linux_old1/net/ipv4/tcp_timer.c

649 lines
18 KiB
C
Raw Normal View History

/*
* INET An implementation of the TCP/IP protocol suite for the LINUX
* operating system. INET is implemented using the BSD Socket
* interface as the means of communication with the user level.
*
* Implementation of the Transmission Control Protocol(TCP).
*
* Authors: Ross Biro
* Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
* Mark Evans, <evansmp@uhura.aston.ac.uk>
* Corey Minyard <wf-rch!minyard@relay.EU.net>
* Florian La Roche, <flla@stud.uni-sb.de>
* Charles Hedrick, <hedrick@klinzhai.rutgers.edu>
* Linus Torvalds, <torvalds@cs.helsinki.fi>
* Alan Cox, <gw4pts@gw4pts.ampr.org>
* Matthew Dillon, <dillon@apollo.west.oic.com>
* Arnt Gulbrandsen, <agulbra@nvg.unit.no>
* Jorge Cwik, <jorge@laser.satlink.net>
*/
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/gfp.h>
#include <net/tcp.h>
int sysctl_tcp_syn_retries __read_mostly = TCP_SYN_RETRIES;
int sysctl_tcp_synack_retries __read_mostly = TCP_SYNACK_RETRIES;
int sysctl_tcp_keepalive_time __read_mostly = TCP_KEEPALIVE_TIME;
int sysctl_tcp_keepalive_probes __read_mostly = TCP_KEEPALIVE_PROBES;
int sysctl_tcp_keepalive_intvl __read_mostly = TCP_KEEPALIVE_INTVL;
int sysctl_tcp_retries1 __read_mostly = TCP_RETR1;
int sysctl_tcp_retries2 __read_mostly = TCP_RETR2;
int sysctl_tcp_orphan_retries __read_mostly;
int sysctl_tcp_thin_linear_timeouts __read_mostly;
static void tcp_write_err(struct sock *sk)
{
sk->sk_err = sk->sk_err_soft ? : ETIMEDOUT;
sk->sk_error_report(sk);
tcp_done(sk);
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONTIMEOUT);
}
/* Do not allow orphaned sockets to eat all our resources.
* This is direct violation of TCP specs, but it is required
* to prevent DoS attacks. It is called when a retransmission timeout
* or zero probe timeout occurs on orphaned socket.
*
* Criteria is still not confirmed experimentally and may change.
* We kill the socket, if:
* 1. If number of orphaned sockets exceeds an administratively configured
* limit.
* 2. If we have strong memory pressure.
*/
static int tcp_out_of_resources(struct sock *sk, int do_reset)
{
struct tcp_sock *tp = tcp_sk(sk);
int shift = 0;
/* If peer does not open window for long time, or did not transmit
* anything for long time, penalize it. */
if ((s32)(tcp_time_stamp - tp->lsndtime) > 2*TCP_RTO_MAX || !do_reset)
shift++;
/* If some dubious ICMP arrived, penalize even more. */
if (sk->sk_err_soft)
shift++;
if (tcp_check_oom(sk, shift)) {
/* Catch exceptional cases, when connection requires reset.
* 1. Last segment was sent recently. */
if ((s32)(tcp_time_stamp - tp->lsndtime) <= TCP_TIMEWAIT_LEN ||
/* 2. Window is closed. */
(!tp->snd_wnd && !tp->packets_out))
do_reset = 1;
if (do_reset)
tcp_send_active_reset(sk, GFP_ATOMIC);
tcp_done(sk);
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPABORTONMEMORY);
return 1;
}
return 0;
}
/* Calculate maximal number or retries on an orphaned socket. */
static int tcp_orphan_retries(struct sock *sk, int alive)
{
int retries = sysctl_tcp_orphan_retries; /* May be zero. */
/* We know from an ICMP that something is wrong. */
if (sk->sk_err_soft && !alive)
retries = 0;
/* However, if socket sent something recently, select some safe
* number of retries. 8 corresponds to >100 seconds with minimal
* RTO of 200msec. */
if (retries == 0 && alive)
retries = 8;
return retries;
}
static void tcp_mtu_probing(struct inet_connection_sock *icsk, struct sock *sk)
{
/* Black hole detection */
if (sysctl_tcp_mtu_probing) {
if (!icsk->icsk_mtup.enabled) {
icsk->icsk_mtup.enabled = 1;
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
} else {
struct tcp_sock *tp = tcp_sk(sk);
int mss;
mss = tcp_mtu_to_mss(sk, icsk->icsk_mtup.search_low) >> 1;
mss = min(sysctl_tcp_base_mss, mss);
mss = max(mss, 68 - tp->tcp_header_len);
icsk->icsk_mtup.search_low = tcp_mss_to_mtu(sk, mss);
tcp_sync_mss(sk, icsk->icsk_pmtu_cookie);
}
}
}
/* This function calculates a "timeout" which is equivalent to the timeout of a
* TCP connection after "boundary" unsuccessful, exponentially backed-off
* retransmissions with an initial RTO of TCP_RTO_MIN or TCP_TIMEOUT_INIT if
* syn_set flag is set.
*/
static bool retransmits_timed_out(struct sock *sk,
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
unsigned int boundary,
unsigned int timeout,
bool syn_set)
{
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
unsigned int linear_backoff_thresh, start_ts;
unsigned int rto_base = syn_set ? TCP_TIMEOUT_INIT : TCP_RTO_MIN;
if (!inet_csk(sk)->icsk_retransmits)
return false;
if (unlikely(!tcp_sk(sk)->retrans_stamp))
start_ts = TCP_SKB_CB(tcp_write_queue_head(sk))->when;
else
start_ts = tcp_sk(sk)->retrans_stamp;
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
if (likely(timeout == 0)) {
linear_backoff_thresh = ilog2(TCP_RTO_MAX/rto_base);
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
if (boundary <= linear_backoff_thresh)
timeout = ((2 << boundary) - 1) * rto_base;
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
else
timeout = ((2 << linear_backoff_thresh) - 1) * rto_base +
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
(boundary - linear_backoff_thresh) * TCP_RTO_MAX;
}
return (tcp_time_stamp - start_ts) >= timeout;
}
/* A write timeout has occurred. Process the after effects. */
static int tcp_write_timeout(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
int retry_until;
bool do_reset, syn_set = false;
if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
if (icsk->icsk_retransmits)
dst_negative_advice(sk);
retry_until = icsk->icsk_syn_retries ? : sysctl_tcp_syn_retries;
syn_set = true;
} else {
if (retransmits_timed_out(sk, sysctl_tcp_retries1, 0, 0)) {
/* Black hole detection */
tcp_mtu_probing(icsk, sk);
dst_negative_advice(sk);
}
retry_until = sysctl_tcp_retries2;
if (sock_flag(sk, SOCK_DEAD)) {
const int alive = (icsk->icsk_rto < TCP_RTO_MAX);
retry_until = tcp_orphan_retries(sk, alive);
Revert Backoff [v3]: Calculate TCP's connection close threshold as a time value. RFC 1122 specifies two threshold values R1 and R2 for connection timeouts, which may represent a number of allowed retransmissions or a timeout value. Currently linux uses sysctl_tcp_retries{1,2} to specify the thresholds in number of allowed retransmissions. For any desired threshold R2 (by means of time) one can specify tcp_retries2 (by means of number of retransmissions) such that TCP will not time out earlier than R2. This is the case, because the RTO schedule follows a fixed pattern, namely exponential backoff. However, the RTO behaviour is not predictable any more if RTO backoffs can be reverted, as it is the case in the draft "Make TCP more Robust to Long Connectivity Disruptions" (http://tools.ietf.org/html/draft-zimmermann-tcp-lcd). In the worst case TCP would time out a connection after 3.2 seconds, if the initial RTO equaled MIN_RTO and each backoff has been reverted. This patch introduces a function retransmits_timed_out(N), which calculates the timeout of a TCP connection, assuming an initial RTO of MIN_RTO and N unsuccessful, exponentially backed-off retransmissions. Whenever timeout decisions are made by comparing the retransmission counter to some value N, this function can be used, instead. The meaning of tcp_retries2 will be changed, as many more RTO retransmissions can occur than the value indicates. However, it yields a timeout which is similar to the one of an unpatched, exponentially backing off TCP in the same scenario. As no application could rely on an RTO greater than MIN_RTO, there should be no risk of a regression. Signed-off-by: Damian Lukowski <damian@tvk.rwth-aachen.de> Acked-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-08-26 08:16:34 +08:00
do_reset = alive ||
!retransmits_timed_out(sk, retry_until, 0, 0);
Revert Backoff [v3]: Calculate TCP's connection close threshold as a time value. RFC 1122 specifies two threshold values R1 and R2 for connection timeouts, which may represent a number of allowed retransmissions or a timeout value. Currently linux uses sysctl_tcp_retries{1,2} to specify the thresholds in number of allowed retransmissions. For any desired threshold R2 (by means of time) one can specify tcp_retries2 (by means of number of retransmissions) such that TCP will not time out earlier than R2. This is the case, because the RTO schedule follows a fixed pattern, namely exponential backoff. However, the RTO behaviour is not predictable any more if RTO backoffs can be reverted, as it is the case in the draft "Make TCP more Robust to Long Connectivity Disruptions" (http://tools.ietf.org/html/draft-zimmermann-tcp-lcd). In the worst case TCP would time out a connection after 3.2 seconds, if the initial RTO equaled MIN_RTO and each backoff has been reverted. This patch introduces a function retransmits_timed_out(N), which calculates the timeout of a TCP connection, assuming an initial RTO of MIN_RTO and N unsuccessful, exponentially backed-off retransmissions. Whenever timeout decisions are made by comparing the retransmission counter to some value N, this function can be used, instead. The meaning of tcp_retries2 will be changed, as many more RTO retransmissions can occur than the value indicates. However, it yields a timeout which is similar to the one of an unpatched, exponentially backing off TCP in the same scenario. As no application could rely on an RTO greater than MIN_RTO, there should be no risk of a regression. Signed-off-by: Damian Lukowski <damian@tvk.rwth-aachen.de> Acked-by: Ilpo Järvinen <ilpo.jarvinen@helsinki.fi> Signed-off-by: David S. Miller <davem@davemloft.net>
2009-08-26 08:16:34 +08:00
if (tcp_out_of_resources(sk, do_reset))
return 1;
}
}
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
if (retransmits_timed_out(sk, retry_until,
syn_set ? 0 : icsk->icsk_user_timeout, syn_set)) {
/* Has it gone just too far? */
tcp_write_err(sk);
return 1;
}
return 0;
}
void tcp_delack_timer_handler(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
sk_mem_reclaim_partial(sk);
if (sk->sk_state == TCP_CLOSE || !(icsk->icsk_ack.pending & ICSK_ACK_TIMER))
goto out;
if (time_after(icsk->icsk_ack.timeout, jiffies)) {
sk_reset_timer(sk, &icsk->icsk_delack_timer, icsk->icsk_ack.timeout);
goto out;
}
icsk->icsk_ack.pending &= ~ICSK_ACK_TIMER;
if (!skb_queue_empty(&tp->ucopy.prequeue)) {
struct sk_buff *skb;
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPSCHEDULERFAILED);
while ((skb = __skb_dequeue(&tp->ucopy.prequeue)) != NULL)
sk_backlog_rcv(sk, skb);
tp->ucopy.memory = 0;
}
if (inet_csk_ack_scheduled(sk)) {
if (!icsk->icsk_ack.pingpong) {
/* Delayed ACK missed: inflate ATO. */
icsk->icsk_ack.ato = min(icsk->icsk_ack.ato << 1, icsk->icsk_rto);
} else {
/* Delayed ACK missed: leave pingpong mode and
* deflate ATO.
*/
icsk->icsk_ack.pingpong = 0;
icsk->icsk_ack.ato = TCP_ATO_MIN;
}
tcp_send_ack(sk);
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKS);
}
out:
if (sk_under_memory_pressure(sk))
[NET] CORE: Introducing new memory accounting interface. This patch introduces new memory accounting functions for each network protocol. Most of them are renamed from memory accounting functions for stream protocols. At the same time, some stream memory accounting functions are removed since other functions do same thing. Renaming: sk_stream_free_skb() -> sk_wmem_free_skb() __sk_stream_mem_reclaim() -> __sk_mem_reclaim() sk_stream_mem_reclaim() -> sk_mem_reclaim() sk_stream_mem_schedule -> __sk_mem_schedule() sk_stream_pages() -> sk_mem_pages() sk_stream_rmem_schedule() -> sk_rmem_schedule() sk_stream_wmem_schedule() -> sk_wmem_schedule() sk_charge_skb() -> sk_mem_charge() Removeing sk_stream_rfree(): consolidates into sock_rfree() sk_stream_set_owner_r(): consolidates into skb_set_owner_r() sk_stream_mem_schedule() The following functions are added. sk_has_account(): check if the protocol supports accounting sk_mem_uncharge(): do the opposite of sk_mem_charge() In addition, to achieve consolidation, updating sk_wmem_queued is removed from sk_mem_charge(). Next, to consolidate memory accounting functions, this patch adds memory accounting calls to network core functions. Moreover, present memory accounting call is renamed to new accounting call. Finally we replace present memory accounting calls with new interface in TCP and SCTP. Signed-off-by: Takahiro Yasui <tyasui@redhat.com> Signed-off-by: Hideo Aoki <haoki@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-12-31 16:11:19 +08:00
sk_mem_reclaim(sk);
}
static void tcp_delack_timer(unsigned long data)
{
struct sock *sk = (struct sock *)data;
bh_lock_sock(sk);
if (!sock_owned_by_user(sk)) {
tcp_delack_timer_handler(sk);
} else {
inet_csk(sk)->icsk_ack.blocked = 1;
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_DELAYEDACKLOCKED);
/* deleguate our work to tcp_release_cb() */
tcp: fix possible socket refcount problem Commit 6f458dfb40 (tcp: improve latencies of timer triggered events) added bug leading to following trace : [ 2866.131281] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.131726] [ 2866.132188] ========================= [ 2866.132281] [ BUG: held lock freed! ] [ 2866.132281] 3.6.0-rc1+ #622 Not tainted [ 2866.132281] ------------------------- [ 2866.132281] kworker/0:1/652 is freeing memory ffff880019ec0000-ffff880019ec0a1f, with a lock still held there! [ 2866.132281] (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] 4 locks held by kworker/0:1/652: [ 2866.132281] #0: (rpciod){.+.+.+}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #1: ((&task->u.tk_work)){+.+.+.}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #2: (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] #3: (&icsk->icsk_retransmit_timer){+.-...}, at: [<ffffffff81078017>] run_timer_softirq+0x1ad/0x35f [ 2866.132281] [ 2866.132281] stack backtrace: [ 2866.132281] Pid: 652, comm: kworker/0:1 Not tainted 3.6.0-rc1+ #622 [ 2866.132281] Call Trace: [ 2866.132281] <IRQ> [<ffffffff810bc527>] debug_check_no_locks_freed+0x112/0x159 [ 2866.132281] [<ffffffff818a0839>] ? __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff811549fa>] kmem_cache_free+0x6b/0x13a [ 2866.132281] [<ffffffff818a0839>] __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff818a08c0>] sk_free+0x1c/0x1e [ 2866.132281] [<ffffffff81911e1c>] tcp_write_timer+0x51/0x56 [ 2866.132281] [<ffffffff81078082>] run_timer_softirq+0x218/0x35f [ 2866.132281] [<ffffffff81078017>] ? run_timer_softirq+0x1ad/0x35f [ 2866.132281] [<ffffffff810f5831>] ? rb_commit+0x58/0x85 [ 2866.132281] [<ffffffff81911dcb>] ? tcp_write_timer_handler+0x148/0x148 [ 2866.132281] [<ffffffff81070bd6>] __do_softirq+0xcb/0x1f9 [ 2866.132281] [<ffffffff81a0a00c>] ? _raw_spin_unlock+0x29/0x2e [ 2866.132281] [<ffffffff81a1227c>] call_softirq+0x1c/0x30 [ 2866.132281] [<ffffffff81039f38>] do_softirq+0x4a/0xa6 [ 2866.132281] [<ffffffff81070f2b>] irq_exit+0x51/0xad [ 2866.132281] [<ffffffff81a129cd>] do_IRQ+0x9d/0xb4 [ 2866.132281] [<ffffffff81a0a3ef>] common_interrupt+0x6f/0x6f [ 2866.132281] <EOI> [<ffffffff8109d006>] ? sched_clock_cpu+0x58/0xd1 [ 2866.132281] [<ffffffff81a0a172>] ? _raw_spin_unlock_irqrestore+0x4c/0x56 [ 2866.132281] [<ffffffff81078692>] mod_timer+0x178/0x1a9 [ 2866.132281] [<ffffffff818a00aa>] sk_reset_timer+0x19/0x26 [ 2866.132281] [<ffffffff8190b2cc>] tcp_rearm_rto+0x99/0xa4 [ 2866.132281] [<ffffffff8190dfba>] tcp_event_new_data_sent+0x6e/0x70 [ 2866.132281] [<ffffffff8190f7ea>] tcp_write_xmit+0x7de/0x8e4 [ 2866.132281] [<ffffffff818a565d>] ? __alloc_skb+0xa0/0x1a1 [ 2866.132281] [<ffffffff8190f952>] __tcp_push_pending_frames+0x2e/0x8a [ 2866.132281] [<ffffffff81904122>] tcp_sendmsg+0xb32/0xcc6 [ 2866.132281] [<ffffffff819229c2>] inet_sendmsg+0xaa/0xd5 [ 2866.132281] [<ffffffff81922918>] ? inet_autobind+0x5f/0x5f [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189adab>] sock_sendmsg+0xa3/0xc4 [ 2866.132281] [<ffffffff810f5de6>] ? rb_reserve_next_event+0x26f/0x2d5 [ 2866.132281] [<ffffffff8103e6a9>] ? native_sched_clock+0x29/0x6f [ 2866.132281] [<ffffffff8103e6f8>] ? sched_clock+0x9/0xd [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189ae03>] kernel_sendmsg+0x37/0x43 [ 2866.132281] [<ffffffff8199ce49>] xs_send_kvec+0x77/0x80 [ 2866.132281] [<ffffffff8199cec1>] xs_sendpages+0x6f/0x1a0 [ 2866.132281] [<ffffffff8107826d>] ? try_to_del_timer_sync+0x55/0x61 [ 2866.132281] [<ffffffff8199d0d2>] xs_tcp_send_request+0x55/0xf1 [ 2866.132281] [<ffffffff8199bb90>] xprt_transmit+0x89/0x1db [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff81999d92>] call_transmit+0x1c5/0x20e [ 2866.132281] [<ffffffff819a0d55>] __rpc_execute+0x6f/0x225 [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff819a0f33>] rpc_async_schedule+0x28/0x34 [ 2866.132281] [<ffffffff810835d6>] process_one_work+0x24d/0x47f [ 2866.132281] [<ffffffff81083567>] ? process_one_work+0x1de/0x47f [ 2866.132281] [<ffffffff819a0f0b>] ? __rpc_execute+0x225/0x225 [ 2866.132281] [<ffffffff81083a6d>] worker_thread+0x236/0x317 [ 2866.132281] [<ffffffff81083837>] ? process_scheduled_works+0x2f/0x2f [ 2866.132281] [<ffffffff8108b7b8>] kthread+0x9a/0xa2 [ 2866.132281] [<ffffffff81a12184>] kernel_thread_helper+0x4/0x10 [ 2866.132281] [<ffffffff81a0a4b0>] ? retint_restore_args+0x13/0x13 [ 2866.132281] [<ffffffff8108b71e>] ? __init_kthread_worker+0x5a/0x5a [ 2866.132281] [<ffffffff81a12180>] ? gs_change+0x13/0x13 [ 2866.308506] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.309689] ============================================================================= [ 2866.310254] BUG TCP (Not tainted): Object already free [ 2866.310254] ----------------------------------------------------------------------------- [ 2866.310254] The bug comes from the fact that timer set in sk_reset_timer() can run before we actually do the sock_hold(). socket refcount reaches zero and we free the socket too soon. timer handler is not allowed to reduce socket refcnt if socket is owned by the user, or we need to change sk_reset_timer() implementation. We should take a reference on the socket in case TCP_DELACK_TIMER_DEFERRED or TCP_DELACK_TIMER_DEFERRED bit are set in tsq_flags Also fix a typo in tcp_delack_timer(), where TCP_WRITE_TIMER_DEFERRED was used instead of TCP_DELACK_TIMER_DEFERRED. For consistency, use same socket refcount change for TCP_MTU_REDUCED_DEFERRED, even if not fired from a timer. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-20 08:22:46 +08:00
if (!test_and_set_bit(TCP_DELACK_TIMER_DEFERRED, &tcp_sk(sk)->tsq_flags))
sock_hold(sk);
}
bh_unlock_sock(sk);
sock_put(sk);
}
static void tcp_probe_timer(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
int max_probes;
if (tp->packets_out || !tcp_send_head(sk)) {
icsk->icsk_probes_out = 0;
return;
}
/* *WARNING* RFC 1122 forbids this
*
* It doesn't AFAIK, because we kill the retransmit timer -AK
*
* FIXME: We ought not to do it, Solaris 2.5 actually has fixing
* this behaviour in Solaris down as a bug fix. [AC]
*
* Let me to explain. icsk_probes_out is zeroed by incoming ACKs
* even if they advertise zero window. Hence, connection is killed only
* if we received no ACKs for normal connection timeout. It is not killed
* only because window stays zero for some time, window may be zero
* until armageddon and even later. We are in full accordance
* with RFCs, only probe timer combines both retransmission timeout
* and probe timeout in one bottle. --ANK
*/
max_probes = sysctl_tcp_retries2;
if (sock_flag(sk, SOCK_DEAD)) {
const int alive = ((icsk->icsk_rto << icsk->icsk_backoff) < TCP_RTO_MAX);
max_probes = tcp_orphan_retries(sk, alive);
if (tcp_out_of_resources(sk, alive || icsk->icsk_probes_out <= max_probes))
return;
}
if (icsk->icsk_probes_out > max_probes) {
tcp_write_err(sk);
} else {
/* Only send another probe if we didn't close things up. */
tcp_send_probe0(sk);
}
}
/*
* Timer for Fast Open socket to retransmit SYNACK. Note that the
* sk here is the child socket, not the parent (listener) socket.
*/
static void tcp_fastopen_synack_timer(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
int max_retries = icsk->icsk_syn_retries ? :
sysctl_tcp_synack_retries + 1; /* add one more retry for fastopen */
struct request_sock *req;
req = tcp_sk(sk)->fastopen_rsk;
req->rsk_ops->syn_ack_timeout(sk, req);
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-28 07:16:46 +08:00
if (req->num_timeout >= max_retries) {
tcp_write_err(sk);
return;
}
/* XXX (TFO) - Unlike regular SYN-ACK retransmit, we ignore error
* returned from rtx_syn_ack() to make it more persistent like
* regular retransmit because if the child socket has been accepted
* it's not good to give up too easily.
*/
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-28 07:16:46 +08:00
inet_rtx_syn_ack(sk, req);
req->num_timeout++;
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
tcp: better retrans tracking for defer-accept For passive TCP connections using TCP_DEFER_ACCEPT facility, we incorrectly increment req->retrans each time timeout triggers while no SYNACK is sent. SYNACK are not sent for TCP_DEFER_ACCEPT that were established (for which we received the ACK from client). Only the last SYNACK is sent so that we can receive again an ACK from client, to move the req into accept queue. We plan to change this later to avoid the useless retransmit (and potential problem as this SYNACK could be lost) TCP_INFO later gives wrong information to user, claiming imaginary retransmits. Decouple req->retrans field into two independent fields : num_retrans : number of retransmit num_timeout : number of timeouts num_timeout is the counter that is incremented at each timeout, regardless of actual SYNACK being sent or not, and used to compute the exponential timeout. Introduce inet_rtx_syn_ack() helper to increment num_retrans only if ->rtx_syn_ack() succeeded. Use inet_rtx_syn_ack() from tcp_check_req() to increment num_retrans when we re-send a SYNACK in answer to a (retransmitted) SYN. Prior to this patch, we were not counting these retransmits. Change tcp_v[46]_rtx_synack() to increment TCP_MIB_RETRANSSEGS only if a synack packet was successfully queued. Reported-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Cc: Julian Anastasov <ja@ssi.bg> Cc: Vijay Subramanian <subramanian.vijay@gmail.com> Cc: Elliott Hughes <enh@google.com> Cc: Neal Cardwell <ncardwell@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-10-28 07:16:46 +08:00
TCP_TIMEOUT_INIT << req->num_timeout, TCP_RTO_MAX);
}
/*
* The TCP retransmit timer.
*/
void tcp_retransmit_timer(struct sock *sk)
{
struct tcp_sock *tp = tcp_sk(sk);
struct inet_connection_sock *icsk = inet_csk(sk);
if (tp->fastopen_rsk) {
WARN_ON_ONCE(sk->sk_state != TCP_SYN_RECV &&
sk->sk_state != TCP_FIN_WAIT1);
tcp_fastopen_synack_timer(sk);
/* Before we receive ACK to our SYN-ACK don't retransmit
* anything else (e.g., data or FIN segments).
*/
return;
}
if (!tp->packets_out)
goto out;
WARN_ON(tcp_write_queue_empty(sk));
tp->tlp_high_seq = 0;
if (!tp->snd_wnd && !sock_flag(sk, SOCK_DEAD) &&
!((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV))) {
/* Receiver dastardly shrinks window. Our retransmits
* become zero probes, but we should not timeout this
* connection. If the socket is an orphan, time it out,
* we cannot allow such beasts to hang infinitely.
*/
struct inet_sock *inet = inet_sk(sk);
if (sk->sk_family == AF_INET) {
LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("Peer %pI4:%u/%u unexpectedly shrunk window %u:%u (repaired)\n"),
&inet->inet_daddr,
ntohs(inet->inet_dport), inet->inet_num,
tp->snd_una, tp->snd_nxt);
}
#if IS_ENABLED(CONFIG_IPV6)
else if (sk->sk_family == AF_INET6) {
struct ipv6_pinfo *np = inet6_sk(sk);
LIMIT_NETDEBUG(KERN_DEBUG pr_fmt("Peer %pI6:%u/%u unexpectedly shrunk window %u:%u (repaired)\n"),
&np->daddr,
ntohs(inet->inet_dport), inet->inet_num,
tp->snd_una, tp->snd_nxt);
}
#endif
if (tcp_time_stamp - tp->rcv_tstamp > TCP_RTO_MAX) {
tcp_write_err(sk);
goto out;
}
tcp_enter_loss(sk, 0);
tcp_retransmit_skb(sk, tcp_write_queue_head(sk));
__sk_dst_reset(sk);
goto out_reset_timer;
}
if (tcp_write_timeout(sk))
goto out;
if (icsk->icsk_retransmits == 0) {
int mib_idx;
if (icsk->icsk_ca_state == TCP_CA_Recovery) {
if (tcp_is_sack(tp))
mib_idx = LINUX_MIB_TCPSACKRECOVERYFAIL;
else
mib_idx = LINUX_MIB_TCPRENORECOVERYFAIL;
} else if (icsk->icsk_ca_state == TCP_CA_Loss) {
mib_idx = LINUX_MIB_TCPLOSSFAILURES;
} else if ((icsk->icsk_ca_state == TCP_CA_Disorder) ||
tp->sacked_out) {
if (tcp_is_sack(tp))
mib_idx = LINUX_MIB_TCPSACKFAILURES;
else
mib_idx = LINUX_MIB_TCPRENOFAILURES;
} else {
mib_idx = LINUX_MIB_TCPTIMEOUTS;
}
NET_INC_STATS_BH(sock_net(sk), mib_idx);
}
tcp: refactor F-RTO The patch series refactor the F-RTO feature (RFC4138/5682). This is to simplify the loss recovery processing. Existing F-RTO was developed during the experimental stage (RFC4138) and has many experimental features. It takes a separate code path from the traditional timeout processing by overloading CA_Disorder instead of using CA_Loss state. This complicates CA_Disorder state handling because it's also used for handling dubious ACKs and undos. While the algorithm in the RFC does not change the congestion control, the implementation intercepts congestion control in various places (e.g., frto_cwnd in tcp_ack()). The new code implements newer F-RTO RFC5682 using CA_Loss processing path. F-RTO becomes a small extension in the timeout processing and interfaces with congestion control and Eifel undo modules. It lets congestion control (module) determines how many to send independently. F-RTO only chooses what to send in order to detect spurious retranmission. If timeout is found spurious it invokes existing Eifel undo algorithms like DSACK or TCP timestamp based detection. The first patch removes all F-RTO code except the sysctl_tcp_frto is left for the new implementation. Since CA_EVENT_FRTO is removed, TCP westwood now computes ssthresh on regular timeout CA_EVENT_LOSS event. Signed-off-by: Yuchung Cheng <ycheng@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-20 21:32:58 +08:00
tcp_enter_loss(sk, 0);
if (tcp_retransmit_skb(sk, tcp_write_queue_head(sk)) > 0) {
/* Retransmission failed because of local congestion,
* do not backoff.
*/
if (!icsk->icsk_retransmits)
icsk->icsk_retransmits = 1;
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS,
min(icsk->icsk_rto, TCP_RESOURCE_PROBE_INTERVAL),
TCP_RTO_MAX);
goto out;
}
/* Increase the timeout each time we retransmit. Note that
* we do not increase the rtt estimate. rto is initialized
* from rtt, but increases here. Jacobson (SIGCOMM 88) suggests
* that doubling rto each time is the least we can get away with.
* In KA9Q, Karn uses this for the first few times, and then
* goes to quadratic. netBSD doubles, but only goes up to *64,
* and clamps at 1 to 64 sec afterwards. Note that 120 sec is
* defined in the protocol as the maximum possible RTT. I guess
* we'll have to use something other than TCP to talk to the
* University of Mars.
*
* PAWS allows us longer timeouts and large windows, so once
* implemented ftp to mars will work nicely. We will have to fix
* the 120 second clamps though!
*/
icsk->icsk_backoff++;
icsk->icsk_retransmits++;
out_reset_timer:
/* If stream is thin, use linear timeouts. Since 'icsk_backoff' is
* used to reset timer, set to 0. Recalculate 'icsk_rto' as this
* might be increased if the stream oscillates between thin and thick,
* thus the old value might already be too high compared to the value
* set by 'tcp_set_rto' in tcp_input.c which resets the rto without
* backoff. Limit to TCP_THIN_LINEAR_RETRIES before initiating
* exponential backoff behaviour to avoid continue hammering
* linear-timeout retransmissions into a black hole
*/
if (sk->sk_state == TCP_ESTABLISHED &&
(tp->thin_lto || sysctl_tcp_thin_linear_timeouts) &&
tcp_stream_is_thin(tp) &&
icsk->icsk_retransmits <= TCP_THIN_LINEAR_RETRIES) {
icsk->icsk_backoff = 0;
icsk->icsk_rto = min(__tcp_set_rto(tp), TCP_RTO_MAX);
} else {
/* Use normal (exponential) backoff */
icsk->icsk_rto = min(icsk->icsk_rto << 1, TCP_RTO_MAX);
}
inet_csk_reset_xmit_timer(sk, ICSK_TIME_RETRANS, icsk->icsk_rto, TCP_RTO_MAX);
if (retransmits_timed_out(sk, sysctl_tcp_retries1 + 1, 0, 0))
__sk_dst_reset(sk);
out:;
}
void tcp_write_timer_handler(struct sock *sk)
{
struct inet_connection_sock *icsk = inet_csk(sk);
int event;
if (sk->sk_state == TCP_CLOSE || !icsk->icsk_pending)
goto out;
if (time_after(icsk->icsk_timeout, jiffies)) {
sk_reset_timer(sk, &icsk->icsk_retransmit_timer, icsk->icsk_timeout);
goto out;
}
event = icsk->icsk_pending;
switch (event) {
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 18:00:43 +08:00
case ICSK_TIME_EARLY_RETRANS:
tcp_resume_early_retransmit(sk);
break;
case ICSK_TIME_LOSS_PROBE:
tcp_send_loss_probe(sk);
break;
case ICSK_TIME_RETRANS:
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 18:00:43 +08:00
icsk->icsk_pending = 0;
tcp_retransmit_timer(sk);
break;
case ICSK_TIME_PROBE0:
tcp: Tail loss probe (TLP) This patch series implement the Tail loss probe (TLP) algorithm described in http://tools.ietf.org/html/draft-dukkipati-tcpm-tcp-loss-probe-01. The first patch implements the basic algorithm. TLP's goal is to reduce tail latency of short transactions. It achieves this by converting retransmission timeouts (RTOs) occuring due to tail losses (losses at end of transactions) into fast recovery. TLP transmits one packet in two round-trips when a connection is in Open state and isn't receiving any ACKs. The transmitted packet, aka loss probe, can be either new or a retransmission. When there is tail loss, the ACK from a loss probe triggers FACK/early-retransmit based fast recovery, thus avoiding a costly RTO. In the absence of loss, there is no change in the connection state. PTO stands for probe timeout. It is a timer event indicating that an ACK is overdue and triggers a loss probe packet. The PTO value is set to max(2*SRTT, 10ms) and is adjusted to account for delayed ACK timer when there is only one oustanding packet. TLP Algorithm On transmission of new data in Open state: -> packets_out > 1: schedule PTO in max(2*SRTT, 10ms). -> packets_out == 1: schedule PTO in max(2*RTT, 1.5*RTT + 200ms) -> PTO = min(PTO, RTO) Conditions for scheduling PTO: -> Connection is in Open state. -> Connection is either cwnd limited or no new data to send. -> Number of probes per tail loss episode is limited to one. -> Connection is SACK enabled. When PTO fires: new_segment_exists: -> transmit new segment. -> packets_out++. cwnd remains same. no_new_packet: -> retransmit the last segment. Its ACK triggers FACK or early retransmit based recovery. ACK path: -> rearm RTO at start of ACK processing. -> reschedule PTO if need be. In addition, the patch includes a small variation to the Early Retransmit (ER) algorithm, such that ER and TLP together can in principle recover any N-degree of tail loss through fast recovery. TLP is controlled by the same sysctl as ER, tcp_early_retrans sysctl. tcp_early_retrans==0; disables TLP and ER. ==1; enables RFC5827 ER. ==2; delayed ER. ==3; TLP and delayed ER. [DEFAULT] ==4; TLP only. The TLP patch series have been extensively tested on Google Web servers. It is most effective for short Web trasactions, where it reduced RTOs by 15% and improved HTTP response time (average by 6%, 99th percentile by 10%). The transmitted probes account for <0.5% of the overall transmissions. Signed-off-by: Nandita Dukkipati <nanditad@google.com> Acked-by: Neal Cardwell <ncardwell@google.com> Acked-by: Yuchung Cheng <ycheng@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2013-03-11 18:00:43 +08:00
icsk->icsk_pending = 0;
tcp_probe_timer(sk);
break;
}
out:
[NET] CORE: Introducing new memory accounting interface. This patch introduces new memory accounting functions for each network protocol. Most of them are renamed from memory accounting functions for stream protocols. At the same time, some stream memory accounting functions are removed since other functions do same thing. Renaming: sk_stream_free_skb() -> sk_wmem_free_skb() __sk_stream_mem_reclaim() -> __sk_mem_reclaim() sk_stream_mem_reclaim() -> sk_mem_reclaim() sk_stream_mem_schedule -> __sk_mem_schedule() sk_stream_pages() -> sk_mem_pages() sk_stream_rmem_schedule() -> sk_rmem_schedule() sk_stream_wmem_schedule() -> sk_wmem_schedule() sk_charge_skb() -> sk_mem_charge() Removeing sk_stream_rfree(): consolidates into sock_rfree() sk_stream_set_owner_r(): consolidates into skb_set_owner_r() sk_stream_mem_schedule() The following functions are added. sk_has_account(): check if the protocol supports accounting sk_mem_uncharge(): do the opposite of sk_mem_charge() In addition, to achieve consolidation, updating sk_wmem_queued is removed from sk_mem_charge(). Next, to consolidate memory accounting functions, this patch adds memory accounting calls to network core functions. Moreover, present memory accounting call is renamed to new accounting call. Finally we replace present memory accounting calls with new interface in TCP and SCTP. Signed-off-by: Takahiro Yasui <tyasui@redhat.com> Signed-off-by: Hideo Aoki <haoki@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-12-31 16:11:19 +08:00
sk_mem_reclaim(sk);
}
static void tcp_write_timer(unsigned long data)
{
struct sock *sk = (struct sock *)data;
bh_lock_sock(sk);
if (!sock_owned_by_user(sk)) {
tcp_write_timer_handler(sk);
} else {
/* deleguate our work to tcp_release_cb() */
tcp: fix possible socket refcount problem Commit 6f458dfb40 (tcp: improve latencies of timer triggered events) added bug leading to following trace : [ 2866.131281] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.131726] [ 2866.132188] ========================= [ 2866.132281] [ BUG: held lock freed! ] [ 2866.132281] 3.6.0-rc1+ #622 Not tainted [ 2866.132281] ------------------------- [ 2866.132281] kworker/0:1/652 is freeing memory ffff880019ec0000-ffff880019ec0a1f, with a lock still held there! [ 2866.132281] (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] 4 locks held by kworker/0:1/652: [ 2866.132281] #0: (rpciod){.+.+.+}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #1: ((&task->u.tk_work)){+.+.+.}, at: [<ffffffff81083567>] process_one_work+0x1de/0x47f [ 2866.132281] #2: (sk_lock-AF_INET-RPC){+.+...}, at: [<ffffffff81903619>] tcp_sendmsg+0x29/0xcc6 [ 2866.132281] #3: (&icsk->icsk_retransmit_timer){+.-...}, at: [<ffffffff81078017>] run_timer_softirq+0x1ad/0x35f [ 2866.132281] [ 2866.132281] stack backtrace: [ 2866.132281] Pid: 652, comm: kworker/0:1 Not tainted 3.6.0-rc1+ #622 [ 2866.132281] Call Trace: [ 2866.132281] <IRQ> [<ffffffff810bc527>] debug_check_no_locks_freed+0x112/0x159 [ 2866.132281] [<ffffffff818a0839>] ? __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff811549fa>] kmem_cache_free+0x6b/0x13a [ 2866.132281] [<ffffffff818a0839>] __sk_free+0xfd/0x114 [ 2866.132281] [<ffffffff818a08c0>] sk_free+0x1c/0x1e [ 2866.132281] [<ffffffff81911e1c>] tcp_write_timer+0x51/0x56 [ 2866.132281] [<ffffffff81078082>] run_timer_softirq+0x218/0x35f [ 2866.132281] [<ffffffff81078017>] ? run_timer_softirq+0x1ad/0x35f [ 2866.132281] [<ffffffff810f5831>] ? rb_commit+0x58/0x85 [ 2866.132281] [<ffffffff81911dcb>] ? tcp_write_timer_handler+0x148/0x148 [ 2866.132281] [<ffffffff81070bd6>] __do_softirq+0xcb/0x1f9 [ 2866.132281] [<ffffffff81a0a00c>] ? _raw_spin_unlock+0x29/0x2e [ 2866.132281] [<ffffffff81a1227c>] call_softirq+0x1c/0x30 [ 2866.132281] [<ffffffff81039f38>] do_softirq+0x4a/0xa6 [ 2866.132281] [<ffffffff81070f2b>] irq_exit+0x51/0xad [ 2866.132281] [<ffffffff81a129cd>] do_IRQ+0x9d/0xb4 [ 2866.132281] [<ffffffff81a0a3ef>] common_interrupt+0x6f/0x6f [ 2866.132281] <EOI> [<ffffffff8109d006>] ? sched_clock_cpu+0x58/0xd1 [ 2866.132281] [<ffffffff81a0a172>] ? _raw_spin_unlock_irqrestore+0x4c/0x56 [ 2866.132281] [<ffffffff81078692>] mod_timer+0x178/0x1a9 [ 2866.132281] [<ffffffff818a00aa>] sk_reset_timer+0x19/0x26 [ 2866.132281] [<ffffffff8190b2cc>] tcp_rearm_rto+0x99/0xa4 [ 2866.132281] [<ffffffff8190dfba>] tcp_event_new_data_sent+0x6e/0x70 [ 2866.132281] [<ffffffff8190f7ea>] tcp_write_xmit+0x7de/0x8e4 [ 2866.132281] [<ffffffff818a565d>] ? __alloc_skb+0xa0/0x1a1 [ 2866.132281] [<ffffffff8190f952>] __tcp_push_pending_frames+0x2e/0x8a [ 2866.132281] [<ffffffff81904122>] tcp_sendmsg+0xb32/0xcc6 [ 2866.132281] [<ffffffff819229c2>] inet_sendmsg+0xaa/0xd5 [ 2866.132281] [<ffffffff81922918>] ? inet_autobind+0x5f/0x5f [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189adab>] sock_sendmsg+0xa3/0xc4 [ 2866.132281] [<ffffffff810f5de6>] ? rb_reserve_next_event+0x26f/0x2d5 [ 2866.132281] [<ffffffff8103e6a9>] ? native_sched_clock+0x29/0x6f [ 2866.132281] [<ffffffff8103e6f8>] ? sched_clock+0x9/0xd [ 2866.132281] [<ffffffff810ee7f1>] ? trace_clock_local+0x9/0xb [ 2866.132281] [<ffffffff8189ae03>] kernel_sendmsg+0x37/0x43 [ 2866.132281] [<ffffffff8199ce49>] xs_send_kvec+0x77/0x80 [ 2866.132281] [<ffffffff8199cec1>] xs_sendpages+0x6f/0x1a0 [ 2866.132281] [<ffffffff8107826d>] ? try_to_del_timer_sync+0x55/0x61 [ 2866.132281] [<ffffffff8199d0d2>] xs_tcp_send_request+0x55/0xf1 [ 2866.132281] [<ffffffff8199bb90>] xprt_transmit+0x89/0x1db [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff81999d92>] call_transmit+0x1c5/0x20e [ 2866.132281] [<ffffffff819a0d55>] __rpc_execute+0x6f/0x225 [ 2866.132281] [<ffffffff81999bcd>] ? call_connect+0x3c/0x3c [ 2866.132281] [<ffffffff819a0f33>] rpc_async_schedule+0x28/0x34 [ 2866.132281] [<ffffffff810835d6>] process_one_work+0x24d/0x47f [ 2866.132281] [<ffffffff81083567>] ? process_one_work+0x1de/0x47f [ 2866.132281] [<ffffffff819a0f0b>] ? __rpc_execute+0x225/0x225 [ 2866.132281] [<ffffffff81083a6d>] worker_thread+0x236/0x317 [ 2866.132281] [<ffffffff81083837>] ? process_scheduled_works+0x2f/0x2f [ 2866.132281] [<ffffffff8108b7b8>] kthread+0x9a/0xa2 [ 2866.132281] [<ffffffff81a12184>] kernel_thread_helper+0x4/0x10 [ 2866.132281] [<ffffffff81a0a4b0>] ? retint_restore_args+0x13/0x13 [ 2866.132281] [<ffffffff8108b71e>] ? __init_kthread_worker+0x5a/0x5a [ 2866.132281] [<ffffffff81a12180>] ? gs_change+0x13/0x13 [ 2866.308506] IPv4: Attempt to release TCP socket in state 1 ffff880019ec0000 [ 2866.309689] ============================================================================= [ 2866.310254] BUG TCP (Not tainted): Object already free [ 2866.310254] ----------------------------------------------------------------------------- [ 2866.310254] The bug comes from the fact that timer set in sk_reset_timer() can run before we actually do the sock_hold(). socket refcount reaches zero and we free the socket too soon. timer handler is not allowed to reduce socket refcnt if socket is owned by the user, or we need to change sk_reset_timer() implementation. We should take a reference on the socket in case TCP_DELACK_TIMER_DEFERRED or TCP_DELACK_TIMER_DEFERRED bit are set in tsq_flags Also fix a typo in tcp_delack_timer(), where TCP_WRITE_TIMER_DEFERRED was used instead of TCP_DELACK_TIMER_DEFERRED. For consistency, use same socket refcount change for TCP_MTU_REDUCED_DEFERRED, even if not fired from a timer. Reported-by: Fengguang Wu <fengguang.wu@intel.com> Tested-by: Fengguang Wu <fengguang.wu@intel.com> Signed-off-by: Eric Dumazet <edumazet@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2012-08-20 08:22:46 +08:00
if (!test_and_set_bit(TCP_WRITE_TIMER_DEFERRED, &tcp_sk(sk)->tsq_flags))
sock_hold(sk);
}
bh_unlock_sock(sk);
sock_put(sk);
}
/*
* Timer for listening sockets
*/
static void tcp_synack_timer(struct sock *sk)
{
inet_csk_reqsk_queue_prune(sk, TCP_SYNQ_INTERVAL,
TCP_TIMEOUT_INIT, TCP_RTO_MAX);
}
void tcp_syn_ack_timeout(struct sock *sk, struct request_sock *req)
{
NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_TCPTIMEOUTS);
}
EXPORT_SYMBOL(tcp_syn_ack_timeout);
void tcp_set_keepalive(struct sock *sk, int val)
{
if ((1 << sk->sk_state) & (TCPF_CLOSE | TCPF_LISTEN))
return;
if (val && !sock_flag(sk, SOCK_KEEPOPEN))
inet_csk_reset_keepalive_timer(sk, keepalive_time_when(tcp_sk(sk)));
else if (!val)
inet_csk_delete_keepalive_timer(sk);
}
static void tcp_keepalive_timer (unsigned long data)
{
struct sock *sk = (struct sock *) data;
struct inet_connection_sock *icsk = inet_csk(sk);
struct tcp_sock *tp = tcp_sk(sk);
u32 elapsed;
/* Only process if socket is not in use. */
bh_lock_sock(sk);
if (sock_owned_by_user(sk)) {
/* Try again later. */
inet_csk_reset_keepalive_timer (sk, HZ/20);
goto out;
}
if (sk->sk_state == TCP_LISTEN) {
tcp_synack_timer(sk);
goto out;
}
if (sk->sk_state == TCP_FIN_WAIT2 && sock_flag(sk, SOCK_DEAD)) {
if (tp->linger2 >= 0) {
const int tmo = tcp_fin_time(sk) - TCP_TIMEWAIT_LEN;
if (tmo > 0) {
tcp_time_wait(sk, TCP_FIN_WAIT2, tmo);
goto out;
}
}
tcp_send_active_reset(sk, GFP_ATOMIC);
goto death;
}
if (!sock_flag(sk, SOCK_KEEPOPEN) || sk->sk_state == TCP_CLOSE)
goto out;
elapsed = keepalive_time_when(tp);
/* It is alive without keepalive 8) */
if (tp->packets_out || tcp_send_head(sk))
goto resched;
elapsed = keepalive_time_elapsed(tp);
if (elapsed >= keepalive_time_when(tp)) {
tcp: Add TCP_USER_TIMEOUT socket option. This patch provides a "user timeout" support as described in RFC793. The socket option is also needed for the the local half of RFC5482 "TCP User Timeout Option". TCP_USER_TIMEOUT is a TCP level socket option that takes an unsigned int, when > 0, to specify the maximum amount of time in ms that transmitted data may remain unacknowledged before TCP will forcefully close the corresponding connection and return ETIMEDOUT to the application. If 0 is given, TCP will continue to use the system default. Increasing the user timeouts allows a TCP connection to survive extended periods without end-to-end connectivity. Decreasing the user timeouts allows applications to "fail fast" if so desired. Otherwise it may take upto 20 minutes with the current system defaults in a normal WAN environment. The socket option can be made during any state of a TCP connection, but is only effective during the synchronized states of a connection (ESTABLISHED, FIN-WAIT-1, FIN-WAIT-2, CLOSE-WAIT, CLOSING, or LAST-ACK). Moreover, when used with the TCP keepalive (SO_KEEPALIVE) option, TCP_USER_TIMEOUT will overtake keepalive to determine when to close a connection due to keepalive failure. The option does not change in anyway when TCP retransmits a packet, nor when a keepalive probe will be sent. This option, like many others, will be inherited by an acceptor from its listener. Signed-off-by: H.K. Jerry Chu <hkchu@google.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2010-08-28 03:13:28 +08:00
/* If the TCP_USER_TIMEOUT option is enabled, use that
* to determine when to timeout instead.
*/
if ((icsk->icsk_user_timeout != 0 &&
elapsed >= icsk->icsk_user_timeout &&
icsk->icsk_probes_out > 0) ||
(icsk->icsk_user_timeout == 0 &&
icsk->icsk_probes_out >= keepalive_probes(tp))) {
tcp_send_active_reset(sk, GFP_ATOMIC);
tcp_write_err(sk);
goto out;
}
if (tcp_write_wakeup(sk) <= 0) {
icsk->icsk_probes_out++;
elapsed = keepalive_intvl_when(tp);
} else {
/* If keepalive was lost due to local congestion,
* try harder.
*/
elapsed = TCP_RESOURCE_PROBE_INTERVAL;
}
} else {
/* It is tp->rcv_tstamp + keepalive_time_when(tp) */
elapsed = keepalive_time_when(tp) - elapsed;
}
[NET] CORE: Introducing new memory accounting interface. This patch introduces new memory accounting functions for each network protocol. Most of them are renamed from memory accounting functions for stream protocols. At the same time, some stream memory accounting functions are removed since other functions do same thing. Renaming: sk_stream_free_skb() -> sk_wmem_free_skb() __sk_stream_mem_reclaim() -> __sk_mem_reclaim() sk_stream_mem_reclaim() -> sk_mem_reclaim() sk_stream_mem_schedule -> __sk_mem_schedule() sk_stream_pages() -> sk_mem_pages() sk_stream_rmem_schedule() -> sk_rmem_schedule() sk_stream_wmem_schedule() -> sk_wmem_schedule() sk_charge_skb() -> sk_mem_charge() Removeing sk_stream_rfree(): consolidates into sock_rfree() sk_stream_set_owner_r(): consolidates into skb_set_owner_r() sk_stream_mem_schedule() The following functions are added. sk_has_account(): check if the protocol supports accounting sk_mem_uncharge(): do the opposite of sk_mem_charge() In addition, to achieve consolidation, updating sk_wmem_queued is removed from sk_mem_charge(). Next, to consolidate memory accounting functions, this patch adds memory accounting calls to network core functions. Moreover, present memory accounting call is renamed to new accounting call. Finally we replace present memory accounting calls with new interface in TCP and SCTP. Signed-off-by: Takahiro Yasui <tyasui@redhat.com> Signed-off-by: Hideo Aoki <haoki@redhat.com> Signed-off-by: David S. Miller <davem@davemloft.net>
2007-12-31 16:11:19 +08:00
sk_mem_reclaim(sk);
resched:
inet_csk_reset_keepalive_timer (sk, elapsed);
goto out;
death:
tcp_done(sk);
out:
bh_unlock_sock(sk);
sock_put(sk);
}
void tcp_init_xmit_timers(struct sock *sk)
{
inet_csk_init_xmit_timers(sk, &tcp_write_timer, &tcp_delack_timer,
&tcp_keepalive_timer);
}
EXPORT_SYMBOL(tcp_init_xmit_timers);