linux_old1/include/linux/page_cgroup.h

142 lines
3.1 KiB
C
Raw Normal View History

#ifndef __LINUX_PAGE_CGROUP_H
#define __LINUX_PAGE_CGROUP_H
#ifdef CONFIG_CGROUP_MEM_RES_CTLR
#include <linux/bit_spinlock.h>
/*
* Page Cgroup can be considered as an extended mem_map.
* A page_cgroup page is associated with every page descriptor. The
* page_cgroup helps us identify information about the cgroup
* All page cgroups are allocated at boot or memory hotplug event,
* then the page cgroup for pfn always exists.
*/
struct page_cgroup {
unsigned long flags;
struct mem_cgroup *mem_cgroup;
struct page *page;
struct list_head lru; /* per cgroup LRU list */
};
void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat);
#ifdef CONFIG_SPARSEMEM
static inline void __init page_cgroup_init_flatmem(void)
{
}
extern void __init page_cgroup_init(void);
#else
void __init page_cgroup_init_flatmem(void);
static inline void __init page_cgroup_init(void)
{
}
#endif
struct page_cgroup *lookup_page_cgroup(struct page *page);
enum {
/* flags for mem_cgroup */
PCG_LOCK, /* page cgroup is locked */
PCG_CACHE, /* charged as cache */
PCG_USED, /* this object is in use. */
};
#define TESTPCGFLAG(uname, lname) \
static inline int PageCgroup##uname(struct page_cgroup *pc) \
{ return test_bit(PCG_##lname, &pc->flags); }
#define SETPCGFLAG(uname, lname) \
static inline void SetPageCgroup##uname(struct page_cgroup *pc)\
{ set_bit(PCG_##lname, &pc->flags); }
#define CLEARPCGFLAG(uname, lname) \
static inline void ClearPageCgroup##uname(struct page_cgroup *pc) \
{ clear_bit(PCG_##lname, &pc->flags); }
/* Cache flag is set only once (at allocation) */
TESTPCGFLAG(Cache, CACHE)
TESTPCGFLAG(Used, USED)
CLEARPCGFLAG(Used, USED)
static inline int page_cgroup_nid(struct page_cgroup *pc)
{
return page_to_nid(pc->page);
}
static inline enum zone_type page_cgroup_zid(struct page_cgroup *pc)
{
return page_zonenum(pc->page);
}
static inline void lock_page_cgroup(struct page_cgroup *pc)
{
bit_spin_lock(PCG_LOCK, &pc->flags);
}
static inline int trylock_page_cgroup(struct page_cgroup *pc)
{
return bit_spin_trylock(PCG_LOCK, &pc->flags);
}
static inline void unlock_page_cgroup(struct page_cgroup *pc)
{
bit_spin_unlock(PCG_LOCK, &pc->flags);
}
#else /* CONFIG_CGROUP_MEM_RES_CTLR */
struct page_cgroup;
static inline void __meminit pgdat_page_cgroup_init(struct pglist_data *pgdat)
{
}
static inline struct page_cgroup *lookup_page_cgroup(struct page *page)
{
return NULL;
}
static inline void page_cgroup_init(void)
{
}
static inline void __init page_cgroup_init_flatmem(void)
{
}
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
#endif
#include <linux/swap.h>
#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
extern unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id);
extern unsigned short lookup_swap_cgroup(swp_entry_t ent);
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
extern int swap_cgroup_swapon(int type, unsigned long max_pages);
extern void swap_cgroup_swapoff(int type);
#else
static inline
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
unsigned short swap_cgroup_record(swp_entry_t ent, unsigned short id)
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
{
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
return 0;
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
}
static inline
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
unsigned short lookup_swap_cgroup(swp_entry_t ent)
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
{
cgroups: use css id in swap cgroup for saving memory v5 Try to use CSS ID for records in swap_cgroup. By this, on 64bit machine, size of swap_cgroup goes down to 2 bytes from 8bytes. This means, when 2GB of swap is equipped, (assume the page size is 4096bytes) From size of swap_cgroup = 2G/4k * 8 = 4Mbytes. To size of swap_cgroup = 2G/4k * 2 = 1Mbytes. Reduction is large. Of course, there are trade-offs. This CSS ID will add overhead to swap-in/swap-out/swap-free. But in general, - swap is a resource which the user tend to avoid use. - If swap is never used, swap_cgroup area is not used. - Reading traditional manuals, size of swap should be proportional to size of memory. Memory size of machine is increasing now. I think reducing size of swap_cgroup makes sense. Note: - ID->CSS lookup routine has no locks, it's under RCU-Read-Side. - memcg can be obsolete at rmdir() but not freed while refcnt from swap_cgroup is available. Changelog v4->v5: - reworked on to memcg-charge-swapcache-to-proper-memcg.patch Changlog ->v4: - fixed not configured case. - deleted unnecessary comments. - fixed NULL pointer bug. - fixed message in dmesg. [nishimura@mxp.nes.nec.co.jp: css_tryget can be called twice in !PageCgroupUsed case] Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Li Zefan <lizf@cn.fujitsu.com> Cc: Balbir Singh <balbir@in.ibm.com> Cc: Paul Menage <menage@google.com> Cc: Hugh Dickins <hugh@veritas.com> Signed-off-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-04-03 07:57:45 +08:00
return 0;
memcg: swap cgroup for remembering usage For accounting swap, we need a record per swap entry, at least. This patch adds following function. - swap_cgroup_swapon() .... called from swapon - swap_cgroup_swapoff() ... called at the end of swapoff. - swap_cgroup_record() .... record information of swap entry. - swap_cgroup_lookup() .... lookup information of swap entry. This patch just implements "how to record information". No actual method for limit the usage of swap. These routine uses flat table to record and lookup. "wise" lookup system like radix-tree requires requires memory allocation at new records but swap-out is usually called under memory shortage (or memcg hits limit.) So, I used static allocation. (maybe dynamic allocation is not very hard but it adds additional memory allocation in memory shortage path.) Note1: In this, we use pointer to record information and this means 8bytes per swap entry. I think we can reduce this when we create "id of cgroup" in the range of 0-65535 or 0-255. Reported-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reviewed-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Tested-by: Daisuke Nishimura <nishimura@mxp.nes.nec.co.jp> Reported-by: Hugh Dickins <hugh@veritas.com> Reported-by: Balbir Singh <balbir@linux.vnet.ibm.com> Reported-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: KAMEZAWA Hiroyuki <kamezawa.hiroyu@jp.fujitsu.com> Cc: Pavel Emelianov <xemul@openvz.org> Cc: Li Zefan <lizf@cn.fujitsu.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2009-01-08 10:07:58 +08:00
}
static inline int
swap_cgroup_swapon(int type, unsigned long max_pages)
{
return 0;
}
static inline void swap_cgroup_swapoff(int type)
{
return;
}
#endif
#endif