linux_old1/drivers/pcmcia/yenta_socket.c

1447 lines
39 KiB
C
Raw Normal View History

/*
* Regular cardbus driver ("yenta_socket")
*
* (C) Copyright 1999, 2000 Linus Torvalds
*
* Changelog:
* Aug 2002: Manfred Spraul <manfred@colorfullife.com>
* Dynamically adjust the size of the bridge resource
*
* May 2003: Dominik Brodowski <linux@brodo.de>
* Merge pci_socket.c and yenta.c into one file
*/
#include <linux/init.h>
#include <linux/pci.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <pcmcia/ss.h>
#include "yenta_socket.h"
#include "i82365.h"
static bool disable_clkrun;
module_param(disable_clkrun, bool, 0444);
MODULE_PARM_DESC(disable_clkrun, "If PC card doesn't function properly, please try this option");
static bool isa_probe = 1;
module_param(isa_probe, bool, 0444);
MODULE_PARM_DESC(isa_probe, "If set ISA interrupts are probed (default). Set to N to disable probing");
static bool pwr_irqs_off;
module_param(pwr_irqs_off, bool, 0644);
MODULE_PARM_DESC(pwr_irqs_off, "Force IRQs off during power-on of slot. Use only when seeing IRQ storms!");
static char o2_speedup[] = "default";
module_param_string(o2_speedup, o2_speedup, sizeof(o2_speedup), 0444);
MODULE_PARM_DESC(o2_speedup, "Use prefetch/burst for O2-bridges: 'on', 'off' "
"or 'default' (uses recommended behaviour for the detected bridge)");
/*
* Only probe "regular" interrupts, don't
* touch dangerous spots like the mouse irq,
* because there are mice that apparently
* get really confused if they get fondled
* too intimately.
*
* Default to 11, 10, 9, 7, 6, 5, 4, 3.
*/
static u32 isa_interrupts = 0x0ef8;
#define debug(x, s, args...) dev_dbg(&s->dev->dev, x, ##args)
/* Don't ask.. */
#define to_cycles(ns) ((ns)/120)
#define to_ns(cycles) ((cycles)*120)
/*
* yenta PCI irq probing.
* currently only used in the TI/EnE initialization code
*/
#ifdef CONFIG_YENTA_TI
static int yenta_probe_cb_irq(struct yenta_socket *socket);
static unsigned int yenta_probe_irq(struct yenta_socket *socket,
u32 isa_irq_mask);
#endif
static unsigned int override_bios;
module_param(override_bios, uint, 0000);
MODULE_PARM_DESC(override_bios, "yenta ignore bios resource allocation");
/*
* Generate easy-to-use ways of reading a cardbus sockets
* regular memory space ("cb_xxx"), configuration space
* ("config_xxx") and compatibility space ("exca_xxxx")
*/
static inline u32 cb_readl(struct yenta_socket *socket, unsigned reg)
{
u32 val = readl(socket->base + reg);
debug("%04x %08x\n", socket, reg, val);
return val;
}
static inline void cb_writel(struct yenta_socket *socket, unsigned reg, u32 val)
{
debug("%04x %08x\n", socket, reg, val);
writel(val, socket->base + reg);
readl(socket->base + reg); /* avoid problems with PCI write posting */
}
static inline u8 config_readb(struct yenta_socket *socket, unsigned offset)
{
u8 val;
pci_read_config_byte(socket->dev, offset, &val);
debug("%04x %02x\n", socket, offset, val);
return val;
}
static inline u16 config_readw(struct yenta_socket *socket, unsigned offset)
{
u16 val;
pci_read_config_word(socket->dev, offset, &val);
debug("%04x %04x\n", socket, offset, val);
return val;
}
static inline u32 config_readl(struct yenta_socket *socket, unsigned offset)
{
u32 val;
pci_read_config_dword(socket->dev, offset, &val);
debug("%04x %08x\n", socket, offset, val);
return val;
}
static inline void config_writeb(struct yenta_socket *socket, unsigned offset, u8 val)
{
debug("%04x %02x\n", socket, offset, val);
pci_write_config_byte(socket->dev, offset, val);
}
static inline void config_writew(struct yenta_socket *socket, unsigned offset, u16 val)
{
debug("%04x %04x\n", socket, offset, val);
pci_write_config_word(socket->dev, offset, val);
}
static inline void config_writel(struct yenta_socket *socket, unsigned offset, u32 val)
{
debug("%04x %08x\n", socket, offset, val);
pci_write_config_dword(socket->dev, offset, val);
}
static inline u8 exca_readb(struct yenta_socket *socket, unsigned reg)
{
u8 val = readb(socket->base + 0x800 + reg);
debug("%04x %02x\n", socket, reg, val);
return val;
}
static inline u8 exca_readw(struct yenta_socket *socket, unsigned reg)
{
u16 val;
val = readb(socket->base + 0x800 + reg);
val |= readb(socket->base + 0x800 + reg + 1) << 8;
debug("%04x %04x\n", socket, reg, val);
return val;
}
static inline void exca_writeb(struct yenta_socket *socket, unsigned reg, u8 val)
{
debug("%04x %02x\n", socket, reg, val);
writeb(val, socket->base + 0x800 + reg);
readb(socket->base + 0x800 + reg); /* PCI write posting... */
}
static void exca_writew(struct yenta_socket *socket, unsigned reg, u16 val)
{
debug("%04x %04x\n", socket, reg, val);
writeb(val, socket->base + 0x800 + reg);
writeb(val >> 8, socket->base + 0x800 + reg + 1);
/* PCI write posting... */
readb(socket->base + 0x800 + reg);
readb(socket->base + 0x800 + reg + 1);
}
static ssize_t show_yenta_registers(struct device *yentadev, struct device_attribute *attr, char *buf)
{
struct pci_dev *dev = to_pci_dev(yentadev);
struct yenta_socket *socket = pci_get_drvdata(dev);
int offset = 0, i;
offset = snprintf(buf, PAGE_SIZE, "CB registers:");
for (i = 0; i < 0x24; i += 4) {
unsigned val;
if (!(i & 15))
offset += snprintf(buf + offset, PAGE_SIZE - offset, "\n%02x:", i);
val = cb_readl(socket, i);
offset += snprintf(buf + offset, PAGE_SIZE - offset, " %08x", val);
}
offset += snprintf(buf + offset, PAGE_SIZE - offset, "\n\nExCA registers:");
for (i = 0; i < 0x45; i++) {
unsigned char val;
if (!(i & 7)) {
if (i & 8) {
memcpy(buf + offset, " -", 2);
offset += 2;
} else
offset += snprintf(buf + offset, PAGE_SIZE - offset, "\n%02x:", i);
}
val = exca_readb(socket, i);
offset += snprintf(buf + offset, PAGE_SIZE - offset, " %02x", val);
}
buf[offset++] = '\n';
return offset;
}
static DEVICE_ATTR(yenta_registers, S_IRUSR, show_yenta_registers, NULL);
/*
* Ugh, mixed-mode cardbus and 16-bit pccard state: things depend
* on what kind of card is inserted..
*/
static int yenta_get_status(struct pcmcia_socket *sock, unsigned int *value)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
unsigned int val;
u32 state = cb_readl(socket, CB_SOCKET_STATE);
val = (state & CB_3VCARD) ? SS_3VCARD : 0;
val |= (state & CB_XVCARD) ? SS_XVCARD : 0;
val |= (state & (CB_5VCARD | CB_3VCARD | CB_XVCARD | CB_YVCARD)) ? 0 : SS_PENDING;
val |= (state & (CB_CDETECT1 | CB_CDETECT2)) ? SS_PENDING : 0;
if (state & CB_CBCARD) {
val |= SS_CARDBUS;
val |= (state & CB_CARDSTS) ? SS_STSCHG : 0;
val |= (state & (CB_CDETECT1 | CB_CDETECT2)) ? 0 : SS_DETECT;
val |= (state & CB_PWRCYCLE) ? SS_POWERON | SS_READY : 0;
} else if (state & CB_16BITCARD) {
u8 status = exca_readb(socket, I365_STATUS);
val |= ((status & I365_CS_DETECT) == I365_CS_DETECT) ? SS_DETECT : 0;
if (exca_readb(socket, I365_INTCTL) & I365_PC_IOCARD) {
val |= (status & I365_CS_STSCHG) ? 0 : SS_STSCHG;
} else {
val |= (status & I365_CS_BVD1) ? 0 : SS_BATDEAD;
val |= (status & I365_CS_BVD2) ? 0 : SS_BATWARN;
}
val |= (status & I365_CS_WRPROT) ? SS_WRPROT : 0;
val |= (status & I365_CS_READY) ? SS_READY : 0;
val |= (status & I365_CS_POWERON) ? SS_POWERON : 0;
}
*value = val;
return 0;
}
static void yenta_set_power(struct yenta_socket *socket, socket_state_t *state)
{
/* some birdges require to use the ExCA registers to power 16bit cards */
if (!(cb_readl(socket, CB_SOCKET_STATE) & CB_CBCARD) &&
(socket->flags & YENTA_16BIT_POWER_EXCA)) {
u8 reg, old;
reg = old = exca_readb(socket, I365_POWER);
reg &= ~(I365_VCC_MASK | I365_VPP1_MASK | I365_VPP2_MASK);
/* i82365SL-DF style */
if (socket->flags & YENTA_16BIT_POWER_DF) {
switch (state->Vcc) {
case 33:
reg |= I365_VCC_3V;
break;
case 50:
reg |= I365_VCC_5V;
break;
default:
reg = 0;
break;
}
switch (state->Vpp) {
case 33:
case 50:
reg |= I365_VPP1_5V;
break;
case 120:
reg |= I365_VPP1_12V;
break;
}
} else {
/* i82365SL-B style */
switch (state->Vcc) {
case 50:
reg |= I365_VCC_5V;
break;
default:
reg = 0;
break;
}
switch (state->Vpp) {
case 50:
reg |= I365_VPP1_5V | I365_VPP2_5V;
break;
case 120:
reg |= I365_VPP1_12V | I365_VPP2_12V;
break;
}
}
if (reg != old)
exca_writeb(socket, I365_POWER, reg);
} else {
u32 reg = 0; /* CB_SC_STPCLK? */
switch (state->Vcc) {
case 33:
reg = CB_SC_VCC_3V;
break;
case 50:
reg = CB_SC_VCC_5V;
break;
default:
reg = 0;
break;
}
switch (state->Vpp) {
case 33:
reg |= CB_SC_VPP_3V;
break;
case 50:
reg |= CB_SC_VPP_5V;
break;
case 120:
reg |= CB_SC_VPP_12V;
break;
}
if (reg != cb_readl(socket, CB_SOCKET_CONTROL))
cb_writel(socket, CB_SOCKET_CONTROL, reg);
}
}
static int yenta_set_socket(struct pcmcia_socket *sock, socket_state_t *state)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
u16 bridge;
/* if powering down: do it immediately */
if (state->Vcc == 0)
yenta_set_power(socket, state);
socket->io_irq = state->io_irq;
bridge = config_readw(socket, CB_BRIDGE_CONTROL) & ~(CB_BRIDGE_CRST | CB_BRIDGE_INTR);
if (cb_readl(socket, CB_SOCKET_STATE) & CB_CBCARD) {
u8 intr;
bridge |= (state->flags & SS_RESET) ? CB_BRIDGE_CRST : 0;
/* ISA interrupt control? */
intr = exca_readb(socket, I365_INTCTL);
intr = (intr & ~0xf);
if (!socket->dev->irq) {
intr |= socket->cb_irq ? socket->cb_irq : state->io_irq;
bridge |= CB_BRIDGE_INTR;
}
exca_writeb(socket, I365_INTCTL, intr);
} else {
u8 reg;
reg = exca_readb(socket, I365_INTCTL) & (I365_RING_ENA | I365_INTR_ENA);
reg |= (state->flags & SS_RESET) ? 0 : I365_PC_RESET;
reg |= (state->flags & SS_IOCARD) ? I365_PC_IOCARD : 0;
if (state->io_irq != socket->dev->irq) {
reg |= state->io_irq;
bridge |= CB_BRIDGE_INTR;
}
exca_writeb(socket, I365_INTCTL, reg);
reg = exca_readb(socket, I365_POWER) & (I365_VCC_MASK|I365_VPP1_MASK);
reg |= I365_PWR_NORESET;
if (state->flags & SS_PWR_AUTO)
reg |= I365_PWR_AUTO;
if (state->flags & SS_OUTPUT_ENA)
reg |= I365_PWR_OUT;
if (exca_readb(socket, I365_POWER) != reg)
exca_writeb(socket, I365_POWER, reg);
/* CSC interrupt: no ISA irq for CSC */
reg = exca_readb(socket, I365_CSCINT);
reg &= I365_CSC_IRQ_MASK;
reg |= I365_CSC_DETECT;
if (state->flags & SS_IOCARD) {
if (state->csc_mask & SS_STSCHG)
reg |= I365_CSC_STSCHG;
} else {
if (state->csc_mask & SS_BATDEAD)
reg |= I365_CSC_BVD1;
if (state->csc_mask & SS_BATWARN)
reg |= I365_CSC_BVD2;
if (state->csc_mask & SS_READY)
reg |= I365_CSC_READY;
}
exca_writeb(socket, I365_CSCINT, reg);
exca_readb(socket, I365_CSC);
if (sock->zoom_video)
sock->zoom_video(sock, state->flags & SS_ZVCARD);
}
config_writew(socket, CB_BRIDGE_CONTROL, bridge);
/* Socket event mask: get card insert/remove events.. */
cb_writel(socket, CB_SOCKET_EVENT, -1);
cb_writel(socket, CB_SOCKET_MASK, CB_CDMASK);
/* if powering up: do it as the last step when the socket is configured */
if (state->Vcc != 0)
yenta_set_power(socket, state);
return 0;
}
static int yenta_set_io_map(struct pcmcia_socket *sock, struct pccard_io_map *io)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
int map;
unsigned char ioctl, addr, enable;
map = io->map;
if (map > 1)
return -EINVAL;
enable = I365_ENA_IO(map);
addr = exca_readb(socket, I365_ADDRWIN);
/* Disable the window before changing it.. */
if (addr & enable) {
addr &= ~enable;
exca_writeb(socket, I365_ADDRWIN, addr);
}
exca_writew(socket, I365_IO(map)+I365_W_START, io->start);
exca_writew(socket, I365_IO(map)+I365_W_STOP, io->stop);
ioctl = exca_readb(socket, I365_IOCTL) & ~I365_IOCTL_MASK(map);
if (io->flags & MAP_0WS)
ioctl |= I365_IOCTL_0WS(map);
if (io->flags & MAP_16BIT)
ioctl |= I365_IOCTL_16BIT(map);
if (io->flags & MAP_AUTOSZ)
ioctl |= I365_IOCTL_IOCS16(map);
exca_writeb(socket, I365_IOCTL, ioctl);
if (io->flags & MAP_ACTIVE)
exca_writeb(socket, I365_ADDRWIN, addr | enable);
return 0;
}
static int yenta_set_mem_map(struct pcmcia_socket *sock, struct pccard_mem_map *mem)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
struct pci_bus_region region;
int map;
unsigned char addr, enable;
unsigned int start, stop, card_start;
unsigned short word;
pcibios_resource_to_bus(socket->dev->bus, &region, mem->res);
map = mem->map;
start = region.start;
stop = region.end;
card_start = mem->card_start;
if (map > 4 || start > stop || ((start ^ stop) >> 24) ||
(card_start >> 26) || mem->speed > 1000)
return -EINVAL;
enable = I365_ENA_MEM(map);
addr = exca_readb(socket, I365_ADDRWIN);
if (addr & enable) {
addr &= ~enable;
exca_writeb(socket, I365_ADDRWIN, addr);
}
exca_writeb(socket, CB_MEM_PAGE(map), start >> 24);
word = (start >> 12) & 0x0fff;
if (mem->flags & MAP_16BIT)
word |= I365_MEM_16BIT;
if (mem->flags & MAP_0WS)
word |= I365_MEM_0WS;
exca_writew(socket, I365_MEM(map) + I365_W_START, word);
word = (stop >> 12) & 0x0fff;
switch (to_cycles(mem->speed)) {
case 0:
break;
case 1:
word |= I365_MEM_WS0;
break;
case 2:
word |= I365_MEM_WS1;
break;
default:
word |= I365_MEM_WS1 | I365_MEM_WS0;
break;
}
exca_writew(socket, I365_MEM(map) + I365_W_STOP, word);
word = ((card_start - start) >> 12) & 0x3fff;
if (mem->flags & MAP_WRPROT)
word |= I365_MEM_WRPROT;
if (mem->flags & MAP_ATTRIB)
word |= I365_MEM_REG;
exca_writew(socket, I365_MEM(map) + I365_W_OFF, word);
if (mem->flags & MAP_ACTIVE)
exca_writeb(socket, I365_ADDRWIN, addr | enable);
return 0;
}
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t yenta_interrupt(int irq, void *dev_id)
{
unsigned int events;
struct yenta_socket *socket = (struct yenta_socket *) dev_id;
u8 csc;
u32 cb_event;
/* Clear interrupt status for the event */
cb_event = cb_readl(socket, CB_SOCKET_EVENT);
cb_writel(socket, CB_SOCKET_EVENT, cb_event);
csc = exca_readb(socket, I365_CSC);
if (!(cb_event || csc))
return IRQ_NONE;
events = (cb_event & (CB_CD1EVENT | CB_CD2EVENT)) ? SS_DETECT : 0 ;
events |= (csc & I365_CSC_DETECT) ? SS_DETECT : 0;
if (exca_readb(socket, I365_INTCTL) & I365_PC_IOCARD) {
events |= (csc & I365_CSC_STSCHG) ? SS_STSCHG : 0;
} else {
events |= (csc & I365_CSC_BVD1) ? SS_BATDEAD : 0;
events |= (csc & I365_CSC_BVD2) ? SS_BATWARN : 0;
events |= (csc & I365_CSC_READY) ? SS_READY : 0;
}
if (events)
pcmcia_parse_events(&socket->socket, events);
return IRQ_HANDLED;
}
static void yenta_interrupt_wrapper(unsigned long data)
{
struct yenta_socket *socket = (struct yenta_socket *) data;
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
yenta_interrupt(0, (void *)socket);
socket->poll_timer.expires = jiffies + HZ;
add_timer(&socket->poll_timer);
}
static void yenta_clear_maps(struct yenta_socket *socket)
{
int i;
struct resource res = { .start = 0, .end = 0x0fff };
pccard_io_map io = { 0, 0, 0, 0, 1 };
pccard_mem_map mem = { .res = &res, };
yenta_set_socket(&socket->socket, &dead_socket);
for (i = 0; i < 2; i++) {
io.map = i;
yenta_set_io_map(&socket->socket, &io);
}
for (i = 0; i < 5; i++) {
mem.map = i;
yenta_set_mem_map(&socket->socket, &mem);
}
}
/* redoes voltage interrogation if required */
static void yenta_interrogate(struct yenta_socket *socket)
{
u32 state;
state = cb_readl(socket, CB_SOCKET_STATE);
if (!(state & (CB_5VCARD | CB_3VCARD | CB_XVCARD | CB_YVCARD)) ||
(state & (CB_CDETECT1 | CB_CDETECT2 | CB_NOTACARD | CB_BADVCCREQ)) ||
((state & (CB_16BITCARD | CB_CBCARD)) == (CB_16BITCARD | CB_CBCARD)))
cb_writel(socket, CB_SOCKET_FORCE, CB_CVSTEST);
}
/* Called at resume and initialization events */
static int yenta_sock_init(struct pcmcia_socket *sock)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
exca_writeb(socket, I365_GBLCTL, 0x00);
exca_writeb(socket, I365_GENCTL, 0x00);
/* Redo card voltage interrogation */
yenta_interrogate(socket);
yenta_clear_maps(socket);
if (socket->type && socket->type->sock_init)
socket->type->sock_init(socket);
/* Re-enable CSC interrupts */
cb_writel(socket, CB_SOCKET_MASK, CB_CDMASK);
return 0;
}
static int yenta_sock_suspend(struct pcmcia_socket *sock)
{
struct yenta_socket *socket = container_of(sock, struct yenta_socket, socket);
/* Disable CSC interrupts */
cb_writel(socket, CB_SOCKET_MASK, 0x0);
return 0;
}
/*
* Use an adaptive allocation for the memory resource,
* sometimes the memory behind pci bridges is limited:
* 1/8 of the size of the io window of the parent.
* max 4 MB, min 16 kB. We try very hard to not get below
* the "ACC" values, though.
*/
#define BRIDGE_MEM_MAX (4*1024*1024)
#define BRIDGE_MEM_ACC (128*1024)
#define BRIDGE_MEM_MIN (16*1024)
#define BRIDGE_IO_MAX 512
#define BRIDGE_IO_ACC 256
#define BRIDGE_IO_MIN 32
#ifndef PCIBIOS_MIN_CARDBUS_IO
#define PCIBIOS_MIN_CARDBUS_IO PCIBIOS_MIN_IO
#endif
static int yenta_search_one_res(struct resource *root, struct resource *res,
u32 min)
{
u32 align, size, start, end;
if (res->flags & IORESOURCE_IO) {
align = 1024;
size = BRIDGE_IO_MAX;
start = PCIBIOS_MIN_CARDBUS_IO;
end = ~0U;
} else {
unsigned long avail = root->end - root->start;
int i;
size = BRIDGE_MEM_MAX;
if (size > avail/8) {
size = (avail+1)/8;
/* round size down to next power of 2 */
i = 0;
while ((size /= 2) != 0)
i++;
size = 1 << i;
}
if (size < min)
size = min;
align = size;
start = PCIBIOS_MIN_MEM;
end = ~0U;
}
do {
if (allocate_resource(root, res, size, start, end, align,
NULL, NULL) == 0) {
return 1;
}
size = size/2;
align = size;
} while (size >= min);
return 0;
}
static int yenta_search_res(struct yenta_socket *socket, struct resource *res,
u32 min)
{
struct resource *root;
int i;
pci_bus_for_each_resource(socket->dev->bus, root, i) {
if (!root)
continue;
if ((res->flags ^ root->flags) &
(IORESOURCE_IO | IORESOURCE_MEM | IORESOURCE_PREFETCH))
continue; /* Wrong type */
if (yenta_search_one_res(root, res, min))
return 1;
}
return 0;
}
static int yenta_allocate_res(struct yenta_socket *socket, int nr, unsigned type, int addr_start, int addr_end)
{
struct pci_dev *dev = socket->dev;
struct resource *res;
struct pci_bus_region region;
unsigned mask;
res = dev->resource + PCI_BRIDGE_RESOURCES + nr;
/* Already allocated? */
if (res->parent)
return 0;
/* The granularity of the memory limit is 4kB, on IO it's 4 bytes */
mask = ~0xfff;
if (type & IORESOURCE_IO)
mask = ~3;
res->name = dev->subordinate->name;
res->flags = type;
region.start = config_readl(socket, addr_start) & mask;
region.end = config_readl(socket, addr_end) | ~mask;
if (region.start && region.end > region.start && !override_bios) {
pcibios_bus_to_resource(dev->bus, res, &region);
if (pci_claim_resource(dev, PCI_BRIDGE_RESOURCES + nr) == 0)
return 0;
dev_info(&dev->dev,
"Preassigned resource %d busy or not available, reconfiguring...\n",
nr);
}
if (type & IORESOURCE_IO) {
if ((yenta_search_res(socket, res, BRIDGE_IO_MAX)) ||
(yenta_search_res(socket, res, BRIDGE_IO_ACC)) ||
(yenta_search_res(socket, res, BRIDGE_IO_MIN)))
return 1;
} else {
if (type & IORESOURCE_PREFETCH) {
if ((yenta_search_res(socket, res, BRIDGE_MEM_MAX)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_ACC)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_MIN)))
return 1;
/* Approximating prefetchable by non-prefetchable */
res->flags = IORESOURCE_MEM;
}
if ((yenta_search_res(socket, res, BRIDGE_MEM_MAX)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_ACC)) ||
(yenta_search_res(socket, res, BRIDGE_MEM_MIN)))
return 1;
}
dev_info(&dev->dev,
"no resource of type %x available, trying to continue...\n",
type);
res->start = res->end = res->flags = 0;
return 0;
}
/*
* Allocate the bridge mappings for the device..
*/
static void yenta_allocate_resources(struct yenta_socket *socket)
{
int program = 0;
program += yenta_allocate_res(socket, 0, IORESOURCE_IO,
PCI_CB_IO_BASE_0, PCI_CB_IO_LIMIT_0);
program += yenta_allocate_res(socket, 1, IORESOURCE_IO,
PCI_CB_IO_BASE_1, PCI_CB_IO_LIMIT_1);
program += yenta_allocate_res(socket, 2, IORESOURCE_MEM|IORESOURCE_PREFETCH,
PCI_CB_MEMORY_BASE_0, PCI_CB_MEMORY_LIMIT_0);
program += yenta_allocate_res(socket, 3, IORESOURCE_MEM,
PCI_CB_MEMORY_BASE_1, PCI_CB_MEMORY_LIMIT_1);
if (program)
pci_setup_cardbus(socket->dev->subordinate);
}
/*
* Free the bridge mappings for the device..
*/
static void yenta_free_resources(struct yenta_socket *socket)
{
int i;
for (i = 0; i < 4; i++) {
struct resource *res;
res = socket->dev->resource + PCI_BRIDGE_RESOURCES + i;
if (res->start != 0 && res->end != 0)
release_resource(res);
res->start = res->end = res->flags = 0;
}
}
/*
* Close it down - release our resources and go home..
*/
static void yenta_close(struct pci_dev *dev)
{
struct yenta_socket *sock = pci_get_drvdata(dev);
/* Remove the register attributes */
device_remove_file(&dev->dev, &dev_attr_yenta_registers);
/* we don't want a dying socket registered */
pcmcia_unregister_socket(&sock->socket);
/* Disable all events so we don't die in an IRQ storm */
cb_writel(sock, CB_SOCKET_MASK, 0x0);
exca_writeb(sock, I365_CSCINT, 0);
if (sock->cb_irq)
free_irq(sock->cb_irq, sock);
else
del_timer_sync(&sock->poll_timer);
iounmap(sock->base);
yenta_free_resources(sock);
pci_release_regions(dev);
pci_disable_device(dev);
pci_set_drvdata(dev, NULL);
kfree(sock);
}
static struct pccard_operations yenta_socket_operations = {
.init = yenta_sock_init,
.suspend = yenta_sock_suspend,
.get_status = yenta_get_status,
.set_socket = yenta_set_socket,
.set_io_map = yenta_set_io_map,
.set_mem_map = yenta_set_mem_map,
};
#ifdef CONFIG_YENTA_TI
#include "ti113x.h"
#endif
#ifdef CONFIG_YENTA_RICOH
#include "ricoh.h"
#endif
#ifdef CONFIG_YENTA_TOSHIBA
#include "topic.h"
#endif
#ifdef CONFIG_YENTA_O2
#include "o2micro.h"
#endif
enum {
CARDBUS_TYPE_DEFAULT = -1,
CARDBUS_TYPE_TI,
CARDBUS_TYPE_TI113X,
CARDBUS_TYPE_TI12XX,
CARDBUS_TYPE_TI1250,
CARDBUS_TYPE_RICOH,
CARDBUS_TYPE_TOPIC95,
CARDBUS_TYPE_TOPIC97,
CARDBUS_TYPE_O2MICRO,
CARDBUS_TYPE_ENE,
};
/*
* Different cardbus controllers have slightly different
* initialization sequences etc details. List them here..
*/
static struct cardbus_type cardbus_type[] = {
#ifdef CONFIG_YENTA_TI
[CARDBUS_TYPE_TI] = {
.override = ti_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
[CARDBUS_TYPE_TI113X] = {
.override = ti113x_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
[CARDBUS_TYPE_TI12XX] = {
.override = ti12xx_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
[CARDBUS_TYPE_TI1250] = {
.override = ti1250_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
[CARDBUS_TYPE_ENE] = {
.override = ene_override,
.save_state = ti_save_state,
.restore_state = ti_restore_state,
.sock_init = ti_init,
},
#endif
#ifdef CONFIG_YENTA_RICOH
[CARDBUS_TYPE_RICOH] = {
.override = ricoh_override,
.save_state = ricoh_save_state,
.restore_state = ricoh_restore_state,
},
#endif
#ifdef CONFIG_YENTA_TOSHIBA
[CARDBUS_TYPE_TOPIC95] = {
.override = topic95_override,
},
[CARDBUS_TYPE_TOPIC97] = {
.override = topic97_override,
},
#endif
#ifdef CONFIG_YENTA_O2
[CARDBUS_TYPE_O2MICRO] = {
.override = o2micro_override,
.restore_state = o2micro_restore_state,
},
#endif
};
static unsigned int yenta_probe_irq(struct yenta_socket *socket, u32 isa_irq_mask)
{
int i;
unsigned long val;
u32 mask;
u8 reg;
/*
* Probe for usable interrupts using the force
* register to generate bogus card status events.
*/
cb_writel(socket, CB_SOCKET_EVENT, -1);
cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK);
reg = exca_readb(socket, I365_CSCINT);
exca_writeb(socket, I365_CSCINT, 0);
val = probe_irq_on() & isa_irq_mask;
for (i = 1; i < 16; i++) {
if (!((val >> i) & 1))
continue;
exca_writeb(socket, I365_CSCINT, I365_CSC_STSCHG | (i << 4));
cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS);
udelay(100);
cb_writel(socket, CB_SOCKET_EVENT, -1);
}
cb_writel(socket, CB_SOCKET_MASK, 0);
exca_writeb(socket, I365_CSCINT, reg);
mask = probe_irq_mask(val) & 0xffff;
return mask;
}
/*
* yenta PCI irq probing.
* currently only used in the TI/EnE initialization code
*/
#ifdef CONFIG_YENTA_TI
/* interrupt handler, only used during probing */
IRQ: Maintain regs pointer globally rather than passing to IRQ handlers Maintain a per-CPU global "struct pt_regs *" variable which can be used instead of passing regs around manually through all ~1800 interrupt handlers in the Linux kernel. The regs pointer is used in few places, but it potentially costs both stack space and code to pass it around. On the FRV arch, removing the regs parameter from all the genirq function results in a 20% speed up of the IRQ exit path (ie: from leaving timer_interrupt() to leaving do_IRQ()). Where appropriate, an arch may override the generic storage facility and do something different with the variable. On FRV, for instance, the address is maintained in GR28 at all times inside the kernel as part of general exception handling. Having looked over the code, it appears that the parameter may be handed down through up to twenty or so layers of functions. Consider a USB character device attached to a USB hub, attached to a USB controller that posts its interrupts through a cascaded auxiliary interrupt controller. A character device driver may want to pass regs to the sysrq handler through the input layer which adds another few layers of parameter passing. I've build this code with allyesconfig for x86_64 and i386. I've runtested the main part of the code on FRV and i386, though I can't test most of the drivers. I've also done partial conversion for powerpc and MIPS - these at least compile with minimal configurations. This will affect all archs. Mostly the changes should be relatively easy. Take do_IRQ(), store the regs pointer at the beginning, saving the old one: struct pt_regs *old_regs = set_irq_regs(regs); And put the old one back at the end: set_irq_regs(old_regs); Don't pass regs through to generic_handle_irq() or __do_IRQ(). In timer_interrupt(), this sort of change will be necessary: - update_process_times(user_mode(regs)); - profile_tick(CPU_PROFILING, regs); + update_process_times(user_mode(get_irq_regs())); + profile_tick(CPU_PROFILING); I'd like to move update_process_times()'s use of get_irq_regs() into itself, except that i386, alone of the archs, uses something other than user_mode(). Some notes on the interrupt handling in the drivers: (*) input_dev() is now gone entirely. The regs pointer is no longer stored in the input_dev struct. (*) finish_unlinks() in drivers/usb/host/ohci-q.c needs checking. It does something different depending on whether it's been supplied with a regs pointer or not. (*) Various IRQ handler function pointers have been moved to type irq_handler_t. Signed-Off-By: David Howells <dhowells@redhat.com> (cherry picked from 1b16e7ac850969f38b375e511e3fa2f474a33867 commit)
2006-10-05 21:55:46 +08:00
static irqreturn_t yenta_probe_handler(int irq, void *dev_id)
{
struct yenta_socket *socket = (struct yenta_socket *) dev_id;
u8 csc;
u32 cb_event;
/* Clear interrupt status for the event */
cb_event = cb_readl(socket, CB_SOCKET_EVENT);
cb_writel(socket, CB_SOCKET_EVENT, -1);
csc = exca_readb(socket, I365_CSC);
if (cb_event || csc) {
socket->probe_status = 1;
return IRQ_HANDLED;
}
return IRQ_NONE;
}
/* probes the PCI interrupt, use only on override functions */
static int yenta_probe_cb_irq(struct yenta_socket *socket)
{
u8 reg = 0;
if (!socket->cb_irq)
return -1;
socket->probe_status = 0;
if (request_irq(socket->cb_irq, yenta_probe_handler, IRQF_SHARED, "yenta", socket)) {
dev_warn(&socket->dev->dev,
"request_irq() in yenta_probe_cb_irq() failed!\n");
return -1;
}
/* generate interrupt, wait */
if (!socket->dev->irq)
reg = exca_readb(socket, I365_CSCINT);
exca_writeb(socket, I365_CSCINT, reg | I365_CSC_STSCHG);
cb_writel(socket, CB_SOCKET_EVENT, -1);
cb_writel(socket, CB_SOCKET_MASK, CB_CSTSMASK);
cb_writel(socket, CB_SOCKET_FORCE, CB_FCARDSTS);
msleep(100);
/* disable interrupts */
cb_writel(socket, CB_SOCKET_MASK, 0);
exca_writeb(socket, I365_CSCINT, reg);
cb_writel(socket, CB_SOCKET_EVENT, -1);
exca_readb(socket, I365_CSC);
free_irq(socket->cb_irq, socket);
return (int) socket->probe_status;
}
#endif /* CONFIG_YENTA_TI */
/*
* Set static data that doesn't need re-initializing..
*/
static void yenta_get_socket_capabilities(struct yenta_socket *socket, u32 isa_irq_mask)
{
socket->socket.pci_irq = socket->cb_irq;
if (isa_probe)
socket->socket.irq_mask = yenta_probe_irq(socket, isa_irq_mask);
else
socket->socket.irq_mask = 0;
dev_info(&socket->dev->dev, "ISA IRQ mask 0x%04x, PCI irq %d\n",
socket->socket.irq_mask, socket->cb_irq);
}
/*
* Initialize the standard cardbus registers
*/
static void yenta_config_init(struct yenta_socket *socket)
{
u16 bridge;
struct pci_dev *dev = socket->dev;
struct pci_bus_region region;
pcibios_resource_to_bus(socket->dev->bus, &region, &dev->resource[0]);
config_writel(socket, CB_LEGACY_MODE_BASE, 0);
config_writel(socket, PCI_BASE_ADDRESS_0, region.start);
config_writew(socket, PCI_COMMAND,
PCI_COMMAND_IO |
PCI_COMMAND_MEMORY |
PCI_COMMAND_MASTER |
PCI_COMMAND_WAIT);
/* MAGIC NUMBERS! Fixme */
config_writeb(socket, PCI_CACHE_LINE_SIZE, L1_CACHE_BYTES / 4);
config_writeb(socket, PCI_LATENCY_TIMER, 168);
config_writel(socket, PCI_PRIMARY_BUS,
(176 << 24) | /* sec. latency timer */
((unsigned int)dev->subordinate->busn_res.end << 16) | /* subordinate bus */
((unsigned int)dev->subordinate->busn_res.start << 8) | /* secondary bus */
dev->subordinate->primary); /* primary bus */
/*
* Set up the bridging state:
* - enable write posting.
* - memory window 0 prefetchable, window 1 non-prefetchable
* - PCI interrupts enabled if a PCI interrupt exists..
*/
bridge = config_readw(socket, CB_BRIDGE_CONTROL);
bridge &= ~(CB_BRIDGE_CRST | CB_BRIDGE_PREFETCH1 | CB_BRIDGE_ISAEN | CB_BRIDGE_VGAEN);
bridge |= CB_BRIDGE_PREFETCH0 | CB_BRIDGE_POSTEN;
config_writew(socket, CB_BRIDGE_CONTROL, bridge);
}
/**
* yenta_fixup_parent_bridge - Fix subordinate bus# of the parent bridge
* @cardbus_bridge: The PCI bus which the CardBus bridge bridges to
*
* Checks if devices on the bus which the CardBus bridge bridges to would be
* invisible during PCI scans because of a misconfigured subordinate number
* of the parent brige - some BIOSes seem to be too lazy to set it right.
* Does the fixup carefully by checking how far it can go without conflicts.
* See http://bugzilla.kernel.org/show_bug.cgi?id=2944 for more information.
*/
static void yenta_fixup_parent_bridge(struct pci_bus *cardbus_bridge)
{
struct pci_bus *sibling;
unsigned char upper_limit;
/*
* We only check and fix the parent bridge: All systems which need
* this fixup that have been reviewed are laptops and the only bridge
* which needed fixing was the parent bridge of the CardBus bridge:
*/
struct pci_bus *bridge_to_fix = cardbus_bridge->parent;
/* Check bus numbers are already set up correctly: */
if (bridge_to_fix->busn_res.end >= cardbus_bridge->busn_res.end)
return; /* The subordinate number is ok, nothing to do */
if (!bridge_to_fix->parent)
return; /* Root bridges are ok */
/* stay within the limits of the bus range of the parent: */
upper_limit = bridge_to_fix->parent->busn_res.end;
/* check the bus ranges of all sibling bridges to prevent overlap */
list_for_each_entry(sibling, &bridge_to_fix->parent->children,
node) {
/*
* If the sibling has a higher secondary bus number
* and it's secondary is equal or smaller than our
* current upper limit, set the new upper limit to
* the bus number below the sibling's range:
*/
if (sibling->busn_res.start > bridge_to_fix->busn_res.end
&& sibling->busn_res.start <= upper_limit)
upper_limit = sibling->busn_res.start - 1;
}
/* Show that the wanted subordinate number is not possible: */
if (cardbus_bridge->busn_res.end > upper_limit)
dev_warn(&cardbus_bridge->dev,
"Upper limit for fixing this bridge's parent bridge: #%02x\n",
upper_limit);
/* If we have room to increase the bridge's subordinate number, */
if (bridge_to_fix->busn_res.end < upper_limit) {
/* use the highest number of the hidden bus, within limits */
unsigned char subordinate_to_assign =
min_t(int, cardbus_bridge->busn_res.end, upper_limit);
dev_info(&bridge_to_fix->dev,
"Raising subordinate bus# of parent bus (#%02x) from #%02x to #%02x\n",
bridge_to_fix->number,
(int)bridge_to_fix->busn_res.end,
subordinate_to_assign);
/* Save the new subordinate in the bus struct of the bridge */
bridge_to_fix->busn_res.end = subordinate_to_assign;
/* and update the PCI config space with the new subordinate */
pci_write_config_byte(bridge_to_fix->self,
PCI_SUBORDINATE_BUS, bridge_to_fix->busn_res.end);
}
}
/*
* Initialize a cardbus controller. Make sure we have a usable
* interrupt, and that we can map the cardbus area. Fill in the
* socket information structure..
*/
static int yenta_probe(struct pci_dev *dev, const struct pci_device_id *id)
{
struct yenta_socket *socket;
int ret;
/*
* If we failed to assign proper bus numbers for this cardbus
* controller during PCI probe, its subordinate pci_bus is NULL.
* Bail out if so.
*/
if (!dev->subordinate) {
dev_err(&dev->dev, "no bus associated! (try 'pci=assign-busses')\n");
return -ENODEV;
}
socket = kzalloc(sizeof(struct yenta_socket), GFP_KERNEL);
if (!socket)
return -ENOMEM;
/* prepare pcmcia_socket */
socket->socket.ops = &yenta_socket_operations;
socket->socket.resource_ops = &pccard_nonstatic_ops;
socket->socket.dev.parent = &dev->dev;
socket->socket.driver_data = socket;
socket->socket.owner = THIS_MODULE;
socket->socket.features = SS_CAP_PAGE_REGS | SS_CAP_PCCARD;
socket->socket.map_size = 0x1000;
socket->socket.cb_dev = dev;
/* prepare struct yenta_socket */
socket->dev = dev;
pci_set_drvdata(dev, socket);
/*
* Do some basic sanity checking..
*/
if (pci_enable_device(dev)) {
ret = -EBUSY;
goto free;
}
ret = pci_request_regions(dev, "yenta_socket");
if (ret)
goto disable;
if (!pci_resource_start(dev, 0)) {
dev_err(&dev->dev, "No cardbus resource!\n");
ret = -ENODEV;
goto release;
}
/*
* Ok, start setup.. Map the cardbus registers,
* and request the IRQ.
*/
socket->base = ioremap(pci_resource_start(dev, 0), 0x1000);
if (!socket->base) {
ret = -ENOMEM;
goto release;
}
/*
* report the subsystem vendor and device for help debugging
* the irq stuff...
*/
dev_info(&dev->dev, "CardBus bridge found [%04x:%04x]\n",
dev->subsystem_vendor, dev->subsystem_device);
yenta_config_init(socket);
/* Disable all events */
cb_writel(socket, CB_SOCKET_MASK, 0x0);
/* Set up the bridge regions.. */
yenta_allocate_resources(socket);
socket->cb_irq = dev->irq;
/* Do we have special options for the device? */
if (id->driver_data != CARDBUS_TYPE_DEFAULT &&
id->driver_data < ARRAY_SIZE(cardbus_type)) {
socket->type = &cardbus_type[id->driver_data];
ret = socket->type->override(socket);
if (ret < 0)
goto unmap;
}
/* We must finish initialization here */
if (!socket->cb_irq || request_irq(socket->cb_irq, yenta_interrupt, IRQF_SHARED, "yenta", socket)) {
/* No IRQ or request_irq failed. Poll */
socket->cb_irq = 0; /* But zero is a valid IRQ number. */
setup_timer(&socket->poll_timer, yenta_interrupt_wrapper,
(unsigned long)socket);
mod_timer(&socket->poll_timer, jiffies + HZ);
dev_info(&dev->dev,
"no PCI IRQ, CardBus support disabled for this socket.\n");
dev_info(&dev->dev,
"check your BIOS CardBus, BIOS IRQ or ACPI settings.\n");
} else {
socket->socket.features |= SS_CAP_CARDBUS;
}
/* Figure out what the dang thing can do for the PCMCIA layer... */
yenta_interrogate(socket);
yenta_get_socket_capabilities(socket, isa_interrupts);
dev_info(&dev->dev, "Socket status: %08x\n",
cb_readl(socket, CB_SOCKET_STATE));
yenta_fixup_parent_bridge(dev->subordinate);
/* Register it with the pcmcia layer.. */
ret = pcmcia_register_socket(&socket->socket);
if (ret)
goto free_irq;
/* Add the yenta register attributes */
ret = device_create_file(&dev->dev, &dev_attr_yenta_registers);
if (ret)
goto unregister_socket;
return ret;
/* error path... */
unregister_socket:
pcmcia_unregister_socket(&socket->socket);
free_irq:
if (socket->cb_irq)
free_irq(socket->cb_irq, socket);
else
del_timer_sync(&socket->poll_timer);
unmap:
iounmap(socket->base);
yenta_free_resources(socket);
release:
pci_release_regions(dev);
disable:
pci_disable_device(dev);
free:
pci_set_drvdata(dev, NULL);
kfree(socket);
return ret;
}
#ifdef CONFIG_PM
static int yenta_dev_suspend_noirq(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct yenta_socket *socket = pci_get_drvdata(pdev);
if (!socket)
return 0;
if (socket->type && socket->type->save_state)
socket->type->save_state(socket);
pci_save_state(pdev);
pci_read_config_dword(pdev, 16*4, &socket->saved_state[0]);
pci_read_config_dword(pdev, 17*4, &socket->saved_state[1]);
pci_disable_device(pdev);
return 0;
}
static int yenta_dev_resume_noirq(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct yenta_socket *socket = pci_get_drvdata(pdev);
int ret;
if (!socket)
return 0;
pci_write_config_dword(pdev, 16*4, socket->saved_state[0]);
pci_write_config_dword(pdev, 17*4, socket->saved_state[1]);
ret = pci_enable_device(pdev);
if (ret)
return ret;
pci_set_master(pdev);
if (socket->type && socket->type->restore_state)
socket->type->restore_state(socket);
return 0;
}
static const struct dev_pm_ops yenta_pm_ops = {
.suspend_noirq = yenta_dev_suspend_noirq,
.resume_noirq = yenta_dev_resume_noirq,
.freeze_noirq = yenta_dev_suspend_noirq,
.thaw_noirq = yenta_dev_resume_noirq,
.poweroff_noirq = yenta_dev_suspend_noirq,
.restore_noirq = yenta_dev_resume_noirq,
};
#define YENTA_PM_OPS (&yenta_pm_ops)
#else
#define YENTA_PM_OPS NULL
#endif
#define CB_ID(vend, dev, type) \
{ \
.vendor = vend, \
.device = dev, \
.subvendor = PCI_ANY_ID, \
.subdevice = PCI_ANY_ID, \
.class = PCI_CLASS_BRIDGE_CARDBUS << 8, \
.class_mask = ~0, \
.driver_data = CARDBUS_TYPE_##type, \
}
static const struct pci_device_id yenta_table[] = {
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1031, TI),
/*
* TBD: Check if these TI variants can use more
* advanced overrides instead. (I can't get the
* data sheets for these devices. --rmk)
*/
#ifdef CONFIG_YENTA_TI
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1210, TI),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1130, TI113X),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1131, TI113X),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1211, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1220, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1221, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1225, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1251A, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1251B, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1420, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1450, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1451A, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1510, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1520, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1620, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4410, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4450, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4451, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4510, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_4520, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1250, TI1250),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_1410, TI1250),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_XX21_XX11, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X515, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_XX12, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X420, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_X620, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7410, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7510, TI12XX),
CB_ID(PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_7610, TI12XX),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_710, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_712, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_720, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_722, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1211, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1225, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1410, ENE),
CB_ID(PCI_VENDOR_ID_ENE, PCI_DEVICE_ID_ENE_1420, ENE),
#endif /* CONFIG_YENTA_TI */
#ifdef CONFIG_YENTA_RICOH
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C465, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C466, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C475, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C476, RICOH),
CB_ID(PCI_VENDOR_ID_RICOH, PCI_DEVICE_ID_RICOH_RL5C478, RICOH),
#endif
#ifdef CONFIG_YENTA_TOSHIBA
CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC95, TOPIC95),
CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC97, TOPIC97),
CB_ID(PCI_VENDOR_ID_TOSHIBA, PCI_DEVICE_ID_TOSHIBA_TOPIC100, TOPIC97),
#endif
#ifdef CONFIG_YENTA_O2
CB_ID(PCI_VENDOR_ID_O2, PCI_ANY_ID, O2MICRO),
#endif
/* match any cardbus bridge */
CB_ID(PCI_ANY_ID, PCI_ANY_ID, DEFAULT),
{ /* all zeroes */ }
};
MODULE_DEVICE_TABLE(pci, yenta_table);
static struct pci_driver yenta_cardbus_driver = {
.name = "yenta_cardbus",
.id_table = yenta_table,
.probe = yenta_probe,
.remove = yenta_close,
.driver.pm = YENTA_PM_OPS,
};
module_pci_driver(yenta_cardbus_driver);
MODULE_LICENSE("GPL");