset_extended:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
count = dwarf_read_uleb128(current_insn, &offset);
current_insn += count;
offset *= cie->data_alignment_factor;
break;
case DW_CFA_restore_extended:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
break;
case DW_CFA_undefined:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
break;
case DW_CFA_def_cfa:
count = dwarf_read_uleb128(current_insn,
&frame->cfa_register);
current_insn += count;
count = dwarf_read_uleb128(current_insn,
&frame->cfa_offset);
current_insn += count;
frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
break;
case DW_CFA_def_cfa_register:
count = dwarf_read_uleb128(current_insn,
&frame->cfa_register);
current_insn += count;
frame->cfa_offset = 0;
frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
break;
case DW_CFA_def_cfa_offset:
count = dwarf_read_uleb128(current_insn, &offset);
current_insn += count;
frame->cfa_offset = offset;
break;
case DW_CFA_def_cfa_expression:
count = dwarf_read_uleb128(current_insn, &expr_len);
current_insn += count;
frame->cfa_expr = current_insn;
frame->cfa_expr_len = expr_len;
current_insn += expr_len;
frame->flags |= DWARF_FRAME_CFA_REG_EXP;
break;
case DW_CFA_offset_extended_sf:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
count = dwarf_read_leb128(current_insn, &offset);
current_insn += count;
offset *= cie->data_alignment_factor;
dwarf_frame_alloc_regs(frame, reg);
frame->regs[reg].flags |= DWARF_REG_OFFSET;
frame->regs[reg].addr = offset;
break;
case DW_CFA_val_offset:
count = dwarf_read_uleb128(current_insn, &reg);
current_insn += count;
count = dwarf_read_leb128(current_insn, &offset);
offset *= cie->data_alignment_factor;
frame->regs[reg].flags |= DWARF_REG_OFFSET;
frame->regs[reg].addr = offset;
break;
default:
pr_debug("unhandled DWARF instruction 0x%x\n", insn);
break;
}
}
return 0;
}
/**
* dwarf_unwind_stack - recursively unwind the stack
* @pc: address of the function to unwind
* @prev: struct dwarf_frame of the previous stackframe on the callstack
*
* Return a struct dwarf_frame representing the most recent frame
* on the callstack. Each of the lower (older) stack frames are
* linked via the "prev" member.
*/
struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
struct dwarf_frame *prev)
{
struct dwarf_frame *frame;
struct dwarf_cie *cie;
struct dwarf_fde *fde;
unsigned long addr;
int i, offset;
/*
* If this is the first invocation of this recursive function we
* need get the contents of a physical register to get the CFA
* in order to begin the virtual unwinding of the stack.
*
* NOTE: the return address is guaranteed to be setup by the
* time this function makes its first function call.
*/
if (!pc && !prev)
pc = (unsigned long)current_text_addr();
frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
if (!frame)
return NULL;
frame->prev = prev;
fde = dwarf_lookup_fde(pc);
if (!fde) {
/*
* This is our normal exit path - the one that stops the
* recursion. There's two reasons why we might exit
* here,
*
* a) pc has no asscociated DWARF frame info and so
* we don't know how to unwind this frame. This is
* usually the case when we're trying to unwind a
* frame that was called from some assembly code
* that has no DWARF info, e.g. syscalls.
*
* b) the DEBUG info for pc is bogus. There's
* really no way to distinguish this case from the
* case above, which sucks because we could print a
* warning here.
*/
return NULL;
}
cie = dwarf_lookup_cie(fde->cie_pointer);
frame->pc = fde->initial_location;
/* CIE initial instructions */
dwarf_cfa_execute_insns(cie->initial_instructions,
cie->instructions_end, cie, fde,
frame, pc);
/* FDE instructions */
dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
fde, frame, pc);
/* Calculate the CFA */
switch (frame->flags) {
case DWARF_FRAME_CFA_REG_OFFSET:
if (prev) {
BUG_ON(!prev->regs[frame->cfa_register].flags);
addr = prev->cfa;
addr += prev->regs[frame->cfa_register].addr;
frame->cfa = __raw_readl(addr);
} else {
/*
* Again, this is the first invocation of this
* recurisve function. We need to physically
* read the contents of a register in order to
* get the Canonical Frame Address for this
* function.
*/
frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
}
frame->cfa += frame->cfa_offset;
break;
default:
BUG();
}
/* If we haven't seen the return address reg, we're screwed. */
BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
for (i = 0; i <= frame->num_regs; i++) {
struct dwarf_reg *reg = &frame->regs[i];
if (!reg->flags)
continue;
offset = reg->addr;
offset += frame->cfa;
}
addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
frame->return_addr = __raw_readl(addr);
frame->next = dwarf_unwind_stack(frame->return_addr, frame);
return frame;
}
static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
unsigned char *end)
{
struct dwarf_cie *cie;
unsigned long flags;
int count;
cie = kzalloc(sizeof(*cie), GFP_KERNEL);
if (!cie)
return -ENOMEM;
cie->length = len;
/*
* Record the offset into the .eh_frame section
* for this CIE. It allows this CIE to be
* quickly and easily looked up from the
* corresponding FDE.
*/
cie->cie_pointer = (unsigned long)entry;
cie->version = *(char *)p++;
BUG_ON(cie->version != 1);
cie->augmentation = p;
p += strlen(cie->augmentation) + 1;
count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
p += count;
count = dwarf_read_leb128(p, &cie->data_alignment_factor);
p += count;
/*
* Which column in the rule table contains the
* return address?
*/
if (cie->version == 1) {
cie->return_address_reg = __raw_readb(p);
p++;
} else {
count = dwarf_read_uleb128(p, &cie->return_address_reg);
p += count;
}
if (cie->augmentation[0] == 'z') {
unsigned int length, count;
cie->flags |= DWARF_CIE_Z_AUGMENTATION;
count = dwarf_read_uleb128(p, &length);
p += count;
BUG_ON((unsigned char *)p > end);
cie->initial_instructions = p + length;
cie->augmentation++;
}
while (*cie->augmentation) {
/*
* "L" indicates a byte showing how the
* LSDA pointer is encoded. Skip it.
*/
if (*cie->augmentation == 'L') {
p++;
cie->augmentation++;
} else if (*cie->augmentation == 'R') {
/*
* "R" indicates a byte showing
* how FDE addresses are
* encoded.
*/
cie->encoding = *(char *)p++;
cie->augmentation++;
} else if (*cie->augmentation == 'P') {
/*
* "R" indicates a personality
* routine in the CIE
* augmentation.
*/
BUG();
} else if (*cie->augmentation == 'S') {
BUG();
} else {
/*
* Unknown augmentation. Assume
* 'z' augmentation.
*/
p = cie->initial_instructions;
BUG_ON(!p);
break;
}
}
cie->initial_instructions = p;
cie->instructions_end = end;
/* Add to list */
spin_lock_irqsave(&dwarf_cie_lock, flags);
list_add_tail(&cie->link, &dwarf_cie_list);
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
return 0;
}
static int dwarf_parse_fde(void *entry, u32 entry_type,
void *start, unsigned long len)
{
struct dwarf_fde *fde;
struct dwarf_cie *cie;
unsigned long flags;
int count;
void *p = start;
fde = kzalloc(sizeof(*fde), GFP_KERNEL);
if (!fde)
return -ENOMEM;
fde->length = len;
/*
* In a .eh_frame section the CIE pointer is the
* delta between the address within the FDE
*/
fde->cie_pointer = (unsigned long)(p - entry_type - 4);
cie = dwarf_lookup_cie(fde->cie_pointer);
fde->cie = cie;
if (cie->encoding)
count = dwarf_read_encoded_value(p, &fde->initial_location,
cie->encoding);
else
count = dwarf_read_addr(p, &fde->initial_location);
p += count;
if (cie->encoding)
count = dwarf_read_encoded_value(p, &fde->address_range,
cie->encoding & 0x0f);
else
count = dwarf_read_addr(p, &fde->address_range);
p += count;
if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
unsigned int length;
count = dwarf_read_uleb128(p, &length);
p += count + length;
}
/* Call frame instructions. */
fde->instructions = p;
fde->end = start + len;
/* Add to list. */
spin_lock_irqsave(&dwarf_fde_lock, flags);
list_add_tail(&fde->link, &dwarf_fde_list);
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
return 0;
}
static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
unsigned long *sp,
const struct stacktrace_ops *ops, void *data)
{
struct dwarf_frame *frame;
frame = dwarf_unwind_stack(0, NULL);
while (frame && frame->return_addr) {
ops->address(data, frame->return_addr, 1);
frame = frame->next;
}
}
static struct unwinder dwarf_unwinder = {
.name = "dwarf-unwinder",
.dump = dwarf_unwinder_dump,
.rating = 150,
};
static void dwarf_unwinder_cleanup(void)
{
struct dwarf_cie *cie, *m;
struct dwarf_fde *fde, *n;
unsigned long flags;
/*
* Deallocate all the memory allocated for the DWARF unwinder.
* Traverse all the FDE/CIE lists and remove and free all the
* memory associated with those data structures.
*/
spin_lock_irqsave(&dwarf_cie_lock, flags);
list_for_each_entry_safe(cie, m, &dwarf_cie_list, link)
kfree(cie);
spin_unlock_irqrestore(&dwarf_cie_lock, flags);
spin_lock_irqsave(&dwarf_fde_lock, flags);
list_for_each_entry_safe(fde, n, &dwarf_fde_list, link)
kfree(fde);
spin_unlock_irqrestore(&dwarf_fde_lock, flags);
}
/**
* dwarf_unwinder_init - initialise the dwarf unwinder
*
* Build the data structures describing the .dwarf_frame section to
* make it easier to lookup CIE and FDE entries. Because the
* .eh_frame section is packed as tightly as possible it is not
* easy to lookup the FDE for a given PC, so we build a list of FDE
* and CIE entries that make it easier.
*/
void dwarf_unwinder_init(void)
{
u32 entry_type;
void *p, *entry;
int count, err;
unsigned long len;
unsigned int c_entries, f_entries;
unsigned char *end;
INIT_LIST_HEAD(&dwarf_cie_list);
INIT_LIST_HEAD(&dwarf_fde_list);
c_entries = 0;
f_entries = 0;
entry = &__start_eh_frame;
while ((char *)entry < __stop_eh_frame) {
p = entry;
count = dwarf_entry_len(p, &len);
if (count == 0) {
/*
* We read a bogus length field value. There is
* nothing we can do here apart from disabling
* the DWARF unwinder. We can't even skip this
* entry and move to the next one because 'len'
* tells us where our next entry is.
*/
goto out;
} else
p += count;
/* initial length does not include itself */
end = p + len;
entry_type = get_unaligned((u32 *)p);
p += 4;
if (entry_type == DW_EH_FRAME_CIE) {
err = dwarf_parse_cie(entry, p, len, end);
if (err < 0)
goto out;
else
c_entries++;
} else {
err = dwarf_parse_fde(entry, entry_type, p, len);
if (err < 0)
goto out;
else
f_entries++;
}
entry = (char *)entry + len + 4;
}
printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
c_entries, f_entries);
err = unwinder_register(&dwarf_unwinder);
if (err)
goto out;
return;
out:
printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
dwarf_unwinder_cleanup();
}