linux_old1/arch/powerpc/kernel/eeh_pe.c

911 lines
22 KiB
C
Raw Normal View History

/*
* The file intends to implement PE based on the information from
* platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
* All the PEs should be organized as hierarchy tree. The first level
* of the tree will be associated to existing PHBs since the particular
* PE is only meaningful in one PHB domain.
*
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gfp.h>
#include <linux/kernel.h>
#include <linux/pci.h>
#include <linux/string.h>
#include <asm/pci-bridge.h>
#include <asm/ppc-pci.h>
static int eeh_pe_aux_size = 0;
static LIST_HEAD(eeh_phb_pe);
/**
* eeh_set_pe_aux_size - Set PE auxillary data size
* @size: PE auxillary data size
*
* Set PE auxillary data size
*/
void eeh_set_pe_aux_size(int size)
{
if (size < 0)
return;
eeh_pe_aux_size = size;
}
/**
* eeh_pe_alloc - Allocate PE
* @phb: PCI controller
* @type: PE type
*
* Allocate PE instance dynamically.
*/
static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
{
struct eeh_pe *pe;
size_t alloc_size;
alloc_size = sizeof(struct eeh_pe);
if (eeh_pe_aux_size) {
alloc_size = ALIGN(alloc_size, cache_line_size());
alloc_size += eeh_pe_aux_size;
}
/* Allocate PHB PE */
pe = kzalloc(alloc_size, GFP_KERNEL);
if (!pe) return NULL;
/* Initialize PHB PE */
pe->type = type;
pe->phb = phb;
INIT_LIST_HEAD(&pe->child_list);
INIT_LIST_HEAD(&pe->child);
INIT_LIST_HEAD(&pe->edevs);
pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
cache_line_size());
return pe;
}
/**
* eeh_phb_pe_create - Create PHB PE
* @phb: PCI controller
*
* The function should be called while the PHB is detected during
* system boot or PCI hotplug in order to create PHB PE.
*/
int eeh_phb_pe_create(struct pci_controller *phb)
{
struct eeh_pe *pe;
/* Allocate PHB PE */
pe = eeh_pe_alloc(phb, EEH_PE_PHB);
if (!pe) {
pr_err("%s: out of memory!\n", __func__);
return -ENOMEM;
}
/* Put it into the list */
list_add_tail(&pe->child, &eeh_phb_pe);
pr_debug("EEH: Add PE for PHB#%d\n", phb->global_number);
return 0;
}
/**
* eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
* @phb: PCI controller
*
* The overall PEs form hierarchy tree. The first layer of the
* hierarchy tree is composed of PHB PEs. The function is used
* to retrieve the corresponding PHB PE according to the given PHB.
*/
struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
{
struct eeh_pe *pe;
list_for_each_entry(pe, &eeh_phb_pe, child) {
/*
* Actually, we needn't check the type since
* the PE for PHB has been determined when that
* was created.
*/
if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
return pe;
}
return NULL;
}
/**
* eeh_pe_next - Retrieve the next PE in the tree
* @pe: current PE
* @root: root PE
*
* The function is used to retrieve the next PE in the
* hierarchy PE tree.
*/
static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
struct eeh_pe *root)
{
struct list_head *next = pe->child_list.next;
if (next == &pe->child_list) {
while (1) {
if (pe == root)
return NULL;
next = pe->child.next;
if (next != &pe->parent->child_list)
break;
pe = pe->parent;
}
}
return list_entry(next, struct eeh_pe, child);
}
/**
* eeh_pe_traverse - Traverse PEs in the specified PHB
* @root: root PE
* @fn: callback
* @flag: extra parameter to callback
*
* The function is used to traverse the specified PE and its
* child PEs. The traversing is to be terminated once the
* callback returns something other than NULL, or no more PEs
* to be traversed.
*/
void *eeh_pe_traverse(struct eeh_pe *root,
eeh_traverse_func fn, void *flag)
{
struct eeh_pe *pe;
void *ret;
for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
ret = fn(pe, flag);
if (ret) return ret;
}
return NULL;
}
/**
* eeh_pe_dev_traverse - Traverse the devices from the PE
* @root: EEH PE
* @fn: function callback
* @flag: extra parameter to callback
*
* The function is used to traverse the devices of the specified
* PE and its child PEs.
*/
void *eeh_pe_dev_traverse(struct eeh_pe *root,
eeh_traverse_func fn, void *flag)
{
struct eeh_pe *pe;
struct eeh_dev *edev, *tmp;
void *ret;
if (!root) {
pr_warn("%s: Invalid PE %p\n",
__func__, root);
return NULL;
}
/* Traverse root PE */
for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
eeh_pe_for_each_dev(pe, edev, tmp) {
ret = fn(edev, flag);
if (ret)
return ret;
}
}
return NULL;
}
/**
* __eeh_pe_get - Check the PE address
* @data: EEH PE
* @flag: EEH device
*
* For one particular PE, it can be identified by PE address
* or tranditional BDF address. BDF address is composed of
* Bus/Device/Function number. The extra data referred by flag
* indicates which type of address should be used.
*/
static void *__eeh_pe_get(void *data, void *flag)
{
struct eeh_pe *pe = (struct eeh_pe *)data;
struct eeh_dev *edev = (struct eeh_dev *)flag;
/* Unexpected PHB PE */
if (pe->type & EEH_PE_PHB)
return NULL;
/*
* We prefer PE address. For most cases, we should
* have non-zero PE address
*/
if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
if (edev->pe_config_addr == pe->addr)
return pe;
} else {
if (edev->pe_config_addr &&
(edev->pe_config_addr == pe->addr))
return pe;
}
/* Try BDF address */
if (edev->config_addr &&
(edev->config_addr == pe->config_addr))
return pe;
return NULL;
}
/**
* eeh_pe_get - Search PE based on the given address
* @edev: EEH device
*
* Search the corresponding PE based on the specified address which
* is included in the eeh device. The function is used to check if
* the associated PE has been created against the PE address. It's
* notable that the PE address has 2 format: traditional PE address
* which is composed of PCI bus/device/function number, or unified
* PE address.
*/
struct eeh_pe *eeh_pe_get(struct eeh_dev *edev)
{
struct eeh_pe *root = eeh_phb_pe_get(edev->phb);
struct eeh_pe *pe;
pe = eeh_pe_traverse(root, __eeh_pe_get, edev);
return pe;
}
/**
* eeh_pe_get_parent - Retrieve the parent PE
* @edev: EEH device
*
* The whole PEs existing in the system are organized as hierarchy
* tree. The function is used to retrieve the parent PE according
* to the parent EEH device.
*/
static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
{
struct device_node *dn;
struct eeh_dev *parent;
/*
* It might have the case for the indirect parent
* EEH device already having associated PE, but
* the direct parent EEH device doesn't have yet.
*/
dn = edev->dn->parent;
while (dn) {
/* We're poking out of PCI territory */
if (!PCI_DN(dn)) return NULL;
parent = of_node_to_eeh_dev(dn);
/* We're poking out of PCI territory */
if (!parent) return NULL;
if (parent->pe)
return parent->pe;
dn = dn->parent;
}
return NULL;
}
/**
* eeh_add_to_parent_pe - Add EEH device to parent PE
* @edev: EEH device
*
* Add EEH device to the parent PE. If the parent PE already
* exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
* we have to create new PE to hold the EEH device and the new
* PE will be linked to its parent PE as well.
*/
int eeh_add_to_parent_pe(struct eeh_dev *edev)
{
struct eeh_pe *pe, *parent;
/*
* Search the PE has been existing or not according
* to the PE address. If that has been existing, the
* PE should be composed of PCI bus and its subordinate
* components.
*/
pe = eeh_pe_get(edev);
if (pe && !(pe->type & EEH_PE_INVALID)) {
if (!edev->pe_config_addr) {
pr_err("%s: PE with addr 0x%x already exists\n",
__func__, edev->config_addr);
return -EEXIST;
}
/* Mark the PE as type of PCI bus */
pe->type = EEH_PE_BUS;
edev->pe = pe;
/* Put the edev to PE */
list_add_tail(&edev->list, &pe->edevs);
pr_debug("EEH: Add %s to Bus PE#%x\n",
edev->dn->full_name, pe->addr);
return 0;
} else if (pe && (pe->type & EEH_PE_INVALID)) {
list_add_tail(&edev->list, &pe->edevs);
edev->pe = pe;
/*
* We're running to here because of PCI hotplug caused by
* EEH recovery. We need clear EEH_PE_INVALID until the top.
*/
parent = pe;
while (parent) {
if (!(parent->type & EEH_PE_INVALID))
break;
parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
parent = parent->parent;
}
pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
edev->dn->full_name, pe->addr, pe->parent->addr);
return 0;
}
/* Create a new EEH PE */
pe = eeh_pe_alloc(edev->phb, EEH_PE_DEVICE);
if (!pe) {
pr_err("%s: out of memory!\n", __func__);
return -ENOMEM;
}
pe->addr = edev->pe_config_addr;
pe->config_addr = edev->config_addr;
/*
* Put the new EEH PE into hierarchy tree. If the parent
* can't be found, the newly created PE will be attached
* to PHB directly. Otherwise, we have to associate the
* PE with its parent.
*/
parent = eeh_pe_get_parent(edev);
if (!parent) {
parent = eeh_phb_pe_get(edev->phb);
if (!parent) {
pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
__func__, edev->phb->global_number);
edev->pe = NULL;
kfree(pe);
return -EEXIST;
}
}
pe->parent = parent;
/*
* Put the newly created PE into the child list and
* link the EEH device accordingly.
*/
list_add_tail(&pe->child, &parent->child_list);
list_add_tail(&edev->list, &pe->edevs);
edev->pe = pe;
pr_debug("EEH: Add %s to Device PE#%x, Parent PE#%x\n",
edev->dn->full_name, pe->addr, pe->parent->addr);
return 0;
}
/**
* eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
* @edev: EEH device
*
* The PE hierarchy tree might be changed when doing PCI hotplug.
* Also, the PCI devices or buses could be removed from the system
* during EEH recovery. So we have to call the function remove the
* corresponding PE accordingly if necessary.
*/
int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
{
struct eeh_pe *pe, *parent, *child;
int cnt;
if (!edev->pe) {
pr_debug("%s: No PE found for EEH device %s\n",
__func__, edev->dn->full_name);
return -EEXIST;
}
/* Remove the EEH device */
powerpc/eeh: Fix kernel crash when passing through VF When doing vfio passthrough a VF, the kernel will crash with following message: [ 442.656459] Unable to handle kernel paging request for data at address 0x00000060 [ 442.656593] Faulting instruction address: 0xc000000000038b88 [ 442.656706] Oops: Kernel access of bad area, sig: 11 [#1] [ 442.656798] SMP NR_CPUS=1024 NUMA PowerNV [ 442.656890] Modules linked in: vfio_pci mlx4_core nf_conntrack_netbios_ns nf_conntrack_broadcast ipt_MASQUERADE ip6t_REJECT xt_conntrack bnep bluetooth rfkill ebtable_nat ebtable_broute bridge stp llc ebtable_filter ebtables ip6table_nat nf_conntrack_ipv6 nf_defrag_ipv6 nf_nat_ipv6 ip6table_mangle ip6table_security ip6table_raw ip6table_filter ip6_tables iptable_nat nf_conntrack_ipv4 nf_defrag_ipv4 nf_nat_ipv4 nf_nat nf_conntrack iptable_mangle iptable_security iptable_raw tg3 nfsd be2net nfs_acl ses lockd ptp enclosure pps_core kvm_hv kvm_pr shpchp binfmt_misc kvm sunrpc uinput lpfc scsi_transport_fc ipr scsi_tgt [last unloaded: mlx4_core] [ 442.658152] CPU: 40 PID: 14948 Comm: qemu-system-ppc Not tainted 3.10.42yw-pkvm+ #37 [ 442.658219] task: c000000f7e2a9a00 ti: c000000f6dc3c000 task.ti: c000000f6dc3c000 [ 442.658287] NIP: c000000000038b88 LR: c0000000004435a8 CTR: c000000000455bc0 [ 442.658352] REGS: c000000f6dc3f580 TRAP: 0300 Not tainted (3.10.42yw-pkvm+) [ 442.658419] MSR: 9000000000009032 <SF,HV,EE,ME,IR,DR,RI> CR: 28004882 XER: 20000000 [ 442.658577] CFAR: c00000000000908c DAR: 0000000000000060 DSISR: 40000000 SOFTE: 1 GPR00: c0000000004435a8 c000000f6dc3f800 c0000000012b1c10 c00000000da24000 GPR04: 0000000000000003 0000000000001004 00000000000015b3 000000000000ffff GPR08: c00000000127f5d8 0000000000000000 000000000000ffff 0000000000000000 GPR12: c000000000068078 c00000000fdd6800 000001003c320c80 000001003c3607f0 GPR16: 0000000000000001 00000000105480c8 000000001055aaa8 000001003c31ab18 GPR20: 000001003c10fb40 000001003c360ae8 000000001063bcf0 000000001063bdb0 GPR24: 000001003c15ed70 0000000010548f40 c000001fe5514c88 c000001fe5514cb0 GPR28: c00000000da24000 0000000000000000 c00000000da24000 0000000000000003 [ 442.659471] NIP [c000000000038b88] .pcibios_set_pcie_reset_state+0x28/0x130 [ 442.659530] LR [c0000000004435a8] .pci_set_pcie_reset_state+0x28/0x40 [ 442.659585] Call Trace: [ 442.659610] [c000000f6dc3f800] [00000000000719e0] 0x719e0 (unreliable) [ 442.659677] [c000000f6dc3f880] [c0000000004435a8] .pci_set_pcie_reset_state+0x28/0x40 [ 442.659757] [c000000f6dc3f900] [c000000000455bf8] .reset_fundamental+0x38/0x80 [ 442.659835] [c000000f6dc3f980] [c0000000004562a8] .pci_dev_specific_reset+0xa8/0xf0 [ 442.659913] [c000000f6dc3fa00] [c0000000004448c4] .__pci_dev_reset+0x44/0x430 [ 442.659980] [c000000f6dc3fab0] [c000000000444d5c] .pci_reset_function+0x7c/0xc0 [ 442.660059] [c000000f6dc3fb30] [d00000001c141ab8] .vfio_pci_open+0xe8/0x2b0 [vfio_pci] [ 442.660139] [c000000f6dc3fbd0] [c000000000586c30] .vfio_group_fops_unl_ioctl+0x3a0/0x630 [ 442.660219] [c000000f6dc3fc90] [c000000000255fbc] .do_vfs_ioctl+0x4ec/0x7c0 [ 442.660286] [c000000f6dc3fd80] [c000000000256364] .SyS_ioctl+0xd4/0xf0 [ 442.660354] [c000000f6dc3fe30] [c000000000009e54] syscall_exit+0x0/0x98 [ 442.660420] Instruction dump: [ 442.660454] 4bfffce9 4bfffee4 7c0802a6 fbc1fff0 fbe1fff8 f8010010 f821ff81 7c7e1b78 [ 442.660566] 7c9f2378 60000000 60000000 e93e02c8 <e8690060> 2fa30000 41de00c4 2b9f0002 [ 442.660679] ---[ end trace a64ac9546bcf0328 ]--- [ 442.660724] The reason is current VF is not EEH enabled. This patch introduces a macro to convert eeh_dev to eeh_pe. By doing so, it will prevent converting with NULL pointer. Signed-off-by: Wei Yang <weiyang@linux.vnet.ibm.com> Acked-by: Gavin Shan <gwshan@linux.vnet.ibm.com> CC: Michael Ellerman <mpe@ellerman.id.au> V3 -> V4: 1. move the macro definition from include/linux/pci.h to arch/powerpc/include/asm/eeh.h V2 -> V3: 1. rebased on 3.17-rc4 2. introduce a macro 3. use this macro in several other places V1 -> V2: 1. code style and patch subject adjustment Signed-off-by: Michael Ellerman <mpe@ellerman.id.au>
2014-09-17 10:48:26 +08:00
pe = eeh_dev_to_pe(edev);
edev->pe = NULL;
list_del(&edev->list);
/*
* Check if the parent PE includes any EEH devices.
* If not, we should delete that. Also, we should
* delete the parent PE if it doesn't have associated
* child PEs and EEH devices.
*/
while (1) {
parent = pe->parent;
if (pe->type & EEH_PE_PHB)
break;
if (!(pe->state & EEH_PE_KEEP)) {
if (list_empty(&pe->edevs) &&
list_empty(&pe->child_list)) {
list_del(&pe->child);
kfree(pe);
} else {
break;
}
} else {
if (list_empty(&pe->edevs)) {
cnt = 0;
list_for_each_entry(child, &pe->child_list, child) {
if (!(child->type & EEH_PE_INVALID)) {
cnt++;
break;
}
}
if (!cnt)
pe->type |= EEH_PE_INVALID;
else
break;
}
}
pe = parent;
}
return 0;
}
/**
* eeh_pe_update_time_stamp - Update PE's frozen time stamp
* @pe: EEH PE
*
* We have time stamp for each PE to trace its time of getting
* frozen in last hour. The function should be called to update
* the time stamp on first error of the specific PE. On the other
* handle, we needn't account for errors happened in last hour.
*/
void eeh_pe_update_time_stamp(struct eeh_pe *pe)
{
struct timeval tstamp;
if (!pe) return;
if (pe->freeze_count <= 0) {
pe->freeze_count = 0;
do_gettimeofday(&pe->tstamp);
} else {
do_gettimeofday(&tstamp);
if (tstamp.tv_sec - pe->tstamp.tv_sec > 3600) {
pe->tstamp = tstamp;
pe->freeze_count = 0;
}
}
}
/**
* __eeh_pe_state_mark - Mark the state for the PE
* @data: EEH PE
* @flag: state
*
* The function is used to mark the indicated state for the given
* PE. Also, the associated PCI devices will be put into IO frozen
* state as well.
*/
static void *__eeh_pe_state_mark(void *data, void *flag)
{
struct eeh_pe *pe = (struct eeh_pe *)data;
int state = *((int *)flag);
struct eeh_dev *edev, *tmp;
struct pci_dev *pdev;
2014-04-24 16:00:19 +08:00
/* Keep the state of permanently removed PE intact */
if (pe->state & EEH_PE_REMOVED)
2014-04-24 16:00:19 +08:00
return NULL;
pe->state |= state;
2014-04-24 16:00:19 +08:00
/* Offline PCI devices if applicable */
if (!(state & EEH_PE_ISOLATED))
2014-04-24 16:00:19 +08:00
return NULL;
eeh_pe_for_each_dev(pe, edev, tmp) {
pdev = eeh_dev_to_pci_dev(edev);
if (pdev)
pdev->error_state = pci_channel_io_frozen;
}
/* Block PCI config access if required */
if (pe->state & EEH_PE_CFG_RESTRICTED)
pe->state |= EEH_PE_CFG_BLOCKED;
return NULL;
}
/**
* eeh_pe_state_mark - Mark specified state for PE and its associated device
* @pe: EEH PE
*
* EEH error affects the current PE and its child PEs. The function
* is used to mark appropriate state for the affected PEs and the
* associated devices.
*/
void eeh_pe_state_mark(struct eeh_pe *pe, int state)
{
eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
}
2014-04-24 16:00:19 +08:00
static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
{
struct eeh_dev *edev = data;
int mode = *((int *)flag);
edev->mode |= mode;
return NULL;
}
/**
* eeh_pe_dev_state_mark - Mark state for all device under the PE
* @pe: EEH PE
*
* Mark specific state for all child devices of the PE.
*/
void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
{
eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
}
/**
* __eeh_pe_state_clear - Clear state for the PE
* @data: EEH PE
* @flag: state
*
* The function is used to clear the indicated state from the
* given PE. Besides, we also clear the check count of the PE
* as well.
*/
static void *__eeh_pe_state_clear(void *data, void *flag)
{
struct eeh_pe *pe = (struct eeh_pe *)data;
int state = *((int *)flag);
struct eeh_dev *edev, *tmp;
struct pci_dev *pdev;
2014-04-24 16:00:19 +08:00
/* Keep the state of permanently removed PE intact */
if (pe->state & EEH_PE_REMOVED)
2014-04-24 16:00:19 +08:00
return NULL;
pe->state &= ~state;
2014-04-24 16:00:19 +08:00
/*
* Special treatment on clearing isolated state. Clear
* check count since last isolation and put all affected
* devices to normal state.
*/
if (!(state & EEH_PE_ISOLATED))
return NULL;
pe->check_count = 0;
eeh_pe_for_each_dev(pe, edev, tmp) {
pdev = eeh_dev_to_pci_dev(edev);
if (!pdev)
continue;
pdev->error_state = pci_channel_io_normal;
}
/* Unblock PCI config access if required */
if (pe->state & EEH_PE_CFG_RESTRICTED)
pe->state &= ~EEH_PE_CFG_BLOCKED;
return NULL;
}
/**
* eeh_pe_state_clear - Clear state for the PE and its children
* @pe: PE
* @state: state to be cleared
*
* When the PE and its children has been recovered from error,
* we need clear the error state for that. The function is used
* for the purpose.
*/
void eeh_pe_state_clear(struct eeh_pe *pe, int state)
{
eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
}
/*
* Some PCI bridges (e.g. PLX bridges) have primary/secondary
* buses assigned explicitly by firmware, and we probably have
* lost that after reset. So we have to delay the check until
* the PCI-CFG registers have been restored for the parent
* bridge.
*
* Don't use normal PCI-CFG accessors, which probably has been
* blocked on normal path during the stage. So we need utilize
* eeh operations, which is always permitted.
*/
static void eeh_bridge_check_link(struct eeh_dev *edev,
struct device_node *dn)
{
int cap;
uint32_t val;
int timeout = 0;
/*
* We only check root port and downstream ports of
* PCIe switches
*/
if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
return;
pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
__func__, edev->phb->global_number,
edev->config_addr >> 8,
PCI_SLOT(edev->config_addr & 0xFF),
PCI_FUNC(edev->config_addr & 0xFF));
/* Check slot status */
cap = edev->pcie_cap;
eeh_ops->read_config(dn, cap + PCI_EXP_SLTSTA, 2, &val);
if (!(val & PCI_EXP_SLTSTA_PDS)) {
pr_debug(" No card in the slot (0x%04x) !\n", val);
return;
}
/* Check power status if we have the capability */
eeh_ops->read_config(dn, cap + PCI_EXP_SLTCAP, 2, &val);
if (val & PCI_EXP_SLTCAP_PCP) {
eeh_ops->read_config(dn, cap + PCI_EXP_SLTCTL, 2, &val);
if (val & PCI_EXP_SLTCTL_PCC) {
pr_debug(" In power-off state, power it on ...\n");
val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
eeh_ops->write_config(dn, cap + PCI_EXP_SLTCTL, 2, val);
msleep(2 * 1000);
}
}
/* Enable link */
eeh_ops->read_config(dn, cap + PCI_EXP_LNKCTL, 2, &val);
val &= ~PCI_EXP_LNKCTL_LD;
eeh_ops->write_config(dn, cap + PCI_EXP_LNKCTL, 2, val);
/* Check link */
eeh_ops->read_config(dn, cap + PCI_EXP_LNKCAP, 4, &val);
if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
pr_debug(" No link reporting capability (0x%08x) \n", val);
msleep(1000);
return;
}
/* Wait the link is up until timeout (5s) */
timeout = 0;
while (timeout < 5000) {
msleep(20);
timeout += 20;
eeh_ops->read_config(dn, cap + PCI_EXP_LNKSTA, 2, &val);
if (val & PCI_EXP_LNKSTA_DLLLA)
break;
}
if (val & PCI_EXP_LNKSTA_DLLLA)
pr_debug(" Link up (%s)\n",
(val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
else
pr_debug(" Link not ready (0x%04x)\n", val);
}
#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
static void eeh_restore_bridge_bars(struct eeh_dev *edev,
struct device_node *dn)
{
int i;
/*
* Device BARs: 0x10 - 0x18
* Bus numbers and windows: 0x18 - 0x30
*/
for (i = 4; i < 13; i++)
eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
/* Rom: 0x38 */
eeh_ops->write_config(dn, 14*4, 4, edev->config_space[14]);
/* Cache line & Latency timer: 0xC 0xD */
eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
SAVED_BYTE(PCI_CACHE_LINE_SIZE));
eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
SAVED_BYTE(PCI_LATENCY_TIMER));
/* Max latency, min grant, interrupt ping and line: 0x3C */
eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
/* PCI Command: 0x4 */
eeh_ops->write_config(dn, PCI_COMMAND, 4, edev->config_space[1]);
/* Check the PCIe link is ready */
eeh_bridge_check_link(edev, dn);
}
static void eeh_restore_device_bars(struct eeh_dev *edev,
struct device_node *dn)
{
int i;
u32 cmd;
for (i = 4; i < 10; i++)
eeh_ops->write_config(dn, i*4, 4, edev->config_space[i]);
/* 12 == Expansion ROM Address */
eeh_ops->write_config(dn, 12*4, 4, edev->config_space[12]);
eeh_ops->write_config(dn, PCI_CACHE_LINE_SIZE, 1,
SAVED_BYTE(PCI_CACHE_LINE_SIZE));
eeh_ops->write_config(dn, PCI_LATENCY_TIMER, 1,
SAVED_BYTE(PCI_LATENCY_TIMER));
/* max latency, min grant, interrupt pin and line */
eeh_ops->write_config(dn, 15*4, 4, edev->config_space[15]);
/*
* Restore PERR & SERR bits, some devices require it,
* don't touch the other command bits
*/
eeh_ops->read_config(dn, PCI_COMMAND, 4, &cmd);
if (edev->config_space[1] & PCI_COMMAND_PARITY)
cmd |= PCI_COMMAND_PARITY;
else
cmd &= ~PCI_COMMAND_PARITY;
if (edev->config_space[1] & PCI_COMMAND_SERR)
cmd |= PCI_COMMAND_SERR;
else
cmd &= ~PCI_COMMAND_SERR;
eeh_ops->write_config(dn, PCI_COMMAND, 4, cmd);
}
/**
* eeh_restore_one_device_bars - Restore the Base Address Registers for one device
* @data: EEH device
* @flag: Unused
*
* Loads the PCI configuration space base address registers,
* the expansion ROM base address, the latency timer, and etc.
* from the saved values in the device node.
*/
static void *eeh_restore_one_device_bars(void *data, void *flag)
{
struct eeh_dev *edev = (struct eeh_dev *)data;
struct device_node *dn = eeh_dev_to_of_node(edev);
/* Do special restore for bridges */
if (edev->mode & EEH_DEV_BRIDGE)
eeh_restore_bridge_bars(edev, dn);
else
eeh_restore_device_bars(edev, dn);
if (eeh_ops->restore_config)
eeh_ops->restore_config(dn);
return NULL;
}
/**
* eeh_pe_restore_bars - Restore the PCI config space info
* @pe: EEH PE
*
* This routine performs a recursive walk to the children
* of this device as well.
*/
void eeh_pe_restore_bars(struct eeh_pe *pe)
{
/*
* We needn't take the EEH lock since eeh_pe_dev_traverse()
* will take that.
*/
eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
}
/**
* eeh_pe_loc_get - Retrieve location code binding to the given PE
* @pe: EEH PE
*
* Retrieve the location code of the given PE. If the primary PE bus
* is root bus, we will grab location code from PHB device tree node
* or root port. Otherwise, the upstream bridge's device tree node
* of the primary PE bus will be checked for the location code.
*/
const char *eeh_pe_loc_get(struct eeh_pe *pe)
{
struct pci_bus *bus = eeh_pe_bus_get(pe);
struct device_node *dn = pci_bus_to_OF_node(bus);
const char *loc = NULL;
if (!dn)
goto out;
/* PHB PE or root PE ? */
if (pci_is_root_bus(bus)) {
loc = of_get_property(dn, "ibm,loc-code", NULL);
if (!loc)
loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
if (loc)
goto out;
/* Check the root port */
dn = dn->child;
if (!dn)
goto out;
}
loc = of_get_property(dn, "ibm,loc-code", NULL);
if (!loc)
loc = of_get_property(dn, "ibm,slot-location-code", NULL);
out:
return loc ? loc : "N/A";
}
/**
* eeh_pe_bus_get - Retrieve PCI bus according to the given PE
* @pe: EEH PE
*
* Retrieve the PCI bus according to the given PE. Basically,
* there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
* primary PCI bus will be retrieved. The parent bus will be
* returned for BUS PE. However, we don't have associated PCI
* bus for DEVICE PE.
*/
struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
{
struct pci_bus *bus = NULL;
struct eeh_dev *edev;
struct pci_dev *pdev;
if (pe->type & EEH_PE_PHB) {
bus = pe->phb->bus;
} else if (pe->type & EEH_PE_BUS ||
pe->type & EEH_PE_DEVICE) {
if (pe->bus) {
bus = pe->bus;
goto out;
}
edev = list_first_entry(&pe->edevs, struct eeh_dev, list);
pdev = eeh_dev_to_pci_dev(edev);
if (pdev)
bus = pdev->bus;
}
out:
return bus;
}