linux_old1/drivers/isdn/hisax/hfc_sx.c

1520 lines
43 KiB
C
Raw Normal View History

/* $Id: hfc_sx.c,v 1.12.2.5 2004/02/11 13:21:33 keil Exp $
*
* level driver for Cologne Chip Designs hfc-s+/sp based cards
*
* Author Werner Cornelius
* based on existing driver for CCD HFC PCI cards
* Copyright by Werner Cornelius <werner@isdn4linux.de>
*
* This software may be used and distributed according to the terms
* of the GNU General Public License, incorporated herein by reference.
*
*/
#include <linux/init.h>
#include "hisax.h"
#include "hfc_sx.h"
#include "isdnl1.h"
#include <linux/interrupt.h>
#include <linux/isapnp.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
static const char *hfcsx_revision = "$Revision: 1.12.2.5 $";
/***************************************/
/* IRQ-table for CCDs demo board */
/* IRQs 6,5,10,11,12,15 are supported */
/***************************************/
/* Teles 16.3c Vendor Id TAG2620, Version 1.0, Vendor version 2.1
*
* Thanks to Uwe Wisniewski
*
* ISA-SLOT Signal PIN
* B25 IRQ3 92 IRQ_G
* B23 IRQ5 94 IRQ_A
* B4 IRQ2/9 95 IRQ_B
* D3 IRQ10 96 IRQ_C
* D4 IRQ11 97 IRQ_D
* D5 IRQ12 98 IRQ_E
* D6 IRQ15 99 IRQ_F
*/
#undef CCD_DEMO_BOARD
#ifdef CCD_DEMO_BOARD
static u_char ccd_sp_irqtab[16] = {
0, 0, 0, 0, 0, 2, 1, 0, 0, 0, 3, 4, 5, 0, 0, 6
};
#else /* Teles 16.3c */
static u_char ccd_sp_irqtab[16] = {
0, 0, 0, 7, 0, 1, 0, 0, 0, 2, 3, 4, 5, 0, 0, 6
};
#endif
#define NT_T1_COUNT 20 /* number of 3.125ms interrupts for G2 timeout */
#define byteout(addr, val) outb(val, addr)
#define bytein(addr) inb(addr)
/******************************/
/* In/Out access to registers */
/******************************/
static inline void
Write_hfc(struct IsdnCardState *cs, u_char regnum, u_char val)
{
byteout(cs->hw.hfcsx.base + 1, regnum);
byteout(cs->hw.hfcsx.base, val);
}
static inline u_char
Read_hfc(struct IsdnCardState *cs, u_char regnum)
{
u_char ret;
byteout(cs->hw.hfcsx.base + 1, regnum);
ret = bytein(cs->hw.hfcsx.base);
return (ret);
}
/**************************************************/
/* select a fifo and remember which one for reuse */
/**************************************************/
static void
fifo_select(struct IsdnCardState *cs, u_char fifo)
{
if (fifo == cs->hw.hfcsx.last_fifo)
return; /* still valid */
byteout(cs->hw.hfcsx.base + 1, HFCSX_FIF_SEL);
byteout(cs->hw.hfcsx.base, fifo);
while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
udelay(4);
byteout(cs->hw.hfcsx.base, fifo);
while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
}
/******************************************/
/* reset the specified fifo to defaults. */
/* If its a send fifo init needed markers */
/******************************************/
static void
reset_fifo(struct IsdnCardState *cs, u_char fifo)
{
fifo_select(cs, fifo); /* first select the fifo */
byteout(cs->hw.hfcsx.base + 1, HFCSX_CIRM);
byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.cirm | 0x80); /* reset cmd */
udelay(1);
while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
}
/*************************************************************/
/* write_fifo writes the skb contents to the desired fifo */
/* if no space is available or an error occurs 0 is returned */
/* the skb is not released in any way. */
/*************************************************************/
static int
write_fifo(struct IsdnCardState *cs, struct sk_buff *skb, u_char fifo, int trans_max)
{
unsigned short *msp;
int fifo_size, count, z1, z2;
u_char f_msk, f1, f2, *src;
if (skb->len <= 0) return (0);
if (fifo & 1) return (0); /* no write fifo */
fifo_select(cs, fifo);
if (fifo & 4) {
fifo_size = D_FIFO_SIZE; /* D-channel */
f_msk = MAX_D_FRAMES;
if (trans_max) return (0); /* only HDLC */
}
else {
fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
f_msk = MAX_B_FRAMES;
}
z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
/* Check for transparent mode */
if (trans_max) {
z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
count = z2 - z1;
if (count <= 0)
count += fifo_size; /* free bytes */
if (count < skb->len + 1) return (0); /* no room */
count = fifo_size - count; /* bytes still not send */
if (count > 2 * trans_max) return (0); /* delay to long */
count = skb->len;
src = skb->data;
while (count--)
Write_hfc(cs, HFCSX_FIF_DWR, *src++);
return (1); /* success */
}
msp = ((struct hfcsx_extra *)(cs->hw.hfcsx.extra))->marker;
msp += (((fifo >> 1) & 3) * (MAX_B_FRAMES + 1));
f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
count = f1 - f2; /* frame count actually buffered */
if (count < 0)
count += (f_msk + 1); /* if wrap around */
if (count > f_msk - 1) {
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d more as %d frames", fifo, f_msk - 1);
return (0);
}
*(msp + f1) = z1; /* remember marker */
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d f1(%x) f2(%x) z1(f1)(%x)",
fifo, f1, f2, z1);
/* now determine free bytes in FIFO buffer */
count = *(msp + f2) - z1;
if (count <= 0)
count += fifo_size; /* count now contains available bytes */
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d count(%u/%d)",
fifo, skb->len, count);
if (count < skb->len) {
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_write_fifo %d no fifo mem", fifo);
return (0);
}
count = skb->len; /* get frame len */
src = skb->data; /* source pointer */
while (count--)
Write_hfc(cs, HFCSX_FIF_DWR, *src++);
Read_hfc(cs, HFCSX_FIF_INCF1); /* increment F1 */
udelay(1);
while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
return (1);
}
/***************************************************************/
/* read_fifo reads data to an skb from the desired fifo */
/* if no data is available or an error occurs NULL is returned */
/* the skb is not released in any way. */
/***************************************************************/
static struct sk_buff *
read_fifo(struct IsdnCardState *cs, u_char fifo, int trans_max)
{ int fifo_size, count, z1, z2;
u_char f_msk, f1, f2, *dst;
struct sk_buff *skb;
if (!(fifo & 1)) return (NULL); /* no read fifo */
fifo_select(cs, fifo);
if (fifo & 4) {
fifo_size = D_FIFO_SIZE; /* D-channel */
f_msk = MAX_D_FRAMES;
if (trans_max) return (NULL); /* only hdlc */
}
else {
fifo_size = cs->hw.hfcsx.b_fifo_size; /* B-channel */
f_msk = MAX_B_FRAMES;
}
/* transparent mode */
if (trans_max) {
z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
/* now determine bytes in actual FIFO buffer */
count = z1 - z2;
if (count <= 0)
count += fifo_size; /* count now contains buffered bytes */
count++;
if (count > trans_max)
count = trans_max; /* limit length */
skb = dev_alloc_skb(count);
if (skb) {
dst = skb_put(skb, count);
while (count--)
*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
return skb;
} else
return NULL; /* no memory */
}
do {
f1 = Read_hfc(cs, HFCSX_FIF_F1) & f_msk;
f2 = Read_hfc(cs, HFCSX_FIF_F2) & f_msk;
if (f1 == f2) return (NULL); /* no frame available */
z1 = Read_hfc(cs, HFCSX_FIF_Z1H);
z1 = ((z1 << 8) | Read_hfc(cs, HFCSX_FIF_Z1L));
z2 = Read_hfc(cs, HFCSX_FIF_Z2H);
z2 = ((z2 << 8) | Read_hfc(cs, HFCSX_FIF_Z2L));
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_read_fifo %d f1(%x) f2(%x) z1(f2)(%x) z2(f2)(%x)",
fifo, f1, f2, z1, z2);
/* now determine bytes in actual FIFO buffer */
count = z1 - z2;
if (count <= 0)
count += fifo_size; /* count now contains buffered bytes */
count++;
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_read_fifo %d count %u)",
fifo, count);
if ((count > fifo_size) || (count < 4)) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcsx_read_fifo %d packet inv. len %d ", fifo , count);
while (count) {
count--; /* empty fifo */
Read_hfc(cs, HFCSX_FIF_DRD);
}
skb = NULL;
} else
if ((skb = dev_alloc_skb(count - 3))) {
count -= 3;
dst = skb_put(skb, count);
while (count--)
*dst++ = Read_hfc(cs, HFCSX_FIF_DRD);
Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 1 */
Read_hfc(cs, HFCSX_FIF_DRD); /* CRC 2 */
if (Read_hfc(cs, HFCSX_FIF_DRD)) {
dev_kfree_skb_irq(skb);
if (cs->debug & L1_DEB_ISAC_FIFO)
debugl1(cs, "hfcsx_read_fifo %d crc error", fifo);
skb = NULL;
}
} else {
printk(KERN_WARNING "HFC-SX: receive out of memory\n");
return (NULL);
}
Read_hfc(cs, HFCSX_FIF_INCF2); /* increment F2 */
udelay(1);
while (bytein(cs->hw.hfcsx.base + 1) & 1); /* wait for busy */
udelay(1);
} while (!skb); /* retry in case of crc error */
return (skb);
}
/******************************************/
/* free hardware resources used by driver */
/******************************************/
static void
release_io_hfcsx(struct IsdnCardState *cs)
{
cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET); /* Reset On */
msleep(30); /* Timeout 30ms */
Write_hfc(cs, HFCSX_CIRM, 0); /* Reset Off */
del_timer(&cs->hw.hfcsx.timer);
release_region(cs->hw.hfcsx.base, 2); /* release IO-Block */
kfree(cs->hw.hfcsx.extra);
cs->hw.hfcsx.extra = NULL;
}
/**********************************************************/
/* set_fifo_size determines the size of the RAM and FIFOs */
/* returning 0 -> need to reset the chip again. */
/**********************************************************/
static int set_fifo_size(struct IsdnCardState *cs)
{
if (cs->hw.hfcsx.b_fifo_size) return (1); /* already determined */
if ((cs->hw.hfcsx.chip >> 4) == 9) {
cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_32K;
return (1);
}
cs->hw.hfcsx.b_fifo_size = B_FIFO_SIZE_8K;
cs->hw.hfcsx.cirm |= 0x10; /* only 8K of ram */
return (0);
}
/********************************************************************************/
/* function called to reset the HFC SX chip. A complete software reset of chip */
/* and fifos is done. */
/********************************************************************************/
static void
reset_hfcsx(struct IsdnCardState *cs)
{
cs->hw.hfcsx.int_m2 = 0; /* interrupt output off ! */
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
printk(KERN_INFO "HFC_SX: resetting card\n");
while (1) {
Write_hfc(cs, HFCSX_CIRM, HFCSX_RESET | cs->hw.hfcsx.cirm); /* Reset */
mdelay(30);
Write_hfc(cs, HFCSX_CIRM, cs->hw.hfcsx.cirm); /* Reset Off */
mdelay(20);
if (Read_hfc(cs, HFCSX_STATUS) & 2)
printk(KERN_WARNING "HFC-SX init bit busy\n");
cs->hw.hfcsx.last_fifo = 0xff; /* invalidate */
if (!set_fifo_size(cs)) continue;
break;
}
cs->hw.hfcsx.trm = 0 + HFCSX_BTRANS_THRESMASK; /* no echo connect , threshold */
Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
Write_hfc(cs, HFCSX_CLKDEL, 0x0e); /* ST-Bit delay for TE-Mode */
cs->hw.hfcsx.sctrl_e = HFCSX_AUTO_AWAKE;
Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e); /* S/T Auto awake */
cs->hw.hfcsx.bswapped = 0; /* no exchange */
cs->hw.hfcsx.nt_mode = 0; /* we are in TE mode */
cs->hw.hfcsx.ctmt = HFCSX_TIM3_125 | HFCSX_AUTO_TIMER;
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
cs->hw.hfcsx.int_m1 = HFCSX_INTS_DTRANS | HFCSX_INTS_DREC |
HFCSX_INTS_L1STATE | HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCSX_INT_S1));
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 2); /* HFC ST 2 */
udelay(10);
Write_hfc(cs, HFCSX_STATES, 2); /* HFC ST 2 */
cs->hw.hfcsx.mst_m = HFCSX_MASTER; /* HFC Master Mode */
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
cs->hw.hfcsx.sctrl = 0x40; /* set tx_lo mode, error in datasheet ! */
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
cs->hw.hfcsx.sctrl_r = 0;
Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
/* Init GCI/IOM2 in master mode */
/* Slots 0 and 1 are set for B-chan 1 and 2 */
/* D- and monitor/CI channel are not enabled */
/* STIO1 is used as output for data, B1+B2 from ST->IOM+HFC */
/* STIO2 is used as data input, B1+B2 from IOM->ST */
/* ST B-channel send disabled -> continuous 1s */
/* The IOM slots are always enabled */
cs->hw.hfcsx.conn = 0x36; /* set data flow directions */
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* B1-Slot 0 STIO1 out enabled */
Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* B2-Slot 1 STIO1 out enabled */
Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* B1-Slot 0 STIO2 in enabled */
Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* B2-Slot 1 STIO2 in enabled */
/* Finally enable IRQ output */
cs->hw.hfcsx.int_m2 = HFCSX_IRQ_ENABLE;
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
if (Read_hfc(cs, HFCSX_INT_S2));
}
/***************************************************/
/* Timer function called when kernel timer expires */
/***************************************************/
static void
hfcsx_Timer(struct IsdnCardState *cs)
{
cs->hw.hfcsx.timer.expires = jiffies + 75;
/* WD RESET */
/* WriteReg(cs, HFCD_DATA, HFCD_CTMT, cs->hw.hfcsx.ctmt | 0x80);
add_timer(&cs->hw.hfcsx.timer);
*/
}
/************************************************/
/* select a b-channel entry matching and active */
/************************************************/
static
struct BCState *
Sel_BCS(struct IsdnCardState *cs, int channel)
{
if (cs->bcs[0].mode && (cs->bcs[0].channel == channel))
return (&cs->bcs[0]);
else if (cs->bcs[1].mode && (cs->bcs[1].channel == channel))
return (&cs->bcs[1]);
else
return (NULL);
}
/*******************************/
/* D-channel receive procedure */
/*******************************/
static
int
receive_dmsg(struct IsdnCardState *cs)
{
struct sk_buff *skb;
int count = 5;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_dmsg blocked");
return (1);
}
do {
skb = read_fifo(cs, HFCSX_SEL_D_RX, 0);
if (skb) {
skb_queue_tail(&cs->rq, skb);
schedule_event(cs, D_RCVBUFREADY);
}
} while (--count && skb);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return (1);
}
/**********************************/
/* B-channel main receive routine */
/**********************************/
static void
main_rec_hfcsx(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
int count = 5;
struct sk_buff *skb;
Begin:
count--;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "rec_data %d blocked", bcs->channel);
return;
}
skb = read_fifo(cs, ((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX,
(bcs->mode == L1_MODE_TRANS) ?
HFCSX_BTRANS_THRESHOLD : 0);
if (skb) {
skb_queue_tail(&bcs->rqueue, skb);
schedule_event(bcs, B_RCVBUFREADY);
}
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
if (count && skb)
goto Begin;
return;
}
/**************************/
/* D-channel send routine */
/**************************/
static void
hfcsx_fill_dfifo(struct IsdnCardState *cs)
{
if (!cs->tx_skb)
return;
if (cs->tx_skb->len <= 0)
return;
if (write_fifo(cs, cs->tx_skb, HFCSX_SEL_D_TX, 0)) {
dev_kfree_skb_any(cs->tx_skb);
cs->tx_skb = NULL;
}
return;
}
/**************************/
/* B-channel send routine */
/**************************/
static void
hfcsx_fill_fifo(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!bcs->tx_skb)
return;
if (bcs->tx_skb->len <= 0)
return;
if (write_fifo(cs, bcs->tx_skb,
((bcs->channel) && (!cs->hw.hfcsx.bswapped)) ?
HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX,
(bcs->mode == L1_MODE_TRANS) ?
HFCSX_BTRANS_THRESHOLD : 0)) {
bcs->tx_cnt -= bcs->tx_skb->len;
if (test_bit(FLG_LLI_L1WAKEUP, &bcs->st->lli.flag) &&
(PACKET_NOACK != bcs->tx_skb->pkt_type)) {
u_long flags;
spin_lock_irqsave(&bcs->aclock, flags);
bcs->ackcnt += bcs->tx_skb->len;
spin_unlock_irqrestore(&bcs->aclock, flags);
schedule_event(bcs, B_ACKPENDING);
}
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
/**********************************************/
/* D-channel l1 state call for leased NT-mode */
/**********************************************/
static void
dch_nt_l2l1(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
switch (pr) {
case (PH_DATA | REQUEST):
case (PH_PULL | REQUEST):
case (PH_PULL | INDICATION):
st->l1.l1hw(st, pr, arg);
break;
case (PH_ACTIVATE | REQUEST):
st->l1.l1l2(st, PH_ACTIVATE | CONFIRM, NULL);
break;
case (PH_TESTLOOP | REQUEST):
if (1 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B1");
if (2 & (long) arg)
debugl1(cs, "PH_TEST_LOOP B2");
if (!(3 & (long) arg))
debugl1(cs, "PH_TEST_LOOP DISABLED");
st->l1.l1hw(st, HW_TESTLOOP | REQUEST, arg);
break;
default:
if (cs->debug)
debugl1(cs, "dch_nt_l2l1 msg %04X unhandled", pr);
break;
}
}
/***********************/
/* set/reset echo mode */
/***********************/
static int
hfcsx_auxcmd(struct IsdnCardState *cs, isdn_ctrl *ic)
{
unsigned long flags;
int i = *(unsigned int *) ic->parm.num;
if ((ic->arg == 98) &&
(!(cs->hw.hfcsx.int_m1 & (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC + HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC)))) {
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 0); /* HFC ST G0 */
udelay(10);
cs->hw.hfcsx.sctrl |= SCTRL_MODE_NT;
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl); /* set NT-mode */
udelay(10);
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 1); /* HFC ST G1 */
udelay(10);
Write_hfc(cs, HFCSX_STATES, 1 | HFCSX_ACTIVATE | HFCSX_DO_ACTION);
cs->dc.hfcsx.ph_state = 1;
cs->hw.hfcsx.nt_mode = 1;
cs->hw.hfcsx.nt_timer = 0;
spin_unlock_irqrestore(&cs->lock, flags);
cs->stlist->l2.l2l1 = dch_nt_l2l1;
debugl1(cs, "NT mode activated");
return (0);
}
if ((cs->chanlimit > 1) || (cs->hw.hfcsx.bswapped) ||
(cs->hw.hfcsx.nt_mode) || (ic->arg != 12))
return (-EINVAL);
if (i) {
cs->logecho = 1;
cs->hw.hfcsx.trm |= 0x20; /* enable echo chan */
cs->hw.hfcsx.int_m1 |= HFCSX_INTS_B2REC;
/* reset Channel !!!!! */
} else {
cs->logecho = 0;
cs->hw.hfcsx.trm &= ~0x20; /* disable echo chan */
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_B2REC;
}
cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcsx.conn |= 0x10; /* B2-IOM -> B2-ST */
cs->hw.hfcsx.ctmt &= ~2;
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
} /* hfcsx_auxcmd */
/*****************************/
/* E-channel receive routine */
/*****************************/
static void
receive_emsg(struct IsdnCardState *cs)
{
int count = 5;
u_char *ptr;
struct sk_buff *skb;
if (test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
debugl1(cs, "echo_rec_data blocked");
return;
}
do {
skb = read_fifo(cs, HFCSX_SEL_B2_RX, 0);
if (skb) {
if (cs->debug & DEB_DLOG_HEX) {
ptr = cs->dlog;
if ((skb->len) < MAX_DLOG_SPACE / 3 - 10) {
*ptr++ = 'E';
*ptr++ = 'C';
*ptr++ = 'H';
*ptr++ = 'O';
*ptr++ = ':';
ptr += QuickHex(ptr, skb->data, skb->len);
ptr--;
*ptr++ = '\n';
*ptr = 0;
HiSax_putstatus(cs, NULL, cs->dlog);
} else
HiSax_putstatus(cs, "LogEcho: ", "warning Frame too big (%d)", skb->len);
}
dev_kfree_skb_any(skb);
}
} while (--count && skb);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
return;
} /* receive_emsg */
/*********************/
/* Interrupt handler */
/*********************/
static irqreturn_t
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
hfcsx_interrupt(int intno, void *dev_id)
{
struct IsdnCardState *cs = dev_id;
u_char exval;
struct BCState *bcs;
int count = 15;
u_long flags;
u_char val, stat;
if (!(cs->hw.hfcsx.int_m2 & 0x08))
return IRQ_NONE; /* not initialised */
spin_lock_irqsave(&cs->lock, flags);
if (HFCSX_ANYINT & (stat = Read_hfc(cs, HFCSX_STATUS))) {
val = Read_hfc(cs, HFCSX_INT_S1);
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-SX: stat(%02x) s1(%02x)", stat, val);
} else {
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_NONE;
}
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-SX irq %x %s", val,
test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags) ?
"locked" : "unlocked");
val &= cs->hw.hfcsx.int_m1;
if (val & 0x40) { /* state machine irq */
exval = Read_hfc(cs, HFCSX_STATES) & 0xf;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "ph_state chg %d->%d", cs->dc.hfcsx.ph_state,
exval);
cs->dc.hfcsx.ph_state = exval;
schedule_event(cs, D_L1STATECHANGE);
val &= ~0x40;
}
if (val & 0x80) { /* timer irq */
if (cs->hw.hfcsx.nt_mode) {
if ((--cs->hw.hfcsx.nt_timer) < 0)
schedule_event(cs, D_L1STATECHANGE);
}
val &= ~0x80;
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
}
while (val) {
if (test_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
cs->hw.hfcsx.int_s1 |= val;
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
if (cs->hw.hfcsx.int_s1 & 0x18) {
exval = val;
val = cs->hw.hfcsx.int_s1;
cs->hw.hfcsx.int_s1 = exval;
}
if (val & 0x08) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x08 IRQ");
} else
main_rec_hfcsx(bcs);
}
if (val & 0x10) {
if (cs->logecho)
receive_emsg(cs);
else if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x10 IRQ");
} else
main_rec_hfcsx(bcs);
}
if (val & 0x01) {
if (!(bcs = Sel_BCS(cs, cs->hw.hfcsx.bswapped ? 1 : 0))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x01 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x02) {
if (!(bcs = Sel_BCS(cs, 1))) {
if (cs->debug)
debugl1(cs, "hfcsx spurious 0x02 IRQ");
} else {
if (bcs->tx_skb) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
if ((bcs->tx_skb = skb_dequeue(&bcs->squeue))) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "fill_data %d blocked", bcs->channel);
} else {
schedule_event(bcs, B_XMTBUFREADY);
}
}
}
}
if (val & 0x20) { /* receive dframe */
receive_dmsg(cs);
}
if (val & 0x04) { /* dframe transmitted */
if (test_and_clear_bit(FLG_DBUSY_TIMER, &cs->HW_Flags))
del_timer(&cs->dbusytimer);
if (test_and_clear_bit(FLG_L1_DBUSY, &cs->HW_Flags))
schedule_event(cs, D_CLEARBUSY);
if (cs->tx_skb) {
if (cs->tx_skb->len) {
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcsx_fill_dfifo irq blocked");
}
goto afterXPR;
} else {
dev_kfree_skb_irq(cs->tx_skb);
cs->tx_cnt = 0;
cs->tx_skb = NULL;
}
}
if ((cs->tx_skb = skb_dequeue(&cs->sq))) {
cs->tx_cnt = 0;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else {
debugl1(cs, "hfcsx_fill_dfifo irq blocked");
}
} else
schedule_event(cs, D_XMTBUFREADY);
}
afterXPR:
if (cs->hw.hfcsx.int_s1 && count--) {
val = cs->hw.hfcsx.int_s1;
cs->hw.hfcsx.int_s1 = 0;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFC-SX irq %x loop %d", val, 15 - count);
} else
val = 0;
}
spin_unlock_irqrestore(&cs->lock, flags);
return IRQ_HANDLED;
}
/********************************************************************/
/* timer callback for D-chan busy resolution. Currently no function */
/********************************************************************/
static void
hfcsx_dbusy_timer(struct IsdnCardState *cs)
{
}
/*************************************/
/* Layer 1 D-channel hardware access */
/*************************************/
static void
HFCSX_l1hw(struct PStack *st, int pr, void *arg)
{
struct IsdnCardState *cs = (struct IsdnCardState *) st->l1.hardware;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
skb_queue_tail(&cs->sq, skb);
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA Queued", 0);
#endif
} else {
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcsx_fill_dfifo blocked");
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&cs->lock, flags);
if (cs->tx_skb) {
if (cs->debug & L1_DEB_WARN)
debugl1(cs, " l2l1 tx_skb exist this shouldn't happen");
skb_queue_tail(&cs->sq, skb);
spin_unlock_irqrestore(&cs->lock, flags);
break;
}
if (cs->debug & DEB_DLOG_HEX)
LogFrame(cs, skb->data, skb->len);
if (cs->debug & DEB_DLOG_VERBOSE)
dlogframe(cs, skb, 0);
cs->tx_skb = skb;
cs->tx_cnt = 0;
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
Logl2Frame(cs, skb, "PH_DATA_PULLED", 0);
#endif
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_dfifo(cs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "hfcsx_fill_dfifo blocked");
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (PH_PULL | REQUEST):
#ifdef L2FRAME_DEBUG /* psa */
if (cs->debug & L1_DEB_LAPD)
debugl1(cs, "-> PH_REQUEST_PULL");
#endif
if (!cs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (HW_RESET | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_STATES, HFCSX_LOAD_STATE | 3); /* HFC ST 3 */
udelay(6);
Write_hfc(cs, HFCSX_STATES, 3); /* HFC ST 2 */
cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
l1_msg(cs, HW_POWERUP | CONFIRM, NULL);
break;
case (HW_ENABLE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
Write_hfc(cs, HFCSX_STATES, HFCSX_ACTIVATE | HFCSX_DO_ACTION);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_DEACTIVATE | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.mst_m &= ~HFCSX_MASTER;
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_INFO3 | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.mst_m |= HFCSX_MASTER;
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (HW_TESTLOOP | REQUEST):
spin_lock_irqsave(&cs->lock, flags);
switch ((long) arg) {
case (1):
Write_hfc(cs, HFCSX_B1_SSL, 0x80); /* tx slot */
Write_hfc(cs, HFCSX_B1_RSL, 0x80); /* rx slot */
cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~7) | 1;
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
break;
case (2):
Write_hfc(cs, HFCSX_B2_SSL, 0x81); /* tx slot */
Write_hfc(cs, HFCSX_B2_RSL, 0x81); /* rx slot */
cs->hw.hfcsx.conn = (cs->hw.hfcsx.conn & ~0x38) | 0x08;
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
break;
default:
spin_unlock_irqrestore(&cs->lock, flags);
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcsx_l1hw loop invalid %4lx", (unsigned long)arg);
return;
}
cs->hw.hfcsx.trm |= 0x80; /* enable IOM-loop */
Write_hfc(cs, HFCSX_TRM, cs->hw.hfcsx.trm);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
if (cs->debug & L1_DEB_WARN)
debugl1(cs, "hfcsx_l1hw unknown pr %4x", pr);
break;
}
}
/***********************************************/
/* called during init setting l1 stack pointer */
/***********************************************/
static void
setstack_hfcsx(struct PStack *st, struct IsdnCardState *cs)
{
st->l1.l1hw = HFCSX_l1hw;
}
/**************************************/
/* send B-channel data if not blocked */
/**************************************/
static void
hfcsx_send_data(struct BCState *bcs)
{
struct IsdnCardState *cs = bcs->cs;
if (!test_and_set_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags)) {
hfcsx_fill_fifo(bcs);
test_and_clear_bit(FLG_LOCK_ATOMIC, &cs->HW_Flags);
} else
debugl1(cs, "send_data %d blocked", bcs->channel);
}
/***************************************************************/
/* activate/deactivate hardware for selected channels and mode */
/***************************************************************/
static void
mode_hfcsx(struct BCState *bcs, int mode, int bc)
{
struct IsdnCardState *cs = bcs->cs;
int fifo2;
if (cs->debug & L1_DEB_HSCX)
debugl1(cs, "HFCSX bchannel mode %d bchan %d/%d",
mode, bc, bcs->channel);
bcs->mode = mode;
bcs->channel = bc;
fifo2 = bc;
if (cs->chanlimit > 1) {
cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcsx.sctrl_e &= ~0x80;
} else {
if (bc) {
if (mode != L1_MODE_NULL) {
cs->hw.hfcsx.bswapped = 1; /* B1 and B2 exchanged */
cs->hw.hfcsx.sctrl_e |= 0x80;
} else {
cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcsx.sctrl_e &= ~0x80;
}
fifo2 = 0;
} else {
cs->hw.hfcsx.bswapped = 0; /* B1 and B2 normal mode */
cs->hw.hfcsx.sctrl_e &= ~0x80;
}
}
switch (mode) {
case (L1_MODE_NULL):
if (bc) {
cs->hw.hfcsx.sctrl &= ~SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r &= ~SCTRL_B2_ENA;
} else {
cs->hw.hfcsx.sctrl &= ~SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r &= ~SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
} else {
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
}
break;
case (L1_MODE_TRANS):
if (bc) {
cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
cs->hw.hfcsx.ctmt |= 2;
cs->hw.hfcsx.conn &= ~0x18;
} else {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
cs->hw.hfcsx.ctmt |= 1;
cs->hw.hfcsx.conn &= ~0x03;
}
break;
case (L1_MODE_HDLC):
if (bc) {
cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
} else {
cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
}
if (fifo2) {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
cs->hw.hfcsx.ctmt &= ~2;
cs->hw.hfcsx.conn &= ~0x18;
} else {
cs->hw.hfcsx.int_m1 |= (HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
cs->hw.hfcsx.ctmt &= ~1;
cs->hw.hfcsx.conn &= ~0x03;
}
break;
case (L1_MODE_EXTRN):
if (bc) {
cs->hw.hfcsx.conn |= 0x10;
cs->hw.hfcsx.sctrl |= SCTRL_B2_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B2_ENA;
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B2TRANS + HFCSX_INTS_B2REC);
} else {
cs->hw.hfcsx.conn |= 0x02;
cs->hw.hfcsx.sctrl |= SCTRL_B1_ENA;
cs->hw.hfcsx.sctrl_r |= SCTRL_B1_ENA;
cs->hw.hfcsx.int_m1 &= ~(HFCSX_INTS_B1TRANS + HFCSX_INTS_B1REC);
}
break;
}
Write_hfc(cs, HFCSX_SCTRL_E, cs->hw.hfcsx.sctrl_e);
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
Write_hfc(cs, HFCSX_SCTRL, cs->hw.hfcsx.sctrl);
Write_hfc(cs, HFCSX_SCTRL_R, cs->hw.hfcsx.sctrl_r);
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt);
Write_hfc(cs, HFCSX_CONNECT, cs->hw.hfcsx.conn);
if (mode != L1_MODE_EXTRN) {
reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_RX : HFCSX_SEL_B1_RX);
reset_fifo(cs, fifo2 ? HFCSX_SEL_B2_TX : HFCSX_SEL_B1_TX);
}
}
/******************************/
/* Layer2 -> Layer 1 Transfer */
/******************************/
static void
hfcsx_l2l1(struct PStack *st, int pr, void *arg)
{
struct BCState *bcs = st->l1.bcs;
struct sk_buff *skb = arg;
u_long flags;
switch (pr) {
case (PH_DATA | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
skb_queue_tail(&bcs->squeue, skb);
} else {
bcs->tx_skb = skb;
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | INDICATION):
spin_lock_irqsave(&bcs->cs->lock, flags);
if (bcs->tx_skb) {
printk(KERN_WARNING "hfc_l2l1: this shouldn't happen\n");
} else {
// test_and_set_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->tx_skb = skb;
bcs->cs->BC_Send_Data(bcs);
}
spin_unlock_irqrestore(&bcs->cs->lock, flags);
break;
case (PH_PULL | REQUEST):
if (!bcs->tx_skb) {
test_and_clear_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
st->l1.l1l2(st, PH_PULL | CONFIRM, NULL);
} else
test_and_set_bit(FLG_L1_PULL_REQ, &st->l1.Flags);
break;
case (PH_ACTIVATE | REQUEST):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_set_bit(BC_FLG_ACTIV, &bcs->Flag);
mode_hfcsx(bcs, st->l1.mode, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | REQUEST):
l1_msg_b(st, pr, arg);
break;
case (PH_DEACTIVATE | CONFIRM):
spin_lock_irqsave(&bcs->cs->lock, flags);
test_and_clear_bit(BC_FLG_ACTIV, &bcs->Flag);
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
mode_hfcsx(bcs, 0, st->l1.bc);
spin_unlock_irqrestore(&bcs->cs->lock, flags);
st->l1.l1l2(st, PH_DEACTIVATE | CONFIRM, NULL);
break;
}
}
/******************************************/
/* deactivate B-channel access and queues */
/******************************************/
static void
close_hfcsx(struct BCState *bcs)
{
mode_hfcsx(bcs, 0, bcs->channel);
if (test_and_clear_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_purge(&bcs->rqueue);
skb_queue_purge(&bcs->squeue);
if (bcs->tx_skb) {
dev_kfree_skb_any(bcs->tx_skb);
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
}
}
}
/*************************************/
/* init B-channel queues and control */
/*************************************/
static int
open_hfcsxstate(struct IsdnCardState *cs, struct BCState *bcs)
{
if (!test_and_set_bit(BC_FLG_INIT, &bcs->Flag)) {
skb_queue_head_init(&bcs->rqueue);
skb_queue_head_init(&bcs->squeue);
}
bcs->tx_skb = NULL;
test_and_clear_bit(BC_FLG_BUSY, &bcs->Flag);
bcs->event = 0;
bcs->tx_cnt = 0;
return (0);
}
/*********************************/
/* inits the stack for B-channel */
/*********************************/
static int
setstack_2b(struct PStack *st, struct BCState *bcs)
{
bcs->channel = st->l1.bc;
if (open_hfcsxstate(st->l1.hardware, bcs))
return (-1);
st->l1.bcs = bcs;
st->l2.l2l1 = hfcsx_l2l1;
setstack_manager(st);
bcs->st = st;
setstack_l1_B(st);
return (0);
}
/***************************/
/* handle L1 state changes */
/***************************/
static void
hfcsx_bh(struct work_struct *work)
{
struct IsdnCardState *cs =
container_of(work, struct IsdnCardState, tqueue);
u_long flags;
if (test_and_clear_bit(D_L1STATECHANGE, &cs->event)) {
if (!cs->hw.hfcsx.nt_mode)
switch (cs->dc.hfcsx.ph_state) {
case (0):
l1_msg(cs, HW_RESET | INDICATION, NULL);
break;
case (3):
l1_msg(cs, HW_DEACTIVATE | INDICATION, NULL);
break;
case (8):
l1_msg(cs, HW_RSYNC | INDICATION, NULL);
break;
case (6):
l1_msg(cs, HW_INFO2 | INDICATION, NULL);
break;
case (7):
l1_msg(cs, HW_INFO4_P8 | INDICATION, NULL);
break;
default:
break;
} else {
switch (cs->dc.hfcsx.ph_state) {
case (2):
spin_lock_irqsave(&cs->lock, flags);
if (cs->hw.hfcsx.nt_timer < 0) {
cs->hw.hfcsx.nt_timer = 0;
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
/* Clear already pending ints */
if (Read_hfc(cs, HFCSX_INT_S1));
Write_hfc(cs, HFCSX_STATES, 4 | HFCSX_LOAD_STATE);
udelay(10);
Write_hfc(cs, HFCSX_STATES, 4);
cs->dc.hfcsx.ph_state = 4;
} else {
cs->hw.hfcsx.int_m1 |= HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
cs->hw.hfcsx.ctmt &= ~HFCSX_AUTO_TIMER;
cs->hw.hfcsx.ctmt |= HFCSX_TIM3_125;
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
Write_hfc(cs, HFCSX_CTMT, cs->hw.hfcsx.ctmt | HFCSX_CLTIMER);
cs->hw.hfcsx.nt_timer = NT_T1_COUNT;
Write_hfc(cs, HFCSX_STATES, 2 | HFCSX_NT_G2_G3); /* allow G2 -> G3 transition */
}
spin_unlock_irqrestore(&cs->lock, flags);
break;
case (1):
case (3):
case (4):
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.nt_timer = 0;
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
spin_unlock_irqrestore(&cs->lock, flags);
break;
default:
break;
}
}
}
if (test_and_clear_bit(D_RCVBUFREADY, &cs->event))
DChannel_proc_rcv(cs);
if (test_and_clear_bit(D_XMTBUFREADY, &cs->event))
DChannel_proc_xmt(cs);
}
/********************************/
/* called for card init message */
/********************************/
static void inithfcsx(struct IsdnCardState *cs)
{
cs->setstack_d = setstack_hfcsx;
cs->BC_Send_Data = &hfcsx_send_data;
cs->bcs[0].BC_SetStack = setstack_2b;
cs->bcs[1].BC_SetStack = setstack_2b;
cs->bcs[0].BC_Close = close_hfcsx;
cs->bcs[1].BC_Close = close_hfcsx;
mode_hfcsx(cs->bcs, 0, 0);
mode_hfcsx(cs->bcs + 1, 0, 1);
}
/*******************************************/
/* handle card messages from control layer */
/*******************************************/
static int
hfcsx_card_msg(struct IsdnCardState *cs, int mt, void *arg)
{
u_long flags;
if (cs->debug & L1_DEB_ISAC)
debugl1(cs, "HFCSX: card_msg %x", mt);
switch (mt) {
case CARD_RESET:
spin_lock_irqsave(&cs->lock, flags);
reset_hfcsx(cs);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_RELEASE:
release_io_hfcsx(cs);
return (0);
case CARD_INIT:
spin_lock_irqsave(&cs->lock, flags);
inithfcsx(cs);
spin_unlock_irqrestore(&cs->lock, flags);
msleep(80); /* Timeout 80ms */
/* now switch timer interrupt off */
spin_lock_irqsave(&cs->lock, flags);
cs->hw.hfcsx.int_m1 &= ~HFCSX_INTS_TIMER;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
/* reinit mode reg */
Write_hfc(cs, HFCSX_MST_MODE, cs->hw.hfcsx.mst_m);
spin_unlock_irqrestore(&cs->lock, flags);
return (0);
case CARD_TEST:
return (0);
}
return (0);
}
#ifdef __ISAPNP__
static struct isapnp_device_id hfc_ids[] = {
{ ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
ISAPNP_VENDOR('T', 'A', 'G'), ISAPNP_FUNCTION(0x2620),
(unsigned long) "Teles 16.3c2" },
{ 0, }
};
static struct isapnp_device_id *ipid = &hfc_ids[0];
static struct pnp_card *pnp_c = NULL;
#endif
int setup_hfcsx(struct IsdnCard *card)
{
struct IsdnCardState *cs = card->cs;
char tmp[64];
strcpy(tmp, hfcsx_revision);
printk(KERN_INFO "HiSax: HFC-SX driver Rev. %s\n", HiSax_getrev(tmp));
#ifdef __ISAPNP__
if (!card->para[1] && isapnp_present()) {
struct pnp_dev *pnp_d;
while (ipid->card_vendor) {
if ((pnp_c = pnp_find_card(ipid->card_vendor,
ipid->card_device, pnp_c))) {
pnp_d = NULL;
if ((pnp_d = pnp_find_dev(pnp_c,
ipid->vendor, ipid->function, pnp_d))) {
int err;
printk(KERN_INFO "HiSax: %s detected\n",
(char *)ipid->driver_data);
pnp_disable_dev(pnp_d);
err = pnp_activate_dev(pnp_d);
if (err < 0) {
printk(KERN_WARNING "%s: pnp_activate_dev ret(%d)\n",
__func__, err);
return (0);
}
card->para[1] = pnp_port_start(pnp_d, 0);
card->para[0] = pnp_irq(pnp_d, 0);
if (!card->para[0] || !card->para[1]) {
printk(KERN_ERR "HFC PnP:some resources are missing %ld/%lx\n",
card->para[0], card->para[1]);
pnp_disable_dev(pnp_d);
return (0);
}
break;
} else {
printk(KERN_ERR "HFC PnP: PnP error card found, no device\n");
}
}
ipid++;
pnp_c = NULL;
}
if (!ipid->card_vendor) {
printk(KERN_INFO "HFC PnP: no ISAPnP card found\n");
return (0);
}
}
#endif
cs->hw.hfcsx.base = card->para[1] & 0xfffe;
cs->irq = card->para[0];
cs->hw.hfcsx.int_s1 = 0;
cs->dc.hfcsx.ph_state = 0;
cs->hw.hfcsx.fifo = 255;
if ((cs->typ == ISDN_CTYPE_HFC_SX) ||
(cs->typ == ISDN_CTYPE_HFC_SP_PCMCIA)) {
if ((!cs->hw.hfcsx.base) || !request_region(cs->hw.hfcsx.base, 2, "HFCSX isdn")) {
printk(KERN_WARNING
"HiSax: HFC-SX io-base %#lx already in use\n",
cs->hw.hfcsx.base);
return (0);
}
byteout(cs->hw.hfcsx.base, cs->hw.hfcsx.base & 0xFF);
byteout(cs->hw.hfcsx.base + 1,
((cs->hw.hfcsx.base >> 8) & 3) | 0x54);
udelay(10);
cs->hw.hfcsx.chip = Read_hfc(cs, HFCSX_CHIP_ID);
switch (cs->hw.hfcsx.chip >> 4) {
case 1:
tmp[0] = '+';
break;
case 9:
tmp[0] = 'P';
break;
default:
printk(KERN_WARNING
"HFC-SX: invalid chip id 0x%x\n",
cs->hw.hfcsx.chip >> 4);
release_region(cs->hw.hfcsx.base, 2);
return (0);
}
if (!ccd_sp_irqtab[cs->irq & 0xF]) {
printk(KERN_WARNING
"HFC_SX: invalid irq %d specified\n", cs->irq & 0xF);
release_region(cs->hw.hfcsx.base, 2);
return (0);
}
if (!(cs->hw.hfcsx.extra = (void *)
kmalloc(sizeof(struct hfcsx_extra), GFP_ATOMIC))) {
release_region(cs->hw.hfcsx.base, 2);
printk(KERN_WARNING "HFC-SX: unable to allocate memory\n");
return (0);
}
printk(KERN_INFO "HFC-S%c chip detected at base 0x%x IRQ %d HZ %d\n",
tmp[0], (u_int) cs->hw.hfcsx.base, cs->irq, HZ);
cs->hw.hfcsx.int_m2 = 0; /* disable alle interrupts */
cs->hw.hfcsx.int_m1 = 0;
Write_hfc(cs, HFCSX_INT_M1, cs->hw.hfcsx.int_m1);
Write_hfc(cs, HFCSX_INT_M2, cs->hw.hfcsx.int_m2);
} else
return (0); /* no valid card type */
cs->dbusytimer.function = (void *) hfcsx_dbusy_timer;
cs->dbusytimer.data = (long) cs;
init_timer(&cs->dbusytimer);
INIT_WORK(&cs->tqueue, hfcsx_bh);
cs->readisac = NULL;
cs->writeisac = NULL;
cs->readisacfifo = NULL;
cs->writeisacfifo = NULL;
cs->BC_Read_Reg = NULL;
cs->BC_Write_Reg = NULL;
cs->irq_func = &hfcsx_interrupt;
cs->hw.hfcsx.timer.function = (void *) hfcsx_Timer;
cs->hw.hfcsx.timer.data = (long) cs;
cs->hw.hfcsx.b_fifo_size = 0; /* fifo size still unknown */
cs->hw.hfcsx.cirm = ccd_sp_irqtab[cs->irq & 0xF]; /* RAM not evaluated */
init_timer(&cs->hw.hfcsx.timer);
reset_hfcsx(cs);
cs->cardmsg = &hfcsx_card_msg;
cs->auxcmd = &hfcsx_auxcmd;
return (1);
}