linux_old1/sound/core/seq/seq_system.c

175 lines
5.3 KiB
C
Raw Normal View History

/*
* ALSA sequencer System services Client
* Copyright (c) 1998-1999 by Frank van de Pol <fvdpol@coil.demon.nl>
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
*/
#include <linux/init.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <sound/core.h>
#include "seq_system.h"
#include "seq_timer.h"
#include "seq_queue.h"
/* internal client that provide system services, access to timer etc. */
/*
* Port "Timer"
* - send tempo /start/stop etc. events to this port to manipulate the
* queue's timer. The queue address is specified in
* data.queue.queue.
* - this port supports subscription. The received timer events are
* broadcasted to all subscribed clients. The modified tempo
* value is stored on data.queue.value.
* The modifier client/port is not send.
*
* Port "Announce"
* - does not receive message
* - supports supscription. For each client or port attaching to or
* detaching from the system an announcement is send to the subscribed
* clients.
*
* Idea: the subscription mechanism might also work handy for distributing
* synchronisation and timing information. In this case we would ideally have
* a list of subscribers for each type of sync (time, tick), for each timing
* queue.
*
* NOTE: the queue to be started, stopped, etc. must be specified
* in data.queue.addr.queue field. queue is used only for
* scheduling, and no longer referred as affected queue.
* They are used only for timer broadcast (see above).
* -- iwai
*/
/* client id of our system client */
static int sysclient = -1;
/* port id numbers for this client */
static int announce_port = -1;
/* fill standard header data, source port & channel are filled in */
static int setheader(struct snd_seq_event * ev, int client, int port)
{
if (announce_port < 0)
return -ENODEV;
memset(ev, 0, sizeof(struct snd_seq_event));
ev->flags &= ~SNDRV_SEQ_EVENT_LENGTH_MASK;
ev->flags |= SNDRV_SEQ_EVENT_LENGTH_FIXED;
ev->source.client = sysclient;
ev->source.port = announce_port;
ev->dest.client = SNDRV_SEQ_ADDRESS_SUBSCRIBERS;
/* fill data */
/*ev->data.addr.queue = SNDRV_SEQ_ADDRESS_UNKNOWN;*/
ev->data.addr.client = client;
ev->data.addr.port = port;
return 0;
}
/* entry points for broadcasting system events */
void snd_seq_system_broadcast(int client, int port, int type)
{
struct snd_seq_event ev;
if (setheader(&ev, client, port) < 0)
return;
ev.type = type;
snd_seq_kernel_client_dispatch(sysclient, &ev, 0, 0);
}
/* entry points for broadcasting system events */
int snd_seq_system_notify(int client, int port, struct snd_seq_event *ev)
{
ev->flags = SNDRV_SEQ_EVENT_LENGTH_FIXED;
ev->source.client = sysclient;
ev->source.port = announce_port;
ev->dest.client = client;
ev->dest.port = port;
return snd_seq_kernel_client_dispatch(sysclient, ev, 0, 0);
}
/* call-back handler for timer events */
static int event_input_timer(struct snd_seq_event * ev, int direct, void *private_data, int atomic, int hop)
{
return snd_seq_control_queue(ev, atomic, hop);
}
/* register our internal client */
int __init snd_seq_system_client_init(void)
{
struct snd_seq_port_callback pcallbacks;
struct snd_seq_port_info *port;
port = kzalloc(sizeof(*port), GFP_KERNEL);
if (!port)
return -ENOMEM;
memset(&pcallbacks, 0, sizeof(pcallbacks));
pcallbacks.owner = THIS_MODULE;
pcallbacks.event_input = event_input_timer;
/* register client */
sysclient = snd_seq_create_kernel_client(NULL, 0, "System");
/* register timer */
strcpy(port->name, "Timer");
port->capability = SNDRV_SEQ_PORT_CAP_WRITE; /* accept queue control */
port->capability |= SNDRV_SEQ_PORT_CAP_READ|SNDRV_SEQ_PORT_CAP_SUBS_READ; /* for broadcast */
port->kernel = &pcallbacks;
port->type = 0;
port->flags = SNDRV_SEQ_PORT_FLG_GIVEN_PORT;
port->addr.client = sysclient;
port->addr.port = SNDRV_SEQ_PORT_SYSTEM_TIMER;
snd_seq_kernel_client_ctl(sysclient, SNDRV_SEQ_IOCTL_CREATE_PORT, port);
/* register announcement port */
strcpy(port->name, "Announce");
port->capability = SNDRV_SEQ_PORT_CAP_READ|SNDRV_SEQ_PORT_CAP_SUBS_READ; /* for broadcast only */
port->kernel = NULL;
port->type = 0;
port->flags = SNDRV_SEQ_PORT_FLG_GIVEN_PORT;
port->addr.client = sysclient;
port->addr.port = SNDRV_SEQ_PORT_SYSTEM_ANNOUNCE;
snd_seq_kernel_client_ctl(sysclient, SNDRV_SEQ_IOCTL_CREATE_PORT, port);
announce_port = port->addr.port;
kfree(port);
return 0;
}
/* unregister our internal client */
void __exit snd_seq_system_client_done(void)
{
int oldsysclient = sysclient;
if (oldsysclient >= 0) {
sysclient = -1;
announce_port = -1;
snd_seq_delete_kernel_client(oldsysclient);
}
}