linux_old1/arch/mips/kvm/mips.c

1194 lines
27 KiB
C
Raw Normal View History

/*
* This file is subject to the terms and conditions of the GNU General Public
* License. See the file "COPYING" in the main directory of this archive
* for more details.
*
* KVM/MIPS: MIPS specific KVM APIs
*
* Copyright (C) 2012 MIPS Technologies, Inc. All rights reserved.
* Authors: Sanjay Lal <sanjayl@kymasys.com>
*/
#include <linux/errno.h>
#include <linux/err.h>
#include <linux/module.h>
#include <linux/vmalloc.h>
#include <linux/fs.h>
#include <linux/bootmem.h>
#include <asm/page.h>
#include <asm/cacheflush.h>
#include <asm/mmu_context.h>
#include <asm/pgtable.h>
#include <linux/kvm_host.h>
#include "interrupt.h"
#include "commpage.h"
#define CREATE_TRACE_POINTS
#include "trace.h"
#ifndef VECTORSPACING
#define VECTORSPACING 0x100 /* for EI/VI mode */
#endif
#define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x)
struct kvm_stats_debugfs_item debugfs_entries[] = {
{ "wait", VCPU_STAT(wait_exits), KVM_STAT_VCPU },
{ "cache", VCPU_STAT(cache_exits), KVM_STAT_VCPU },
{ "signal", VCPU_STAT(signal_exits), KVM_STAT_VCPU },
{ "interrupt", VCPU_STAT(int_exits), KVM_STAT_VCPU },
{ "cop_unsuable", VCPU_STAT(cop_unusable_exits), KVM_STAT_VCPU },
{ "tlbmod", VCPU_STAT(tlbmod_exits), KVM_STAT_VCPU },
{ "tlbmiss_ld", VCPU_STAT(tlbmiss_ld_exits), KVM_STAT_VCPU },
{ "tlbmiss_st", VCPU_STAT(tlbmiss_st_exits), KVM_STAT_VCPU },
{ "addrerr_st", VCPU_STAT(addrerr_st_exits), KVM_STAT_VCPU },
{ "addrerr_ld", VCPU_STAT(addrerr_ld_exits), KVM_STAT_VCPU },
{ "syscall", VCPU_STAT(syscall_exits), KVM_STAT_VCPU },
{ "resvd_inst", VCPU_STAT(resvd_inst_exits), KVM_STAT_VCPU },
{ "break_inst", VCPU_STAT(break_inst_exits), KVM_STAT_VCPU },
{ "flush_dcache", VCPU_STAT(flush_dcache_exits), KVM_STAT_VCPU },
{ "halt_wakeup", VCPU_STAT(halt_wakeup), KVM_STAT_VCPU },
{NULL}
};
static int kvm_mips_reset_vcpu(struct kvm_vcpu *vcpu)
{
int i;
for_each_possible_cpu(i) {
vcpu->arch.guest_kernel_asid[i] = 0;
vcpu->arch.guest_user_asid[i] = 0;
}
return 0;
}
/*
* XXXKYMA: We are simulatoring a processor that has the WII bit set in
* Config7, so we are "runnable" if interrupts are pending
*/
int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
{
return !!(vcpu->arch.pending_exceptions);
}
int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
{
return 1;
}
int kvm_arch_hardware_enable(void)
{
return 0;
}
int kvm_arch_hardware_setup(void)
{
return 0;
}
void kvm_arch_check_processor_compat(void *rtn)
{
*(int *)rtn = 0;
}
static void kvm_mips_init_tlbs(struct kvm *kvm)
{
unsigned long wired;
/*
* Add a wired entry to the TLB, it is used to map the commpage to
* the Guest kernel
*/
wired = read_c0_wired();
write_c0_wired(wired + 1);
mtc0_tlbw_hazard();
kvm->arch.commpage_tlb = wired;
kvm_debug("[%d] commpage TLB: %d\n", smp_processor_id(),
kvm->arch.commpage_tlb);
}
static void kvm_mips_init_vm_percpu(void *arg)
{
struct kvm *kvm = (struct kvm *)arg;
kvm_mips_init_tlbs(kvm);
kvm_mips_callbacks->vm_init(kvm);
}
int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
{
if (atomic_inc_return(&kvm_mips_instance) == 1) {
kvm_debug("%s: 1st KVM instance, setup host TLB parameters\n",
__func__);
on_each_cpu(kvm_mips_init_vm_percpu, kvm, 1);
}
return 0;
}
void kvm_mips_free_vcpus(struct kvm *kvm)
{
unsigned int i;
struct kvm_vcpu *vcpu;
/* Put the pages we reserved for the guest pmap */
for (i = 0; i < kvm->arch.guest_pmap_npages; i++) {
if (kvm->arch.guest_pmap[i] != KVM_INVALID_PAGE)
kvm_mips_release_pfn_clean(kvm->arch.guest_pmap[i]);
}
kfree(kvm->arch.guest_pmap);
kvm_for_each_vcpu(i, vcpu, kvm) {
kvm_arch_vcpu_free(vcpu);
}
mutex_lock(&kvm->lock);
for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
kvm->vcpus[i] = NULL;
atomic_set(&kvm->online_vcpus, 0);
mutex_unlock(&kvm->lock);
}
static void kvm_mips_uninit_tlbs(void *arg)
{
/* Restore wired count */
write_c0_wired(0);
mtc0_tlbw_hazard();
/* Clear out all the TLBs */
kvm_local_flush_tlb_all();
}
void kvm_arch_destroy_vm(struct kvm *kvm)
{
kvm_mips_free_vcpus(kvm);
/* If this is the last instance, restore wired count */
if (atomic_dec_return(&kvm_mips_instance) == 0) {
kvm_debug("%s: last KVM instance, restoring TLB parameters\n",
__func__);
on_each_cpu(kvm_mips_uninit_tlbs, NULL, 1);
}
}
long kvm_arch_dev_ioctl(struct file *filp, unsigned int ioctl,
unsigned long arg)
{
return -ENOIOCTLCMD;
}
int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
unsigned long npages)
{
return 0;
}
int kvm_arch_prepare_memory_region(struct kvm *kvm,
struct kvm_memory_slot *memslot,
struct kvm_userspace_memory_region *mem,
enum kvm_mr_change change)
{
return 0;
}
void kvm_arch_commit_memory_region(struct kvm *kvm,
struct kvm_userspace_memory_region *mem,
const struct kvm_memory_slot *old,
enum kvm_mr_change change)
{
unsigned long npages = 0;
int i;
kvm_debug("%s: kvm: %p slot: %d, GPA: %llx, size: %llx, QVA: %llx\n",
__func__, kvm, mem->slot, mem->guest_phys_addr,
mem->memory_size, mem->userspace_addr);
/* Setup Guest PMAP table */
if (!kvm->arch.guest_pmap) {
if (mem->slot == 0)
npages = mem->memory_size >> PAGE_SHIFT;
if (npages) {
kvm->arch.guest_pmap_npages = npages;
kvm->arch.guest_pmap =
kzalloc(npages * sizeof(unsigned long), GFP_KERNEL);
if (!kvm->arch.guest_pmap) {
kvm_err("Failed to allocate guest PMAP");
return;
}
kvm_debug("Allocated space for Guest PMAP Table (%ld pages) @ %p\n",
npages, kvm->arch.guest_pmap);
/* Now setup the page table */
for (i = 0; i < npages; i++)
kvm->arch.guest_pmap[i] = KVM_INVALID_PAGE;
}
}
}
struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
{
int err, size, offset;
void *gebase;
int i;
struct kvm_vcpu *vcpu = kzalloc(sizeof(struct kvm_vcpu), GFP_KERNEL);
if (!vcpu) {
err = -ENOMEM;
goto out;
}
err = kvm_vcpu_init(vcpu, kvm, id);
if (err)
goto out_free_cpu;
kvm_debug("kvm @ %p: create cpu %d at %p\n", kvm, id, vcpu);
/*
* Allocate space for host mode exception handlers that handle
* guest mode exits
*/
if (cpu_has_veic || cpu_has_vint)
size = 0x200 + VECTORSPACING * 64;
else
size = 0x4000;
/* Save Linux EBASE */
vcpu->arch.host_ebase = (void *)read_c0_ebase();
gebase = kzalloc(ALIGN(size, PAGE_SIZE), GFP_KERNEL);
if (!gebase) {
err = -ENOMEM;
goto out_free_cpu;
}
kvm_debug("Allocated %d bytes for KVM Exception Handlers @ %p\n",
ALIGN(size, PAGE_SIZE), gebase);
/* Save new ebase */
vcpu->arch.guest_ebase = gebase;
/* Copy L1 Guest Exception handler to correct offset */
/* TLB Refill, EXL = 0 */
memcpy(gebase, mips32_exception,
mips32_exceptionEnd - mips32_exception);
/* General Exception Entry point */
memcpy(gebase + 0x180, mips32_exception,
mips32_exceptionEnd - mips32_exception);
/* For vectored interrupts poke the exception code @ all offsets 0-7 */
for (i = 0; i < 8; i++) {
kvm_debug("L1 Vectored handler @ %p\n",
gebase + 0x200 + (i * VECTORSPACING));
memcpy(gebase + 0x200 + (i * VECTORSPACING), mips32_exception,
mips32_exceptionEnd - mips32_exception);
}
/* General handler, relocate to unmapped space for sanity's sake */
offset = 0x2000;
kvm_debug("Installing KVM Exception handlers @ %p, %#x bytes\n",
gebase + offset,
mips32_GuestExceptionEnd - mips32_GuestException);
memcpy(gebase + offset, mips32_GuestException,
mips32_GuestExceptionEnd - mips32_GuestException);
/* Invalidate the icache for these ranges */
local_flush_icache_range((unsigned long)gebase,
(unsigned long)gebase + ALIGN(size, PAGE_SIZE));
/*
* Allocate comm page for guest kernel, a TLB will be reserved for
* mapping GVA @ 0xFFFF8000 to this page
*/
vcpu->arch.kseg0_commpage = kzalloc(PAGE_SIZE << 1, GFP_KERNEL);
if (!vcpu->arch.kseg0_commpage) {
err = -ENOMEM;
goto out_free_gebase;
}
kvm_debug("Allocated COMM page @ %p\n", vcpu->arch.kseg0_commpage);
kvm_mips_commpage_init(vcpu);
/* Init */
vcpu->arch.last_sched_cpu = -1;
/* Start off the timer */
MIPS: KVM: Rewrite count/compare timer emulation Previously the emulation of the CPU timer was just enough to get a Linux guest running but some shortcuts were taken: - The guest timer interrupt was hard coded to always happen every 10 ms rather than being timed to when CP0_Count would match CP0_Compare. - The guest's CP0_Count register was based on the host's CP0_Count register. This isn't very portable and fails on cores without a CP_Count register implemented such as Ingenic XBurst. It also meant that the guest's CP0_Cause.DC bit to disable the CP0_Count register took no effect. - The guest's CP0_Count register was emulated by just dividing the host's CP0_Count register by 4. This resulted in continuity problems when used as a clock source, since when the host CP0_Count overflows from 0x7fffffff to 0x80000000, the guest CP0_Count transitions discontinuously from 0x1fffffff to 0xe0000000. Therefore rewrite & fix emulation of the guest timer based on the monotonic kernel time (i.e. ktime_get()). Internally a 32-bit count_bias value is added to the frequency scaled nanosecond monotonic time to get the guest's CP0_Count. The frequency of the timer is initialised to 100MHz and cannot yet be changed, but a later patch will allow the frequency to be configured via the KVM_{GET,SET}_ONE_REG ioctl interface. The timer can now be stopped via the CP0_Cause.DC bit (by the guest or via the KVM_SET_ONE_REG ioctl interface), at which point the current CP0_Count is stored and can be read directly. When it is restarted the bias is recalculated such that the CP0_Count value is continuous. Due to the nature of hrtimer interrupts any read of the guest's CP0_Count register while it is running triggers a check for whether the hrtimer has expired, so that the guest/userland cannot observe the CP0_Count passing CP0_Compare without queuing a timer interrupt. This is also taken advantage of when stopping the timer to ensure that a pending timer interrupt is queued. This replaces the implementation of: - Guest read of CP0_Count - Guest write of CP0_Count - Guest write of CP0_Compare - Guest write of CP0_Cause - Guest read of HWR 2 (CC) with RDHWR - Host read of CP0_Count via KVM_GET_ONE_REG ioctl interface - Host write of CP0_Count via KVM_SET_ONE_REG ioctl interface - Host write of CP0_Compare via KVM_SET_ONE_REG ioctl interface - Host write of CP0_Cause via KVM_SET_ONE_REG ioctl interface Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: kvm@vger.kernel.org Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: Sanjay Lal <sanjayl@kymasys.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-05-29 17:16:35 +08:00
kvm_mips_init_count(vcpu);
return vcpu;
out_free_gebase:
kfree(gebase);
out_free_cpu:
kfree(vcpu);
out:
return ERR_PTR(err);
}
void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
{
hrtimer_cancel(&vcpu->arch.comparecount_timer);
kvm_vcpu_uninit(vcpu);
kvm_mips_dump_stats(vcpu);
kfree(vcpu->arch.guest_ebase);
kfree(vcpu->arch.kseg0_commpage);
kfree(vcpu);
}
void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
{
kvm_arch_vcpu_free(vcpu);
}
int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
struct kvm_guest_debug *dbg)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
{
int r = 0;
sigset_t sigsaved;
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
if (vcpu->mmio_needed) {
if (!vcpu->mmio_is_write)
kvm_mips_complete_mmio_load(vcpu, run);
vcpu->mmio_needed = 0;
}
local_irq_disable();
/* Check if we have any exceptions/interrupts pending */
kvm_mips_deliver_interrupts(vcpu,
kvm_read_c0_guest_cause(vcpu->arch.cop0));
kvm_guest_enter();
/* Disable hardware page table walking while in guest */
htw_stop();
r = __kvm_mips_vcpu_run(run, vcpu);
/* Re-enable HTW before enabling interrupts */
htw_start();
kvm_guest_exit();
local_irq_enable();
if (vcpu->sigset_active)
sigprocmask(SIG_SETMASK, &sigsaved, NULL);
return r;
}
int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
struct kvm_mips_interrupt *irq)
{
int intr = (int)irq->irq;
struct kvm_vcpu *dvcpu = NULL;
if (intr == 3 || intr == -3 || intr == 4 || intr == -4)
kvm_debug("%s: CPU: %d, INTR: %d\n", __func__, irq->cpu,
(int)intr);
if (irq->cpu == -1)
dvcpu = vcpu;
else
dvcpu = vcpu->kvm->vcpus[irq->cpu];
if (intr == 2 || intr == 3 || intr == 4) {
kvm_mips_callbacks->queue_io_int(dvcpu, irq);
} else if (intr == -2 || intr == -3 || intr == -4) {
kvm_mips_callbacks->dequeue_io_int(dvcpu, irq);
} else {
kvm_err("%s: invalid interrupt ioctl (%d:%d)\n", __func__,
irq->cpu, irq->irq);
return -EINVAL;
}
dvcpu->arch.wait = 0;
if (waitqueue_active(&dvcpu->wq))
wake_up_interruptible(&dvcpu->wq);
return 0;
}
int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
struct kvm_mp_state *mp_state)
{
return -ENOIOCTLCMD;
}
static u64 kvm_mips_get_one_regs[] = {
KVM_REG_MIPS_R0,
KVM_REG_MIPS_R1,
KVM_REG_MIPS_R2,
KVM_REG_MIPS_R3,
KVM_REG_MIPS_R4,
KVM_REG_MIPS_R5,
KVM_REG_MIPS_R6,
KVM_REG_MIPS_R7,
KVM_REG_MIPS_R8,
KVM_REG_MIPS_R9,
KVM_REG_MIPS_R10,
KVM_REG_MIPS_R11,
KVM_REG_MIPS_R12,
KVM_REG_MIPS_R13,
KVM_REG_MIPS_R14,
KVM_REG_MIPS_R15,
KVM_REG_MIPS_R16,
KVM_REG_MIPS_R17,
KVM_REG_MIPS_R18,
KVM_REG_MIPS_R19,
KVM_REG_MIPS_R20,
KVM_REG_MIPS_R21,
KVM_REG_MIPS_R22,
KVM_REG_MIPS_R23,
KVM_REG_MIPS_R24,
KVM_REG_MIPS_R25,
KVM_REG_MIPS_R26,
KVM_REG_MIPS_R27,
KVM_REG_MIPS_R28,
KVM_REG_MIPS_R29,
KVM_REG_MIPS_R30,
KVM_REG_MIPS_R31,
KVM_REG_MIPS_HI,
KVM_REG_MIPS_LO,
KVM_REG_MIPS_PC,
KVM_REG_MIPS_CP0_INDEX,
KVM_REG_MIPS_CP0_CONTEXT,
KVM_REG_MIPS_CP0_USERLOCAL,
KVM_REG_MIPS_CP0_PAGEMASK,
KVM_REG_MIPS_CP0_WIRED,
KVM_REG_MIPS_CP0_HWRENA,
KVM_REG_MIPS_CP0_BADVADDR,
KVM_REG_MIPS_CP0_COUNT,
KVM_REG_MIPS_CP0_ENTRYHI,
KVM_REG_MIPS_CP0_COMPARE,
KVM_REG_MIPS_CP0_STATUS,
KVM_REG_MIPS_CP0_CAUSE,
KVM_REG_MIPS_CP0_EPC,
KVM_REG_MIPS_CP0_CONFIG,
KVM_REG_MIPS_CP0_CONFIG1,
KVM_REG_MIPS_CP0_CONFIG2,
KVM_REG_MIPS_CP0_CONFIG3,
KVM_REG_MIPS_CP0_CONFIG7,
MIPS: KVM: Add master disable count interface Expose two new virtual registers to userland via the KVM_{GET,SET}_ONE_REG ioctls. KVM_REG_MIPS_COUNT_CTL is for timer configuration fields and just contains a master disable count bit. This can be used by userland to freeze the timer in order to read a consistent state from the timer count value and timer interrupt pending bit. This cannot be done with the CP0_Cause.DC bit because the timer interrupt pending bit (TI) is also in CP0_Cause so it would be impossible to stop the timer without also risking a race with an hrtimer interrupt and having to explicitly check whether an interrupt should have occurred. When the timer is re-enabled it resumes without losing time, i.e. the CP0_Count value jumps to what it would have been had the timer not been disabled, which would also be impossible to do from userland with CP0_Cause.DC. The timer interrupt also cannot be lost, i.e. if a timer interrupt would have occurred had the timer not been disabled it is queued when the timer is re-enabled. This works by storing the nanosecond monotonic time when the master disable is set, and using it for various operations instead of the current monotonic time (e.g. when recalculating the bias when the CP0_Count is set), until the master disable is cleared again, i.e. the timer state is read/written as it would have been at that time. This state is exposed to userland via the read-only KVM_REG_MIPS_COUNT_RESUME virtual register so that userland can determine the exact time the master disable took effect. This should allow userland to atomically save the state of the timer, and later restore it. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: kvm@vger.kernel.org Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: David Daney <david.daney@cavium.com> Cc: Sanjay Lal <sanjayl@kymasys.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-05-29 17:16:37 +08:00
KVM_REG_MIPS_CP0_ERROREPC,
KVM_REG_MIPS_COUNT_CTL,
KVM_REG_MIPS_COUNT_RESUME,
KVM_REG_MIPS_COUNT_HZ,
};
static int kvm_mips_get_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
int ret;
s64 v;
switch (reg->id) {
case KVM_REG_MIPS_R0 ... KVM_REG_MIPS_R31:
v = (long)vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0];
break;
case KVM_REG_MIPS_HI:
v = (long)vcpu->arch.hi;
break;
case KVM_REG_MIPS_LO:
v = (long)vcpu->arch.lo;
break;
case KVM_REG_MIPS_PC:
v = (long)vcpu->arch.pc;
break;
case KVM_REG_MIPS_CP0_INDEX:
v = (long)kvm_read_c0_guest_index(cop0);
break;
case KVM_REG_MIPS_CP0_CONTEXT:
v = (long)kvm_read_c0_guest_context(cop0);
break;
case KVM_REG_MIPS_CP0_USERLOCAL:
v = (long)kvm_read_c0_guest_userlocal(cop0);
break;
case KVM_REG_MIPS_CP0_PAGEMASK:
v = (long)kvm_read_c0_guest_pagemask(cop0);
break;
case KVM_REG_MIPS_CP0_WIRED:
v = (long)kvm_read_c0_guest_wired(cop0);
break;
case KVM_REG_MIPS_CP0_HWRENA:
v = (long)kvm_read_c0_guest_hwrena(cop0);
break;
case KVM_REG_MIPS_CP0_BADVADDR:
v = (long)kvm_read_c0_guest_badvaddr(cop0);
break;
case KVM_REG_MIPS_CP0_ENTRYHI:
v = (long)kvm_read_c0_guest_entryhi(cop0);
break;
case KVM_REG_MIPS_CP0_COMPARE:
v = (long)kvm_read_c0_guest_compare(cop0);
break;
case KVM_REG_MIPS_CP0_STATUS:
v = (long)kvm_read_c0_guest_status(cop0);
break;
case KVM_REG_MIPS_CP0_CAUSE:
v = (long)kvm_read_c0_guest_cause(cop0);
break;
case KVM_REG_MIPS_CP0_EPC:
v = (long)kvm_read_c0_guest_epc(cop0);
break;
case KVM_REG_MIPS_CP0_ERROREPC:
v = (long)kvm_read_c0_guest_errorepc(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG:
v = (long)kvm_read_c0_guest_config(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG1:
v = (long)kvm_read_c0_guest_config1(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG2:
v = (long)kvm_read_c0_guest_config2(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG3:
v = (long)kvm_read_c0_guest_config3(cop0);
break;
case KVM_REG_MIPS_CP0_CONFIG7:
v = (long)kvm_read_c0_guest_config7(cop0);
break;
/* registers to be handled specially */
case KVM_REG_MIPS_CP0_COUNT:
MIPS: KVM: Add master disable count interface Expose two new virtual registers to userland via the KVM_{GET,SET}_ONE_REG ioctls. KVM_REG_MIPS_COUNT_CTL is for timer configuration fields and just contains a master disable count bit. This can be used by userland to freeze the timer in order to read a consistent state from the timer count value and timer interrupt pending bit. This cannot be done with the CP0_Cause.DC bit because the timer interrupt pending bit (TI) is also in CP0_Cause so it would be impossible to stop the timer without also risking a race with an hrtimer interrupt and having to explicitly check whether an interrupt should have occurred. When the timer is re-enabled it resumes without losing time, i.e. the CP0_Count value jumps to what it would have been had the timer not been disabled, which would also be impossible to do from userland with CP0_Cause.DC. The timer interrupt also cannot be lost, i.e. if a timer interrupt would have occurred had the timer not been disabled it is queued when the timer is re-enabled. This works by storing the nanosecond monotonic time when the master disable is set, and using it for various operations instead of the current monotonic time (e.g. when recalculating the bias when the CP0_Count is set), until the master disable is cleared again, i.e. the timer state is read/written as it would have been at that time. This state is exposed to userland via the read-only KVM_REG_MIPS_COUNT_RESUME virtual register so that userland can determine the exact time the master disable took effect. This should allow userland to atomically save the state of the timer, and later restore it. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: kvm@vger.kernel.org Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: David Daney <david.daney@cavium.com> Cc: Sanjay Lal <sanjayl@kymasys.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-05-29 17:16:37 +08:00
case KVM_REG_MIPS_COUNT_CTL:
case KVM_REG_MIPS_COUNT_RESUME:
case KVM_REG_MIPS_COUNT_HZ:
ret = kvm_mips_callbacks->get_one_reg(vcpu, reg, &v);
if (ret)
return ret;
break;
default:
return -EINVAL;
}
if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
return put_user(v, uaddr64);
} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
u32 v32 = (u32)v;
return put_user(v32, uaddr32);
} else {
return -EINVAL;
}
}
static int kvm_mips_set_reg(struct kvm_vcpu *vcpu,
const struct kvm_one_reg *reg)
{
struct mips_coproc *cop0 = vcpu->arch.cop0;
u64 v;
if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U64) {
u64 __user *uaddr64 = (u64 __user *)(long)reg->addr;
if (get_user(v, uaddr64) != 0)
return -EFAULT;
} else if ((reg->id & KVM_REG_SIZE_MASK) == KVM_REG_SIZE_U32) {
u32 __user *uaddr32 = (u32 __user *)(long)reg->addr;
s32 v32;
if (get_user(v32, uaddr32) != 0)
return -EFAULT;
v = (s64)v32;
} else {
return -EINVAL;
}
switch (reg->id) {
case KVM_REG_MIPS_R0:
/* Silently ignore requests to set $0 */
break;
case KVM_REG_MIPS_R1 ... KVM_REG_MIPS_R31:
vcpu->arch.gprs[reg->id - KVM_REG_MIPS_R0] = v;
break;
case KVM_REG_MIPS_HI:
vcpu->arch.hi = v;
break;
case KVM_REG_MIPS_LO:
vcpu->arch.lo = v;
break;
case KVM_REG_MIPS_PC:
vcpu->arch.pc = v;
break;
case KVM_REG_MIPS_CP0_INDEX:
kvm_write_c0_guest_index(cop0, v);
break;
case KVM_REG_MIPS_CP0_CONTEXT:
kvm_write_c0_guest_context(cop0, v);
break;
case KVM_REG_MIPS_CP0_USERLOCAL:
kvm_write_c0_guest_userlocal(cop0, v);
break;
case KVM_REG_MIPS_CP0_PAGEMASK:
kvm_write_c0_guest_pagemask(cop0, v);
break;
case KVM_REG_MIPS_CP0_WIRED:
kvm_write_c0_guest_wired(cop0, v);
break;
case KVM_REG_MIPS_CP0_HWRENA:
kvm_write_c0_guest_hwrena(cop0, v);
break;
case KVM_REG_MIPS_CP0_BADVADDR:
kvm_write_c0_guest_badvaddr(cop0, v);
break;
case KVM_REG_MIPS_CP0_ENTRYHI:
kvm_write_c0_guest_entryhi(cop0, v);
break;
case KVM_REG_MIPS_CP0_STATUS:
kvm_write_c0_guest_status(cop0, v);
break;
case KVM_REG_MIPS_CP0_EPC:
kvm_write_c0_guest_epc(cop0, v);
break;
case KVM_REG_MIPS_CP0_ERROREPC:
kvm_write_c0_guest_errorepc(cop0, v);
break;
/* registers to be handled specially */
case KVM_REG_MIPS_CP0_COUNT:
case KVM_REG_MIPS_CP0_COMPARE:
MIPS: KVM: Rewrite count/compare timer emulation Previously the emulation of the CPU timer was just enough to get a Linux guest running but some shortcuts were taken: - The guest timer interrupt was hard coded to always happen every 10 ms rather than being timed to when CP0_Count would match CP0_Compare. - The guest's CP0_Count register was based on the host's CP0_Count register. This isn't very portable and fails on cores without a CP_Count register implemented such as Ingenic XBurst. It also meant that the guest's CP0_Cause.DC bit to disable the CP0_Count register took no effect. - The guest's CP0_Count register was emulated by just dividing the host's CP0_Count register by 4. This resulted in continuity problems when used as a clock source, since when the host CP0_Count overflows from 0x7fffffff to 0x80000000, the guest CP0_Count transitions discontinuously from 0x1fffffff to 0xe0000000. Therefore rewrite & fix emulation of the guest timer based on the monotonic kernel time (i.e. ktime_get()). Internally a 32-bit count_bias value is added to the frequency scaled nanosecond monotonic time to get the guest's CP0_Count. The frequency of the timer is initialised to 100MHz and cannot yet be changed, but a later patch will allow the frequency to be configured via the KVM_{GET,SET}_ONE_REG ioctl interface. The timer can now be stopped via the CP0_Cause.DC bit (by the guest or via the KVM_SET_ONE_REG ioctl interface), at which point the current CP0_Count is stored and can be read directly. When it is restarted the bias is recalculated such that the CP0_Count value is continuous. Due to the nature of hrtimer interrupts any read of the guest's CP0_Count register while it is running triggers a check for whether the hrtimer has expired, so that the guest/userland cannot observe the CP0_Count passing CP0_Compare without queuing a timer interrupt. This is also taken advantage of when stopping the timer to ensure that a pending timer interrupt is queued. This replaces the implementation of: - Guest read of CP0_Count - Guest write of CP0_Count - Guest write of CP0_Compare - Guest write of CP0_Cause - Guest read of HWR 2 (CC) with RDHWR - Host read of CP0_Count via KVM_GET_ONE_REG ioctl interface - Host write of CP0_Count via KVM_SET_ONE_REG ioctl interface - Host write of CP0_Compare via KVM_SET_ONE_REG ioctl interface - Host write of CP0_Cause via KVM_SET_ONE_REG ioctl interface Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: kvm@vger.kernel.org Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: Sanjay Lal <sanjayl@kymasys.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-05-29 17:16:35 +08:00
case KVM_REG_MIPS_CP0_CAUSE:
MIPS: KVM: Add master disable count interface Expose two new virtual registers to userland via the KVM_{GET,SET}_ONE_REG ioctls. KVM_REG_MIPS_COUNT_CTL is for timer configuration fields and just contains a master disable count bit. This can be used by userland to freeze the timer in order to read a consistent state from the timer count value and timer interrupt pending bit. This cannot be done with the CP0_Cause.DC bit because the timer interrupt pending bit (TI) is also in CP0_Cause so it would be impossible to stop the timer without also risking a race with an hrtimer interrupt and having to explicitly check whether an interrupt should have occurred. When the timer is re-enabled it resumes without losing time, i.e. the CP0_Count value jumps to what it would have been had the timer not been disabled, which would also be impossible to do from userland with CP0_Cause.DC. The timer interrupt also cannot be lost, i.e. if a timer interrupt would have occurred had the timer not been disabled it is queued when the timer is re-enabled. This works by storing the nanosecond monotonic time when the master disable is set, and using it for various operations instead of the current monotonic time (e.g. when recalculating the bias when the CP0_Count is set), until the master disable is cleared again, i.e. the timer state is read/written as it would have been at that time. This state is exposed to userland via the read-only KVM_REG_MIPS_COUNT_RESUME virtual register so that userland can determine the exact time the master disable took effect. This should allow userland to atomically save the state of the timer, and later restore it. Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: kvm@vger.kernel.org Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: David Daney <david.daney@cavium.com> Cc: Sanjay Lal <sanjayl@kymasys.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-05-29 17:16:37 +08:00
case KVM_REG_MIPS_COUNT_CTL:
case KVM_REG_MIPS_COUNT_RESUME:
case KVM_REG_MIPS_COUNT_HZ:
return kvm_mips_callbacks->set_one_reg(vcpu, reg, v);
default:
return -EINVAL;
}
return 0;
}
long kvm_arch_vcpu_ioctl(struct file *filp, unsigned int ioctl,
unsigned long arg)
{
struct kvm_vcpu *vcpu = filp->private_data;
void __user *argp = (void __user *)arg;
long r;
switch (ioctl) {
case KVM_SET_ONE_REG:
case KVM_GET_ONE_REG: {
struct kvm_one_reg reg;
if (copy_from_user(&reg, argp, sizeof(reg)))
return -EFAULT;
if (ioctl == KVM_SET_ONE_REG)
return kvm_mips_set_reg(vcpu, &reg);
else
return kvm_mips_get_reg(vcpu, &reg);
}
case KVM_GET_REG_LIST: {
struct kvm_reg_list __user *user_list = argp;
u64 __user *reg_dest;
struct kvm_reg_list reg_list;
unsigned n;
if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
return -EFAULT;
n = reg_list.n;
reg_list.n = ARRAY_SIZE(kvm_mips_get_one_regs);
if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
return -EFAULT;
if (n < reg_list.n)
return -E2BIG;
reg_dest = user_list->reg;
if (copy_to_user(reg_dest, kvm_mips_get_one_regs,
sizeof(kvm_mips_get_one_regs)))
return -EFAULT;
return 0;
}
case KVM_NMI:
/* Treat the NMI as a CPU reset */
r = kvm_mips_reset_vcpu(vcpu);
break;
case KVM_INTERRUPT:
{
struct kvm_mips_interrupt irq;
r = -EFAULT;
if (copy_from_user(&irq, argp, sizeof(irq)))
goto out;
kvm_debug("[%d] %s: irq: %d\n", vcpu->vcpu_id, __func__,
irq.irq);
r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
break;
}
default:
r = -ENOIOCTLCMD;
}
out:
return r;
}
/* Get (and clear) the dirty memory log for a memory slot. */
int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
{
struct kvm_memory_slot *memslot;
unsigned long ga, ga_end;
int is_dirty = 0;
int r;
unsigned long n;
mutex_lock(&kvm->slots_lock);
r = kvm_get_dirty_log(kvm, log, &is_dirty);
if (r)
goto out;
/* If nothing is dirty, don't bother messing with page tables. */
if (is_dirty) {
memslot = &kvm->memslots->memslots[log->slot];
ga = memslot->base_gfn << PAGE_SHIFT;
ga_end = ga + (memslot->npages << PAGE_SHIFT);
kvm_info("%s: dirty, ga: %#lx, ga_end %#lx\n", __func__, ga,
ga_end);
n = kvm_dirty_bitmap_bytes(memslot);
memset(memslot->dirty_bitmap, 0, n);
}
r = 0;
out:
mutex_unlock(&kvm->slots_lock);
return r;
}
long kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
{
long r;
switch (ioctl) {
default:
r = -ENOIOCTLCMD;
}
return r;
}
int kvm_arch_init(void *opaque)
{
if (kvm_mips_callbacks) {
kvm_err("kvm: module already exists\n");
return -EEXIST;
}
return kvm_mips_emulation_init(&kvm_mips_callbacks);
}
void kvm_arch_exit(void)
{
kvm_mips_callbacks = NULL;
}
int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
struct kvm_sregs *sregs)
{
return -ENOIOCTLCMD;
}
void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
{
}
int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
{
return -ENOIOCTLCMD;
}
int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
{
return VM_FAULT_SIGBUS;
}
int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
{
int r;
switch (ext) {
case KVM_CAP_ONE_REG:
r = 1;
break;
case KVM_CAP_COALESCED_MMIO:
r = KVM_COALESCED_MMIO_PAGE_OFFSET;
break;
default:
r = 0;
break;
}
return r;
}
int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
{
return kvm_mips_pending_timer(vcpu);
}
int kvm_arch_vcpu_dump_regs(struct kvm_vcpu *vcpu)
{
int i;
struct mips_coproc *cop0;
if (!vcpu)
return -1;
kvm_debug("VCPU Register Dump:\n");
kvm_debug("\tpc = 0x%08lx\n", vcpu->arch.pc);
kvm_debug("\texceptions: %08lx\n", vcpu->arch.pending_exceptions);
for (i = 0; i < 32; i += 4) {
kvm_debug("\tgpr%02d: %08lx %08lx %08lx %08lx\n", i,
vcpu->arch.gprs[i],
vcpu->arch.gprs[i + 1],
vcpu->arch.gprs[i + 2], vcpu->arch.gprs[i + 3]);
}
kvm_debug("\thi: 0x%08lx\n", vcpu->arch.hi);
kvm_debug("\tlo: 0x%08lx\n", vcpu->arch.lo);
cop0 = vcpu->arch.cop0;
kvm_debug("\tStatus: 0x%08lx, Cause: 0x%08lx\n",
kvm_read_c0_guest_status(cop0),
kvm_read_c0_guest_cause(cop0));
kvm_debug("\tEPC: 0x%08lx\n", kvm_read_c0_guest_epc(cop0));
return 0;
}
int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
for (i = 1; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
vcpu->arch.gprs[i] = regs->gpr[i];
vcpu->arch.gprs[0] = 0; /* zero is special, and cannot be set. */
vcpu->arch.hi = regs->hi;
vcpu->arch.lo = regs->lo;
vcpu->arch.pc = regs->pc;
return 0;
}
int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
{
int i;
for (i = 0; i < ARRAY_SIZE(vcpu->arch.gprs); i++)
regs->gpr[i] = vcpu->arch.gprs[i];
regs->hi = vcpu->arch.hi;
regs->lo = vcpu->arch.lo;
regs->pc = vcpu->arch.pc;
return 0;
}
static void kvm_mips_comparecount_func(unsigned long data)
{
struct kvm_vcpu *vcpu = (struct kvm_vcpu *)data;
kvm_mips_callbacks->queue_timer_int(vcpu);
vcpu->arch.wait = 0;
if (waitqueue_active(&vcpu->wq))
wake_up_interruptible(&vcpu->wq);
}
/* low level hrtimer wake routine */
static enum hrtimer_restart kvm_mips_comparecount_wakeup(struct hrtimer *timer)
{
struct kvm_vcpu *vcpu;
vcpu = container_of(timer, struct kvm_vcpu, arch.comparecount_timer);
kvm_mips_comparecount_func((unsigned long) vcpu);
MIPS: KVM: Rewrite count/compare timer emulation Previously the emulation of the CPU timer was just enough to get a Linux guest running but some shortcuts were taken: - The guest timer interrupt was hard coded to always happen every 10 ms rather than being timed to when CP0_Count would match CP0_Compare. - The guest's CP0_Count register was based on the host's CP0_Count register. This isn't very portable and fails on cores without a CP_Count register implemented such as Ingenic XBurst. It also meant that the guest's CP0_Cause.DC bit to disable the CP0_Count register took no effect. - The guest's CP0_Count register was emulated by just dividing the host's CP0_Count register by 4. This resulted in continuity problems when used as a clock source, since when the host CP0_Count overflows from 0x7fffffff to 0x80000000, the guest CP0_Count transitions discontinuously from 0x1fffffff to 0xe0000000. Therefore rewrite & fix emulation of the guest timer based on the monotonic kernel time (i.e. ktime_get()). Internally a 32-bit count_bias value is added to the frequency scaled nanosecond monotonic time to get the guest's CP0_Count. The frequency of the timer is initialised to 100MHz and cannot yet be changed, but a later patch will allow the frequency to be configured via the KVM_{GET,SET}_ONE_REG ioctl interface. The timer can now be stopped via the CP0_Cause.DC bit (by the guest or via the KVM_SET_ONE_REG ioctl interface), at which point the current CP0_Count is stored and can be read directly. When it is restarted the bias is recalculated such that the CP0_Count value is continuous. Due to the nature of hrtimer interrupts any read of the guest's CP0_Count register while it is running triggers a check for whether the hrtimer has expired, so that the guest/userland cannot observe the CP0_Count passing CP0_Compare without queuing a timer interrupt. This is also taken advantage of when stopping the timer to ensure that a pending timer interrupt is queued. This replaces the implementation of: - Guest read of CP0_Count - Guest write of CP0_Count - Guest write of CP0_Compare - Guest write of CP0_Cause - Guest read of HWR 2 (CC) with RDHWR - Host read of CP0_Count via KVM_GET_ONE_REG ioctl interface - Host write of CP0_Count via KVM_SET_ONE_REG ioctl interface - Host write of CP0_Compare via KVM_SET_ONE_REG ioctl interface - Host write of CP0_Cause via KVM_SET_ONE_REG ioctl interface Signed-off-by: James Hogan <james.hogan@imgtec.com> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: Gleb Natapov <gleb@kernel.org> Cc: kvm@vger.kernel.org Cc: Ralf Baechle <ralf@linux-mips.org> Cc: linux-mips@linux-mips.org Cc: Sanjay Lal <sanjayl@kymasys.com> Signed-off-by: Paolo Bonzini <pbonzini@redhat.com>
2014-05-29 17:16:35 +08:00
return kvm_mips_count_timeout(vcpu);
}
int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
{
kvm_mips_callbacks->vcpu_init(vcpu);
hrtimer_init(&vcpu->arch.comparecount_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL);
vcpu->arch.comparecount_timer.function = kvm_mips_comparecount_wakeup;
return 0;
}
int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
struct kvm_translation *tr)
{
return 0;
}
/* Initial guest state */
int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
{
return kvm_mips_callbacks->vcpu_setup(vcpu);
}
static void kvm_mips_set_c0_status(void)
{
uint32_t status = read_c0_status();
if (cpu_has_fpu)
status |= (ST0_CU1);
if (cpu_has_dsp)
status |= (ST0_MX);
write_c0_status(status);
ehb();
}
/*
* Return value is in the form (errcode<<2 | RESUME_FLAG_HOST | RESUME_FLAG_NV)
*/
int kvm_mips_handle_exit(struct kvm_run *run, struct kvm_vcpu *vcpu)
{
uint32_t cause = vcpu->arch.host_cp0_cause;
uint32_t exccode = (cause >> CAUSEB_EXCCODE) & 0x1f;
uint32_t __user *opc = (uint32_t __user *) vcpu->arch.pc;
unsigned long badvaddr = vcpu->arch.host_cp0_badvaddr;
enum emulation_result er = EMULATE_DONE;
int ret = RESUME_GUEST;
/* re-enable HTW before enabling interrupts */
htw_start();
/* Set a default exit reason */
run->exit_reason = KVM_EXIT_UNKNOWN;
run->ready_for_interrupt_injection = 1;
/*
* Set the appropriate status bits based on host CPU features,
* before we hit the scheduler
*/
kvm_mips_set_c0_status();
local_irq_enable();
kvm_debug("kvm_mips_handle_exit: cause: %#x, PC: %p, kvm_run: %p, kvm_vcpu: %p\n",
cause, opc, run, vcpu);
/*
* Do a privilege check, if in UM most of these exit conditions end up
* causing an exception to be delivered to the Guest Kernel
*/
er = kvm_mips_check_privilege(cause, opc, run, vcpu);
if (er == EMULATE_PRIV_FAIL) {
goto skip_emul;
} else if (er == EMULATE_FAIL) {
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
goto skip_emul;
}
switch (exccode) {
case T_INT:
kvm_debug("[%d]T_INT @ %p\n", vcpu->vcpu_id, opc);
++vcpu->stat.int_exits;
trace_kvm_exit(vcpu, INT_EXITS);
if (need_resched())
cond_resched();
ret = RESUME_GUEST;
break;
case T_COP_UNUSABLE:
kvm_debug("T_COP_UNUSABLE: @ PC: %p\n", opc);
++vcpu->stat.cop_unusable_exits;
trace_kvm_exit(vcpu, COP_UNUSABLE_EXITS);
ret = kvm_mips_callbacks->handle_cop_unusable(vcpu);
/* XXXKYMA: Might need to return to user space */
if (run->exit_reason == KVM_EXIT_IRQ_WINDOW_OPEN)
ret = RESUME_HOST;
break;
case T_TLB_MOD:
++vcpu->stat.tlbmod_exits;
trace_kvm_exit(vcpu, TLBMOD_EXITS);
ret = kvm_mips_callbacks->handle_tlb_mod(vcpu);
break;
case T_TLB_ST_MISS:
kvm_debug("TLB ST fault: cause %#x, status %#lx, PC: %p, BadVaddr: %#lx\n",
cause, kvm_read_c0_guest_status(vcpu->arch.cop0), opc,
badvaddr);
++vcpu->stat.tlbmiss_st_exits;
trace_kvm_exit(vcpu, TLBMISS_ST_EXITS);
ret = kvm_mips_callbacks->handle_tlb_st_miss(vcpu);
break;
case T_TLB_LD_MISS:
kvm_debug("TLB LD fault: cause %#x, PC: %p, BadVaddr: %#lx\n",
cause, opc, badvaddr);
++vcpu->stat.tlbmiss_ld_exits;
trace_kvm_exit(vcpu, TLBMISS_LD_EXITS);
ret = kvm_mips_callbacks->handle_tlb_ld_miss(vcpu);
break;
case T_ADDR_ERR_ST:
++vcpu->stat.addrerr_st_exits;
trace_kvm_exit(vcpu, ADDRERR_ST_EXITS);
ret = kvm_mips_callbacks->handle_addr_err_st(vcpu);
break;
case T_ADDR_ERR_LD:
++vcpu->stat.addrerr_ld_exits;
trace_kvm_exit(vcpu, ADDRERR_LD_EXITS);
ret = kvm_mips_callbacks->handle_addr_err_ld(vcpu);
break;
case T_SYSCALL:
++vcpu->stat.syscall_exits;
trace_kvm_exit(vcpu, SYSCALL_EXITS);
ret = kvm_mips_callbacks->handle_syscall(vcpu);
break;
case T_RES_INST:
++vcpu->stat.resvd_inst_exits;
trace_kvm_exit(vcpu, RESVD_INST_EXITS);
ret = kvm_mips_callbacks->handle_res_inst(vcpu);
break;
case T_BREAK:
++vcpu->stat.break_inst_exits;
trace_kvm_exit(vcpu, BREAK_INST_EXITS);
ret = kvm_mips_callbacks->handle_break(vcpu);
break;
default:
kvm_err("Exception Code: %d, not yet handled, @ PC: %p, inst: 0x%08x BadVaddr: %#lx Status: %#lx\n",
exccode, opc, kvm_get_inst(opc, vcpu), badvaddr,
kvm_read_c0_guest_status(vcpu->arch.cop0));
kvm_arch_vcpu_dump_regs(vcpu);
run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
ret = RESUME_HOST;
break;
}
skip_emul:
local_irq_disable();
if (er == EMULATE_DONE && !(ret & RESUME_HOST))
kvm_mips_deliver_interrupts(vcpu, cause);
if (!(ret & RESUME_HOST)) {
/* Only check for signals if not already exiting to userspace */
if (signal_pending(current)) {
run->exit_reason = KVM_EXIT_INTR;
ret = (-EINTR << 2) | RESUME_HOST;
++vcpu->stat.signal_exits;
trace_kvm_exit(vcpu, SIGNAL_EXITS);
}
}
/* Disable HTW before returning to guest or host */
htw_stop();
return ret;
}
int __init kvm_mips_init(void)
{
int ret;
ret = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
if (ret)
return ret;
/*
* On MIPS, kernel modules are executed from "mapped space", which
* requires TLBs. The TLB handling code is statically linked with
* the rest of the kernel (tlb.c) to avoid the possibility of
* double faulting. The issue is that the TLB code references
* routines that are part of the the KVM module, which are only
* available once the module is loaded.
*/
kvm_mips_gfn_to_pfn = gfn_to_pfn;
kvm_mips_release_pfn_clean = kvm_release_pfn_clean;
kvm_mips_is_error_pfn = is_error_pfn;
pr_info("KVM/MIPS Initialized\n");
return 0;
}
void __exit kvm_mips_exit(void)
{
kvm_exit();
kvm_mips_gfn_to_pfn = NULL;
kvm_mips_release_pfn_clean = NULL;
kvm_mips_is_error_pfn = NULL;
pr_info("KVM/MIPS unloaded\n");
}
module_init(kvm_mips_init);
module_exit(kvm_mips_exit);
EXPORT_TRACEPOINT_SYMBOL(kvm_exit);