2007-04-27 06:55:03 +08:00
|
|
|
/* Maintain an RxRPC server socket to do AFS communications through
|
|
|
|
*
|
|
|
|
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
|
|
|
|
* Written by David Howells (dhowells@redhat.com)
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or
|
|
|
|
* modify it under the terms of the GNU General Public License
|
|
|
|
* as published by the Free Software Foundation; either version
|
|
|
|
* 2 of the License, or (at your option) any later version.
|
|
|
|
*/
|
|
|
|
|
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h
percpu.h is included by sched.h and module.h and thus ends up being
included when building most .c files. percpu.h includes slab.h which
in turn includes gfp.h making everything defined by the two files
universally available and complicating inclusion dependencies.
percpu.h -> slab.h dependency is about to be removed. Prepare for
this change by updating users of gfp and slab facilities include those
headers directly instead of assuming availability. As this conversion
needs to touch large number of source files, the following script is
used as the basis of conversion.
http://userweb.kernel.org/~tj/misc/slabh-sweep.py
The script does the followings.
* Scan files for gfp and slab usages and update includes such that
only the necessary includes are there. ie. if only gfp is used,
gfp.h, if slab is used, slab.h.
* When the script inserts a new include, it looks at the include
blocks and try to put the new include such that its order conforms
to its surrounding. It's put in the include block which contains
core kernel includes, in the same order that the rest are ordered -
alphabetical, Christmas tree, rev-Xmas-tree or at the end if there
doesn't seem to be any matching order.
* If the script can't find a place to put a new include (mostly
because the file doesn't have fitting include block), it prints out
an error message indicating which .h file needs to be added to the
file.
The conversion was done in the following steps.
1. The initial automatic conversion of all .c files updated slightly
over 4000 files, deleting around 700 includes and adding ~480 gfp.h
and ~3000 slab.h inclusions. The script emitted errors for ~400
files.
2. Each error was manually checked. Some didn't need the inclusion,
some needed manual addition while adding it to implementation .h or
embedding .c file was more appropriate for others. This step added
inclusions to around 150 files.
3. The script was run again and the output was compared to the edits
from #2 to make sure no file was left behind.
4. Several build tests were done and a couple of problems were fixed.
e.g. lib/decompress_*.c used malloc/free() wrappers around slab
APIs requiring slab.h to be added manually.
5. The script was run on all .h files but without automatically
editing them as sprinkling gfp.h and slab.h inclusions around .h
files could easily lead to inclusion dependency hell. Most gfp.h
inclusion directives were ignored as stuff from gfp.h was usually
wildly available and often used in preprocessor macros. Each
slab.h inclusion directive was examined and added manually as
necessary.
6. percpu.h was updated not to include slab.h.
7. Build test were done on the following configurations and failures
were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my
distributed build env didn't work with gcov compiles) and a few
more options had to be turned off depending on archs to make things
build (like ipr on powerpc/64 which failed due to missing writeq).
* x86 and x86_64 UP and SMP allmodconfig and a custom test config.
* powerpc and powerpc64 SMP allmodconfig
* sparc and sparc64 SMP allmodconfig
* ia64 SMP allmodconfig
* s390 SMP allmodconfig
* alpha SMP allmodconfig
* um on x86_64 SMP allmodconfig
8. percpu.h modifications were reverted so that it could be applied as
a separate patch and serve as bisection point.
Given the fact that I had only a couple of failures from tests on step
6, I'm fairly confident about the coverage of this conversion patch.
If there is a breakage, it's likely to be something in one of the arch
headers which should be easily discoverable easily on most builds of
the specific arch.
Signed-off-by: Tejun Heo <tj@kernel.org>
Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org>
Cc: Ingo Molnar <mingo@redhat.com>
Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
|
|
|
#include <linux/slab.h>
|
2017-02-03 02:15:33 +08:00
|
|
|
#include <linux/sched/signal.h>
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
#include <net/sock.h>
|
|
|
|
#include <net/af_rxrpc.h>
|
|
|
|
#include <rxrpc/packet.h>
|
|
|
|
#include "internal.h"
|
|
|
|
#include "afs_cm.h"
|
|
|
|
|
2016-08-30 16:49:29 +08:00
|
|
|
struct socket *afs_socket; /* my RxRPC socket */
|
2007-04-27 06:55:03 +08:00
|
|
|
static struct workqueue_struct *afs_async_calls;
|
2016-09-08 18:10:12 +08:00
|
|
|
static struct afs_call *afs_spare_incoming_call;
|
2017-01-05 18:38:36 +08:00
|
|
|
atomic_t afs_outstanding_calls;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static void afs_wake_up_call_waiter(struct sock *, struct rxrpc_call *, unsigned long);
|
2007-04-27 06:55:03 +08:00
|
|
|
static int afs_wait_for_call_to_complete(struct afs_call *);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static void afs_wake_up_async_call(struct sock *, struct rxrpc_call *, unsigned long);
|
|
|
|
static void afs_process_async_call(struct work_struct *);
|
2016-09-08 18:10:12 +08:00
|
|
|
static void afs_rx_new_call(struct sock *, struct rxrpc_call *, unsigned long);
|
|
|
|
static void afs_rx_discard_new_call(struct rxrpc_call *, unsigned long);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_cm_op_id(struct afs_call *);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
/* asynchronous incoming call initial processing */
|
|
|
|
static const struct afs_call_type afs_RXCMxxxx = {
|
2007-04-27 06:57:07 +08:00
|
|
|
.name = "CB.xxxx",
|
2007-04-27 06:55:03 +08:00
|
|
|
.deliver = afs_deliver_cm_op_id,
|
|
|
|
.abort_to_error = afs_abort_to_error,
|
|
|
|
};
|
|
|
|
|
2016-09-08 18:10:12 +08:00
|
|
|
static void afs_charge_preallocation(struct work_struct *);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2016-09-08 18:10:12 +08:00
|
|
|
static DECLARE_WORK(afs_charge_preallocation_work, afs_charge_preallocation);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2016-04-08 00:23:03 +08:00
|
|
|
static int afs_wait_atomic_t(atomic_t *p)
|
|
|
|
{
|
|
|
|
schedule();
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/*
|
|
|
|
* open an RxRPC socket and bind it to be a server for callback notifications
|
|
|
|
* - the socket is left in blocking mode and non-blocking ops use MSG_DONTWAIT
|
|
|
|
*/
|
|
|
|
int afs_open_socket(void)
|
|
|
|
{
|
|
|
|
struct sockaddr_rxrpc srx;
|
|
|
|
struct socket *socket;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
2016-06-11 05:30:37 +08:00
|
|
|
ret = -ENOMEM;
|
2016-09-04 23:23:42 +08:00
|
|
|
afs_async_calls = alloc_workqueue("kafsd", WQ_MEM_RECLAIM, 0);
|
2016-06-11 05:30:37 +08:00
|
|
|
if (!afs_async_calls)
|
|
|
|
goto error_0;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2015-05-09 10:08:05 +08:00
|
|
|
ret = sock_create_kern(&init_net, AF_RXRPC, SOCK_DGRAM, PF_INET, &socket);
|
2016-06-11 05:30:37 +08:00
|
|
|
if (ret < 0)
|
|
|
|
goto error_1;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
socket->sk->sk_allocation = GFP_NOFS;
|
|
|
|
|
|
|
|
/* bind the callback manager's address to make this a server socket */
|
|
|
|
srx.srx_family = AF_RXRPC;
|
|
|
|
srx.srx_service = CM_SERVICE;
|
|
|
|
srx.transport_type = SOCK_DGRAM;
|
|
|
|
srx.transport_len = sizeof(srx.transport.sin);
|
|
|
|
srx.transport.sin.sin_family = AF_INET;
|
|
|
|
srx.transport.sin.sin_port = htons(AFS_CM_PORT);
|
|
|
|
memset(&srx.transport.sin.sin_addr, 0,
|
|
|
|
sizeof(srx.transport.sin.sin_addr));
|
|
|
|
|
|
|
|
ret = kernel_bind(socket, (struct sockaddr *) &srx, sizeof(srx));
|
2016-06-11 05:30:37 +08:00
|
|
|
if (ret < 0)
|
|
|
|
goto error_2;
|
|
|
|
|
2016-09-08 18:10:12 +08:00
|
|
|
rxrpc_kernel_new_call_notification(socket, afs_rx_new_call,
|
|
|
|
afs_rx_discard_new_call);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
|
2016-06-11 05:30:37 +08:00
|
|
|
ret = kernel_listen(socket, INT_MAX);
|
|
|
|
if (ret < 0)
|
|
|
|
goto error_2;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
afs_socket = socket;
|
2016-09-08 18:10:12 +08:00
|
|
|
afs_charge_preallocation(NULL);
|
2007-04-27 06:55:03 +08:00
|
|
|
_leave(" = 0");
|
|
|
|
return 0;
|
2016-06-11 05:30:37 +08:00
|
|
|
|
|
|
|
error_2:
|
|
|
|
sock_release(socket);
|
|
|
|
error_1:
|
|
|
|
destroy_workqueue(afs_async_calls);
|
|
|
|
error_0:
|
|
|
|
_leave(" = %d", ret);
|
|
|
|
return ret;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* close the RxRPC socket AFS was using
|
|
|
|
*/
|
|
|
|
void afs_close_socket(void)
|
|
|
|
{
|
|
|
|
_enter("");
|
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
kernel_listen(afs_socket, 0);
|
|
|
|
flush_workqueue(afs_async_calls);
|
|
|
|
|
2016-09-08 18:10:12 +08:00
|
|
|
if (afs_spare_incoming_call) {
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(afs_spare_incoming_call);
|
2016-09-08 18:10:12 +08:00
|
|
|
afs_spare_incoming_call = NULL;
|
|
|
|
}
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_debug("outstanding %u", atomic_read(&afs_outstanding_calls));
|
2016-04-08 00:23:03 +08:00
|
|
|
wait_on_atomic_t(&afs_outstanding_calls, afs_wait_atomic_t,
|
|
|
|
TASK_UNINTERRUPTIBLE);
|
|
|
|
_debug("no outstanding calls");
|
|
|
|
|
rxrpc: Rewrite the data and ack handling code
Rewrite the data and ack handling code such that:
(1) Parsing of received ACK and ABORT packets and the distribution and the
filing of DATA packets happens entirely within the data_ready context
called from the UDP socket. This allows us to process and discard ACK
and ABORT packets much more quickly (they're no longer stashed on a
queue for a background thread to process).
(2) We avoid calling skb_clone(), pskb_pull() and pskb_trim(). We instead
keep track of the offset and length of the content of each packet in
the sk_buff metadata. This means we don't do any allocation in the
receive path.
(3) Jumbo DATA packet parsing is now done in data_ready context. Rather
than cloning the packet once for each subpacket and pulling/trimming
it, we file the packet multiple times with an annotation for each
indicating which subpacket is there. From that we can directly
calculate the offset and length.
(4) A call's receive queue can be accessed without taking locks (memory
barriers do have to be used, though).
(5) Incoming calls are set up from preallocated resources and immediately
made live. They can than have packets queued upon them and ACKs
generated. If insufficient resources exist, DATA packet #1 is given a
BUSY reply and other DATA packets are discarded).
(6) sk_buffs no longer take a ref on their parent call.
To make this work, the following changes are made:
(1) Each call's receive buffer is now a circular buffer of sk_buff
pointers (rxtx_buffer) rather than a number of sk_buff_heads spread
between the call and the socket. This permits each sk_buff to be in
the buffer multiple times. The receive buffer is reused for the
transmit buffer.
(2) A circular buffer of annotations (rxtx_annotations) is kept parallel
to the data buffer. Transmission phase annotations indicate whether a
buffered packet has been ACK'd or not and whether it needs
retransmission.
Receive phase annotations indicate whether a slot holds a whole packet
or a jumbo subpacket and, if the latter, which subpacket. They also
note whether the packet has been decrypted in place.
(3) DATA packet window tracking is much simplified. Each phase has just
two numbers representing the window (rx_hard_ack/rx_top and
tx_hard_ack/tx_top).
The hard_ack number is the sequence number before base of the window,
representing the last packet the other side says it has consumed.
hard_ack starts from 0 and the first packet is sequence number 1.
The top number is the sequence number of the highest-numbered packet
residing in the buffer. Packets between hard_ack+1 and top are
soft-ACK'd to indicate they've been received, but not yet consumed.
Four macros, before(), before_eq(), after() and after_eq() are added
to compare sequence numbers within the window. This allows for the
top of the window to wrap when the hard-ack sequence number gets close
to the limit.
Two flags, RXRPC_CALL_RX_LAST and RXRPC_CALL_TX_LAST, are added also
to indicate when rx_top and tx_top point at the packets with the
LAST_PACKET bit set, indicating the end of the phase.
(4) Calls are queued on the socket 'receive queue' rather than packets.
This means that we don't need have to invent dummy packets to queue to
indicate abnormal/terminal states and we don't have to keep metadata
packets (such as ABORTs) around
(5) The offset and length of a (sub)packet's content are now passed to
the verify_packet security op. This is currently expected to decrypt
the packet in place and validate it.
However, there's now nowhere to store the revised offset and length of
the actual data within the decrypted blob (there may be a header and
padding to skip) because an sk_buff may represent multiple packets, so
a locate_data security op is added to retrieve these details from the
sk_buff content when needed.
(6) recvmsg() now has to handle jumbo subpackets, where each subpacket is
individually secured and needs to be individually decrypted. The code
to do this is broken out into rxrpc_recvmsg_data() and shared with the
kernel API. It now iterates over the call's receive buffer rather
than walking the socket receive queue.
Additional changes:
(1) The timers are condensed to a single timer that is set for the soonest
of three timeouts (delayed ACK generation, DATA retransmission and
call lifespan).
(2) Transmission of ACK and ABORT packets is effected immediately from
process-context socket ops/kernel API calls that cause them instead of
them being punted off to a background work item. The data_ready
handler still has to defer to the background, though.
(3) A shutdown op is added to the AF_RXRPC socket so that the AFS
filesystem can shut down the socket and flush its own work items
before closing the socket to deal with any in-progress service calls.
Future additional changes that will need to be considered:
(1) Make sure that a call doesn't hog the front of the queue by receiving
data from the network as fast as userspace is consuming it to the
exclusion of other calls.
(2) Transmit delayed ACKs from within recvmsg() when we've consumed
sufficiently more packets to avoid the background work item needing to
run.
Signed-off-by: David Howells <dhowells@redhat.com>
2016-09-08 18:10:12 +08:00
|
|
|
kernel_sock_shutdown(afs_socket, SHUT_RDWR);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
flush_workqueue(afs_async_calls);
|
2007-04-27 06:55:03 +08:00
|
|
|
sock_release(afs_socket);
|
|
|
|
|
|
|
|
_debug("dework");
|
|
|
|
destroy_workqueue(afs_async_calls);
|
|
|
|
_leave("");
|
|
|
|
}
|
|
|
|
|
2007-04-27 06:57:07 +08:00
|
|
|
/*
|
2017-01-05 18:38:36 +08:00
|
|
|
* Allocate a call.
|
2007-04-27 06:57:07 +08:00
|
|
|
*/
|
2017-01-05 18:38:36 +08:00
|
|
|
static struct afs_call *afs_alloc_call(const struct afs_call_type *type,
|
|
|
|
gfp_t gfp)
|
2007-04-27 06:57:07 +08:00
|
|
|
{
|
2017-01-05 18:38:36 +08:00
|
|
|
struct afs_call *call;
|
|
|
|
int o;
|
2007-04-27 06:57:07 +08:00
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
call = kzalloc(sizeof(*call), gfp);
|
|
|
|
if (!call)
|
|
|
|
return NULL;
|
2007-04-27 06:57:07 +08:00
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
call->type = type;
|
|
|
|
atomic_set(&call->usage, 1);
|
|
|
|
INIT_WORK(&call->async_work, afs_process_async_call);
|
|
|
|
init_waitqueue_head(&call->waitq);
|
2016-04-08 00:23:03 +08:00
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
o = atomic_inc_return(&afs_outstanding_calls);
|
|
|
|
trace_afs_call(call, afs_call_trace_alloc, 1, o,
|
|
|
|
__builtin_return_address(0));
|
|
|
|
return call;
|
2007-04-27 06:57:07 +08:00
|
|
|
}
|
|
|
|
|
2014-05-21 21:48:05 +08:00
|
|
|
/*
|
2017-01-05 18:38:36 +08:00
|
|
|
* Dispose of a reference on a call.
|
2014-05-21 21:48:05 +08:00
|
|
|
*/
|
2017-01-05 18:38:36 +08:00
|
|
|
void afs_put_call(struct afs_call *call)
|
2014-05-21 21:48:05 +08:00
|
|
|
{
|
2017-01-05 18:38:36 +08:00
|
|
|
int n = atomic_dec_return(&call->usage);
|
|
|
|
int o = atomic_read(&afs_outstanding_calls);
|
|
|
|
|
|
|
|
trace_afs_call(call, afs_call_trace_put, n + 1, o,
|
|
|
|
__builtin_return_address(0));
|
|
|
|
|
|
|
|
ASSERTCMP(n, >=, 0);
|
|
|
|
if (n == 0) {
|
|
|
|
ASSERT(!work_pending(&call->async_work));
|
|
|
|
ASSERT(call->type->name != NULL);
|
|
|
|
|
|
|
|
if (call->rxcall) {
|
|
|
|
rxrpc_kernel_end_call(afs_socket, call->rxcall);
|
|
|
|
call->rxcall = NULL;
|
|
|
|
}
|
|
|
|
if (call->type->destructor)
|
|
|
|
call->type->destructor(call);
|
|
|
|
|
|
|
|
kfree(call->request);
|
|
|
|
kfree(call);
|
|
|
|
|
|
|
|
o = atomic_dec_return(&afs_outstanding_calls);
|
|
|
|
trace_afs_call(call, afs_call_trace_free, 0, o,
|
|
|
|
__builtin_return_address(0));
|
|
|
|
if (o == 0)
|
|
|
|
wake_up_atomic_t(&afs_outstanding_calls);
|
2014-05-21 21:48:05 +08:00
|
|
|
}
|
2014-05-21 23:04:11 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2017-01-05 18:38:36 +08:00
|
|
|
* Queue the call for actual work. Returns 0 unconditionally for convenience.
|
2014-05-21 23:04:11 +08:00
|
|
|
*/
|
2017-01-05 18:38:36 +08:00
|
|
|
int afs_queue_call_work(struct afs_call *call)
|
2014-05-21 23:04:11 +08:00
|
|
|
{
|
2017-01-05 18:38:36 +08:00
|
|
|
int u = atomic_inc_return(&call->usage);
|
|
|
|
|
|
|
|
trace_afs_call(call, afs_call_trace_work, u,
|
|
|
|
atomic_read(&afs_outstanding_calls),
|
|
|
|
__builtin_return_address(0));
|
|
|
|
|
|
|
|
INIT_WORK(&call->work, call->type->work);
|
|
|
|
|
|
|
|
if (!queue_work(afs_wq, &call->work))
|
|
|
|
afs_put_call(call);
|
|
|
|
return 0;
|
2014-05-21 21:48:05 +08:00
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/*
|
|
|
|
* allocate a call with flat request and reply buffers
|
|
|
|
*/
|
|
|
|
struct afs_call *afs_alloc_flat_call(const struct afs_call_type *type,
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
size_t request_size, size_t reply_max)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
|
|
|
struct afs_call *call;
|
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
call = afs_alloc_call(type, GFP_NOFS);
|
2007-04-27 06:55:03 +08:00
|
|
|
if (!call)
|
|
|
|
goto nomem_call;
|
|
|
|
|
|
|
|
if (request_size) {
|
2017-01-05 18:38:36 +08:00
|
|
|
call->request_size = request_size;
|
2007-04-27 06:55:03 +08:00
|
|
|
call->request = kmalloc(request_size, GFP_NOFS);
|
|
|
|
if (!call->request)
|
2007-04-27 06:57:07 +08:00
|
|
|
goto nomem_free;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
if (reply_max) {
|
2017-01-05 18:38:36 +08:00
|
|
|
call->reply_max = reply_max;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
call->buffer = kmalloc(reply_max, GFP_NOFS);
|
2007-04-27 06:55:03 +08:00
|
|
|
if (!call->buffer)
|
2007-04-27 06:57:07 +08:00
|
|
|
goto nomem_free;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
init_waitqueue_head(&call->waitq);
|
|
|
|
return call;
|
|
|
|
|
2007-04-27 06:57:07 +08:00
|
|
|
nomem_free:
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
nomem_call:
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* clean up a call with flat buffer
|
|
|
|
*/
|
|
|
|
void afs_flat_call_destructor(struct afs_call *call)
|
|
|
|
{
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
kfree(call->request);
|
|
|
|
call->request = NULL;
|
|
|
|
kfree(call->buffer);
|
|
|
|
call->buffer = NULL;
|
|
|
|
}
|
|
|
|
|
2017-03-17 00:27:46 +08:00
|
|
|
#define AFS_BVEC_MAX 8
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Load the given bvec with the next few pages.
|
|
|
|
*/
|
|
|
|
static void afs_load_bvec(struct afs_call *call, struct msghdr *msg,
|
|
|
|
struct bio_vec *bv, pgoff_t first, pgoff_t last,
|
|
|
|
unsigned offset)
|
|
|
|
{
|
|
|
|
struct page *pages[AFS_BVEC_MAX];
|
|
|
|
unsigned int nr, n, i, to, bytes = 0;
|
|
|
|
|
|
|
|
nr = min_t(pgoff_t, last - first + 1, AFS_BVEC_MAX);
|
|
|
|
n = find_get_pages_contig(call->mapping, first, nr, pages);
|
|
|
|
ASSERTCMP(n, ==, nr);
|
|
|
|
|
|
|
|
msg->msg_flags |= MSG_MORE;
|
|
|
|
for (i = 0; i < nr; i++) {
|
|
|
|
to = PAGE_SIZE;
|
|
|
|
if (first + i >= last) {
|
|
|
|
to = call->last_to;
|
|
|
|
msg->msg_flags &= ~MSG_MORE;
|
|
|
|
}
|
|
|
|
bv[i].bv_page = pages[i];
|
|
|
|
bv[i].bv_len = to - offset;
|
|
|
|
bv[i].bv_offset = offset;
|
|
|
|
bytes += to - offset;
|
|
|
|
offset = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
iov_iter_bvec(&msg->msg_iter, WRITE | ITER_BVEC, bv, nr, bytes);
|
|
|
|
}
|
|
|
|
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
/*
|
|
|
|
* attach the data from a bunch of pages on an inode to a call
|
|
|
|
*/
|
2016-01-10 09:36:51 +08:00
|
|
|
static int afs_send_pages(struct afs_call *call, struct msghdr *msg)
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
{
|
2017-03-17 00:27:46 +08:00
|
|
|
struct bio_vec bv[AFS_BVEC_MAX];
|
|
|
|
unsigned int bytes, nr, loop, offset;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
pgoff_t first = call->first, last = call->last;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
offset = call->first_offset;
|
|
|
|
call->first_offset = 0;
|
|
|
|
|
|
|
|
do {
|
2017-03-17 00:27:46 +08:00
|
|
|
afs_load_bvec(call, msg, bv, first, last, offset);
|
|
|
|
offset = 0;
|
|
|
|
bytes = msg->msg_iter.count;
|
|
|
|
nr = msg->msg_iter.nr_segs;
|
|
|
|
|
|
|
|
/* Have to change the state *before* sending the last
|
|
|
|
* packet as RxRPC might give us the reply before it
|
|
|
|
* returns from sending the request.
|
|
|
|
*/
|
2017-03-17 00:27:48 +08:00
|
|
|
if (first + nr - 1 >= last)
|
2017-03-17 00:27:46 +08:00
|
|
|
call->state = AFS_CALL_AWAIT_REPLY;
|
|
|
|
ret = rxrpc_kernel_send_data(afs_socket, call->rxcall,
|
|
|
|
msg, bytes);
|
|
|
|
for (loop = 0; loop < nr; loop++)
|
|
|
|
put_page(bv[loop].bv_page);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
if (ret < 0)
|
|
|
|
break;
|
2017-03-17 00:27:46 +08:00
|
|
|
|
|
|
|
first += nr;
|
2007-05-10 18:15:23 +08:00
|
|
|
} while (first <= last);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/*
|
|
|
|
* initiate a call
|
|
|
|
*/
|
|
|
|
int afs_make_call(struct in_addr *addr, struct afs_call *call, gfp_t gfp,
|
2017-01-05 18:38:36 +08:00
|
|
|
bool async)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
|
|
|
struct sockaddr_rxrpc srx;
|
|
|
|
struct rxrpc_call *rxcall;
|
|
|
|
struct msghdr msg;
|
|
|
|
struct kvec iov[1];
|
2017-03-17 00:27:47 +08:00
|
|
|
size_t offset;
|
|
|
|
u32 abort_code;
|
2007-04-27 06:55:03 +08:00
|
|
|
int ret;
|
|
|
|
|
|
|
|
_enter("%x,{%d},", addr->s_addr, ntohs(call->port));
|
|
|
|
|
2007-04-27 06:57:07 +08:00
|
|
|
ASSERT(call->type != NULL);
|
|
|
|
ASSERT(call->type->name != NULL);
|
|
|
|
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
_debug("____MAKE %p{%s,%x} [%d]____",
|
|
|
|
call, call->type->name, key_serial(call->key),
|
|
|
|
atomic_read(&afs_outstanding_calls));
|
2007-04-27 06:57:07 +08:00
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
call->async = async;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
memset(&srx, 0, sizeof(srx));
|
|
|
|
srx.srx_family = AF_RXRPC;
|
|
|
|
srx.srx_service = call->service_id;
|
|
|
|
srx.transport_type = SOCK_DGRAM;
|
|
|
|
srx.transport_len = sizeof(srx.transport.sin);
|
|
|
|
srx.transport.sin.sin_family = AF_INET;
|
|
|
|
srx.transport.sin.sin_port = call->port;
|
|
|
|
memcpy(&srx.transport.sin.sin_addr, addr, 4);
|
|
|
|
|
|
|
|
/* create a call */
|
|
|
|
rxcall = rxrpc_kernel_begin_call(afs_socket, &srx, call->key,
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
(unsigned long) call, gfp,
|
2017-01-05 18:38:36 +08:00
|
|
|
(async ?
|
|
|
|
afs_wake_up_async_call :
|
|
|
|
afs_wake_up_call_waiter));
|
2007-04-27 06:57:07 +08:00
|
|
|
call->key = NULL;
|
2007-04-27 06:55:03 +08:00
|
|
|
if (IS_ERR(rxcall)) {
|
|
|
|
ret = PTR_ERR(rxcall);
|
|
|
|
goto error_kill_call;
|
|
|
|
}
|
|
|
|
|
|
|
|
call->rxcall = rxcall;
|
|
|
|
|
|
|
|
/* send the request */
|
|
|
|
iov[0].iov_base = call->request;
|
|
|
|
iov[0].iov_len = call->request_size;
|
|
|
|
|
|
|
|
msg.msg_name = NULL;
|
|
|
|
msg.msg_namelen = 0;
|
2014-11-28 10:50:31 +08:00
|
|
|
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1,
|
2014-11-24 23:42:55 +08:00
|
|
|
call->request_size);
|
2007-04-27 06:55:03 +08:00
|
|
|
msg.msg_control = NULL;
|
|
|
|
msg.msg_controllen = 0;
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
msg.msg_flags = (call->send_pages ? MSG_MORE : 0);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2017-03-17 00:27:47 +08:00
|
|
|
/* We have to change the state *before* sending the last packet as
|
|
|
|
* rxrpc might give us the reply before it returns from sending the
|
|
|
|
* request. Further, if the send fails, we may already have been given
|
|
|
|
* a notification and may have collected it.
|
|
|
|
*/
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
if (!call->send_pages)
|
|
|
|
call->state = AFS_CALL_AWAIT_REPLY;
|
2016-08-30 19:00:48 +08:00
|
|
|
ret = rxrpc_kernel_send_data(afs_socket, rxcall,
|
|
|
|
&msg, call->request_size);
|
2007-04-27 06:55:03 +08:00
|
|
|
if (ret < 0)
|
|
|
|
goto error_do_abort;
|
|
|
|
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
if (call->send_pages) {
|
2016-01-10 09:36:51 +08:00
|
|
|
ret = afs_send_pages(call, &msg);
|
AFS: implement basic file write support
Implement support for writing to regular AFS files, including:
(1) write
(2) truncate
(3) fsync, fdatasync
(4) chmod, chown, chgrp, utime.
AFS writeback attempts to batch writes into as chunks as large as it can manage
up to the point that it writes back 65535 pages in one chunk or it meets a
locked page.
Furthermore, if a page has been written to using a particular key, then should
another write to that page use some other key, the first write will be flushed
before the second is allowed to take place. If the first write fails due to a
security error, then the page will be scrapped and reread before the second
write takes place.
If a page is dirty and the callback on it is broken by the server, then the
dirty data is not discarded (same behaviour as NFS).
Shared-writable mappings are not supported by this patch.
[akpm@linux-foundation.org: fix a bunch of warnings]
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: Andrew Morton <akpm@linux-foundation.org>
Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2007-05-09 17:33:46 +08:00
|
|
|
if (ret < 0)
|
|
|
|
goto error_do_abort;
|
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/* at this point, an async call may no longer exist as it may have
|
|
|
|
* already completed */
|
2017-01-05 18:38:36 +08:00
|
|
|
if (call->async)
|
|
|
|
return -EINPROGRESS;
|
|
|
|
|
|
|
|
return afs_wait_for_call_to_complete(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
error_do_abort:
|
2017-03-17 00:27:47 +08:00
|
|
|
call->state = AFS_CALL_COMPLETE;
|
|
|
|
if (ret != -ECONNABORTED) {
|
|
|
|
rxrpc_kernel_abort_call(afs_socket, rxcall, RX_USER_ABORT,
|
2017-04-06 17:11:56 +08:00
|
|
|
ret, "KSD");
|
2017-03-17 00:27:47 +08:00
|
|
|
} else {
|
|
|
|
abort_code = 0;
|
|
|
|
offset = 0;
|
|
|
|
rxrpc_kernel_recv_data(afs_socket, rxcall, NULL, 0, &offset,
|
|
|
|
false, &abort_code);
|
|
|
|
ret = call->type->abort_to_error(abort_code);
|
|
|
|
}
|
2007-04-27 06:55:03 +08:00
|
|
|
error_kill_call:
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
_leave(" = %d", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* deliver messages to a call
|
|
|
|
*/
|
|
|
|
static void afs_deliver_to_call(struct afs_call *call)
|
|
|
|
{
|
|
|
|
u32 abort_code;
|
|
|
|
int ret;
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("%s", call->type->name);
|
|
|
|
|
|
|
|
while (call->state == AFS_CALL_AWAIT_REPLY ||
|
|
|
|
call->state == AFS_CALL_AWAIT_OP_ID ||
|
|
|
|
call->state == AFS_CALL_AWAIT_REQUEST ||
|
|
|
|
call->state == AFS_CALL_AWAIT_ACK
|
|
|
|
) {
|
|
|
|
if (call->state == AFS_CALL_AWAIT_ACK) {
|
|
|
|
size_t offset = 0;
|
|
|
|
ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
|
|
|
|
NULL, 0, &offset, false,
|
|
|
|
&call->abort_code);
|
2017-01-05 18:38:34 +08:00
|
|
|
trace_afs_recv_data(call, 0, offset, false, ret);
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
if (ret == -EINPROGRESS || ret == -EAGAIN)
|
|
|
|
return;
|
2016-10-06 15:11:50 +08:00
|
|
|
if (ret == 1 || ret < 0) {
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
call->state = AFS_CALL_COMPLETE;
|
|
|
|
goto done;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
return;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = call->type->deliver(call);
|
|
|
|
switch (ret) {
|
|
|
|
case 0:
|
|
|
|
if (call->state == AFS_CALL_AWAIT_REPLY)
|
|
|
|
call->state = AFS_CALL_COMPLETE;
|
|
|
|
goto done;
|
|
|
|
case -EINPROGRESS:
|
|
|
|
case -EAGAIN:
|
|
|
|
goto out;
|
2017-03-17 00:27:47 +08:00
|
|
|
case -ECONNABORTED:
|
|
|
|
goto call_complete;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
case -ENOTCONN:
|
|
|
|
abort_code = RX_CALL_DEAD;
|
|
|
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
2017-04-06 17:11:56 +08:00
|
|
|
abort_code, ret, "KNC");
|
2017-03-17 00:27:47 +08:00
|
|
|
goto save_error;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
case -ENOTSUPP:
|
2017-03-17 00:27:47 +08:00
|
|
|
abort_code = RXGEN_OPCODE;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
2017-04-06 17:11:56 +08:00
|
|
|
abort_code, ret, "KIV");
|
2017-03-17 00:27:47 +08:00
|
|
|
goto save_error;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
case -ENODATA:
|
|
|
|
case -EBADMSG:
|
|
|
|
case -EMSGSIZE:
|
|
|
|
default:
|
|
|
|
abort_code = RXGEN_CC_UNMARSHAL;
|
|
|
|
if (call->state != AFS_CALL_AWAIT_REPLY)
|
|
|
|
abort_code = RXGEN_SS_UNMARSHAL;
|
|
|
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
2017-04-06 17:11:56 +08:00
|
|
|
abort_code, -EBADMSG, "KUM");
|
2017-03-17 00:27:47 +08:00
|
|
|
goto save_error;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
}
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
done:
|
|
|
|
if (call->state == AFS_CALL_COMPLETE && call->incoming)
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(call);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
out:
|
2007-04-27 06:55:03 +08:00
|
|
|
_leave("");
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
return;
|
|
|
|
|
2017-03-17 00:27:47 +08:00
|
|
|
save_error:
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
call->error = ret;
|
2017-03-17 00:27:47 +08:00
|
|
|
call_complete:
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
call->state = AFS_CALL_COMPLETE;
|
|
|
|
goto done;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* wait synchronously for a call to complete
|
|
|
|
*/
|
|
|
|
static int afs_wait_for_call_to_complete(struct afs_call *call)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
DECLARE_WAITQUEUE(myself, current);
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
add_wait_queue(&call->waitq, &myself);
|
|
|
|
for (;;) {
|
|
|
|
set_current_state(TASK_INTERRUPTIBLE);
|
|
|
|
|
|
|
|
/* deliver any messages that are in the queue */
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
|
|
|
|
call->need_attention = false;
|
2007-04-27 06:55:03 +08:00
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
afs_deliver_to_call(call);
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
|
2017-03-17 00:27:49 +08:00
|
|
|
if (call->state == AFS_CALL_COMPLETE ||
|
|
|
|
signal_pending(current))
|
2007-04-27 06:55:03 +08:00
|
|
|
break;
|
|
|
|
schedule();
|
|
|
|
}
|
|
|
|
|
|
|
|
remove_wait_queue(&call->waitq, &myself);
|
|
|
|
__set_current_state(TASK_RUNNING);
|
|
|
|
|
2017-03-17 00:27:49 +08:00
|
|
|
/* Kill off the call if it's still live. */
|
2007-04-27 06:55:03 +08:00
|
|
|
if (call->state < AFS_CALL_COMPLETE) {
|
2017-03-17 00:27:49 +08:00
|
|
|
_debug("call interrupted");
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
2017-03-17 00:27:49 +08:00
|
|
|
RX_USER_ABORT, -EINTR, "KWI");
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
2017-03-17 00:27:49 +08:00
|
|
|
ret = call->error;
|
2007-04-27 06:55:03 +08:00
|
|
|
_debug("call complete");
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
_leave(" = %d", ret);
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* wake up a waiting call
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static void afs_wake_up_call_waiter(struct sock *sk, struct rxrpc_call *rxcall,
|
|
|
|
unsigned long call_user_ID)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
|
|
|
|
|
|
|
call->need_attention = true;
|
2007-04-27 06:55:03 +08:00
|
|
|
wake_up(&call->waitq);
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* wake up an asynchronous call
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static void afs_wake_up_async_call(struct sock *sk, struct rxrpc_call *rxcall,
|
|
|
|
unsigned long call_user_ID)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
struct afs_call *call = (struct afs_call *)call_user_ID;
|
2017-01-05 18:38:36 +08:00
|
|
|
int u;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
|
2017-01-05 18:38:34 +08:00
|
|
|
trace_afs_notify_call(rxcall, call);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
call->need_attention = true;
|
2017-01-05 18:38:36 +08:00
|
|
|
|
|
|
|
u = __atomic_add_unless(&call->usage, 1, 0);
|
|
|
|
if (u != 0) {
|
|
|
|
trace_afs_call(call, afs_call_trace_wake, u,
|
|
|
|
atomic_read(&afs_outstanding_calls),
|
|
|
|
__builtin_return_address(0));
|
|
|
|
|
|
|
|
if (!queue_work(afs_async_calls, &call->async_work))
|
|
|
|
afs_put_call(call);
|
|
|
|
}
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2017-01-05 18:38:36 +08:00
|
|
|
* Delete an asynchronous call. The work item carries a ref to the call struct
|
|
|
|
* that we need to release.
|
2007-04-27 06:55:03 +08:00
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static void afs_delete_async_call(struct work_struct *work)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
struct afs_call *call = container_of(work, struct afs_call, async_work);
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
_enter("");
|
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
_leave("");
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
2017-01-05 18:38:36 +08:00
|
|
|
* Perform I/O processing on an asynchronous call. The work item carries a ref
|
|
|
|
* to the call struct that we either need to release or to pass on.
|
2007-04-27 06:55:03 +08:00
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static void afs_process_async_call(struct work_struct *work)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
struct afs_call *call = container_of(work, struct afs_call, async_work);
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
_enter("");
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
if (call->state < AFS_CALL_COMPLETE && call->need_attention) {
|
|
|
|
call->need_attention = false;
|
2007-04-27 06:55:03 +08:00
|
|
|
afs_deliver_to_call(call);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
}
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
if (call->state == AFS_CALL_COMPLETE) {
|
2007-04-27 06:55:03 +08:00
|
|
|
call->reply = NULL;
|
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
/* We have two refs to release - one from the alloc and one
|
|
|
|
* queued with the work item - and we can't just deallocate the
|
|
|
|
* call because the work item may be queued again.
|
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
call->async_work.func = afs_delete_async_call;
|
2017-01-05 18:38:36 +08:00
|
|
|
if (!queue_work(afs_async_calls, &call->async_work))
|
|
|
|
afs_put_call(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
_leave("");
|
|
|
|
}
|
|
|
|
|
2016-09-08 18:10:12 +08:00
|
|
|
static void afs_rx_attach(struct rxrpc_call *rxcall, unsigned long user_call_ID)
|
|
|
|
{
|
|
|
|
struct afs_call *call = (struct afs_call *)user_call_ID;
|
|
|
|
|
|
|
|
call->rxcall = rxcall;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Charge the incoming call preallocation.
|
|
|
|
*/
|
|
|
|
static void afs_charge_preallocation(struct work_struct *work)
|
|
|
|
{
|
|
|
|
struct afs_call *call = afs_spare_incoming_call;
|
|
|
|
|
|
|
|
for (;;) {
|
|
|
|
if (!call) {
|
2017-01-05 18:38:36 +08:00
|
|
|
call = afs_alloc_call(&afs_RXCMxxxx, GFP_KERNEL);
|
2016-09-08 18:10:12 +08:00
|
|
|
if (!call)
|
|
|
|
break;
|
|
|
|
|
2017-01-05 18:38:36 +08:00
|
|
|
call->async = true;
|
2016-09-08 18:10:12 +08:00
|
|
|
call->state = AFS_CALL_AWAIT_OP_ID;
|
2017-01-05 18:38:36 +08:00
|
|
|
init_waitqueue_head(&call->waitq);
|
2016-09-08 18:10:12 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
if (rxrpc_kernel_charge_accept(afs_socket,
|
|
|
|
afs_wake_up_async_call,
|
|
|
|
afs_rx_attach,
|
|
|
|
(unsigned long)call,
|
|
|
|
GFP_KERNEL) < 0)
|
|
|
|
break;
|
|
|
|
call = NULL;
|
|
|
|
}
|
|
|
|
afs_spare_incoming_call = call;
|
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Discard a preallocated call when a socket is shut down.
|
|
|
|
*/
|
|
|
|
static void afs_rx_discard_new_call(struct rxrpc_call *rxcall,
|
|
|
|
unsigned long user_call_ID)
|
|
|
|
{
|
|
|
|
struct afs_call *call = (struct afs_call *)user_call_ID;
|
|
|
|
|
|
|
|
call->rxcall = NULL;
|
2017-01-05 18:38:36 +08:00
|
|
|
afs_put_call(call);
|
2016-09-08 18:10:12 +08:00
|
|
|
}
|
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
/*
|
|
|
|
* Notification of an incoming call.
|
|
|
|
*/
|
2016-09-08 18:10:12 +08:00
|
|
|
static void afs_rx_new_call(struct sock *sk, struct rxrpc_call *rxcall,
|
|
|
|
unsigned long user_call_ID)
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
{
|
2016-09-08 18:10:12 +08:00
|
|
|
queue_work(afs_wq, &afs_charge_preallocation_work);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/*
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
* Grab the operation ID from an incoming cache manager call. The socket
|
|
|
|
* buffer is discarded on error or if we don't yet have sufficient data.
|
2007-04-27 06:55:03 +08:00
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
static int afs_deliver_cm_op_id(struct afs_call *call)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
int ret;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("{%zu}", call->offset);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
ASSERTCMP(call->offset, <, 4);
|
|
|
|
|
|
|
|
/* the operation ID forms the first four bytes of the request data */
|
2016-10-13 15:27:10 +08:00
|
|
|
ret = afs_extract_data(call, &call->tmp, 4, true);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
if (ret < 0)
|
|
|
|
return ret;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
2016-10-13 15:27:10 +08:00
|
|
|
call->operation_ID = ntohl(call->tmp);
|
2007-04-27 06:55:03 +08:00
|
|
|
call->state = AFS_CALL_AWAIT_REQUEST;
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
call->offset = 0;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
|
|
|
/* ask the cache manager to route the call (it'll change the call type
|
|
|
|
* if successful) */
|
|
|
|
if (!afs_cm_incoming_call(call))
|
|
|
|
return -ENOTSUPP;
|
|
|
|
|
2017-01-05 18:38:34 +08:00
|
|
|
trace_afs_cb_call(call);
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/* pass responsibility for the remainer of this message off to the
|
|
|
|
* cache manager op */
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
return call->type->deliver(call);
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
/*
|
|
|
|
* send an empty reply
|
|
|
|
*/
|
|
|
|
void afs_send_empty_reply(struct afs_call *call)
|
|
|
|
{
|
|
|
|
struct msghdr msg;
|
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
msg.msg_name = NULL;
|
|
|
|
msg.msg_namelen = 0;
|
2015-04-01 23:03:46 +08:00
|
|
|
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, NULL, 0, 0);
|
2007-04-27 06:55:03 +08:00
|
|
|
msg.msg_control = NULL;
|
|
|
|
msg.msg_controllen = 0;
|
|
|
|
msg.msg_flags = 0;
|
|
|
|
|
|
|
|
call->state = AFS_CALL_AWAIT_ACK;
|
2016-08-30 19:00:48 +08:00
|
|
|
switch (rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, 0)) {
|
2007-04-27 06:55:03 +08:00
|
|
|
case 0:
|
|
|
|
_leave(" [replied]");
|
|
|
|
return;
|
|
|
|
|
|
|
|
case -ENOMEM:
|
|
|
|
_debug("oom");
|
2016-08-30 19:00:48 +08:00
|
|
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
2017-04-06 17:11:56 +08:00
|
|
|
RX_USER_ABORT, -ENOMEM, "KOO");
|
2007-04-27 06:55:03 +08:00
|
|
|
default:
|
|
|
|
_leave(" [error]");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2007-04-27 06:58:17 +08:00
|
|
|
/*
|
|
|
|
* send a simple reply
|
|
|
|
*/
|
|
|
|
void afs_send_simple_reply(struct afs_call *call, const void *buf, size_t len)
|
|
|
|
{
|
|
|
|
struct msghdr msg;
|
2014-11-28 10:50:31 +08:00
|
|
|
struct kvec iov[1];
|
2007-07-20 17:59:41 +08:00
|
|
|
int n;
|
2007-04-27 06:58:17 +08:00
|
|
|
|
|
|
|
_enter("");
|
|
|
|
|
|
|
|
iov[0].iov_base = (void *) buf;
|
|
|
|
iov[0].iov_len = len;
|
|
|
|
msg.msg_name = NULL;
|
|
|
|
msg.msg_namelen = 0;
|
2014-11-28 10:50:31 +08:00
|
|
|
iov_iter_kvec(&msg.msg_iter, WRITE | ITER_KVEC, iov, 1, len);
|
2007-04-27 06:58:17 +08:00
|
|
|
msg.msg_control = NULL;
|
|
|
|
msg.msg_controllen = 0;
|
|
|
|
msg.msg_flags = 0;
|
|
|
|
|
|
|
|
call->state = AFS_CALL_AWAIT_ACK;
|
2016-08-30 19:00:48 +08:00
|
|
|
n = rxrpc_kernel_send_data(afs_socket, call->rxcall, &msg, len);
|
2007-07-20 17:59:41 +08:00
|
|
|
if (n >= 0) {
|
2014-05-21 21:48:05 +08:00
|
|
|
/* Success */
|
2007-04-27 06:58:17 +08:00
|
|
|
_leave(" [replied]");
|
|
|
|
return;
|
2007-07-20 17:59:41 +08:00
|
|
|
}
|
2014-05-21 21:48:05 +08:00
|
|
|
|
2007-07-20 17:59:41 +08:00
|
|
|
if (n == -ENOMEM) {
|
2007-04-27 06:58:17 +08:00
|
|
|
_debug("oom");
|
2016-08-30 19:00:48 +08:00
|
|
|
rxrpc_kernel_abort_call(afs_socket, call->rxcall,
|
2017-04-06 17:11:56 +08:00
|
|
|
RX_USER_ABORT, -ENOMEM, "KOO");
|
2007-04-27 06:58:17 +08:00
|
|
|
}
|
2007-07-20 17:59:41 +08:00
|
|
|
_leave(" [error]");
|
2007-04-27 06:58:17 +08:00
|
|
|
}
|
|
|
|
|
2007-04-27 06:55:03 +08:00
|
|
|
/*
|
rxrpc: Fix races between skb free, ACK generation and replying
Inside the kafs filesystem it is possible to occasionally have a call
processed and terminated before we've had a chance to check whether we need
to clean up the rx queue for that call because afs_send_simple_reply() ends
the call when it is done, but this is done in a workqueue item that might
happen to run to completion before afs_deliver_to_call() completes.
Further, it is possible for rxrpc_kernel_send_data() to be called to send a
reply before the last request-phase data skb is released. The rxrpc skb
destructor is where the ACK processing is done and the call state is
advanced upon release of the last skb. ACK generation is also deferred to
a work item because it's possible that the skb destructor is not called in
a context where kernel_sendmsg() can be invoked.
To this end, the following changes are made:
(1) kernel_rxrpc_data_consumed() is added. This should be called whenever
an skb is emptied so as to crank the ACK and call states. This does
not release the skb, however. kernel_rxrpc_free_skb() must now be
called to achieve that. These together replace
rxrpc_kernel_data_delivered().
(2) kernel_rxrpc_data_consumed() is wrapped by afs_data_consumed().
This makes afs_deliver_to_call() easier to work as the skb can simply
be discarded unconditionally here without trying to work out what the
return value of the ->deliver() function means.
The ->deliver() functions can, via afs_data_complete(),
afs_transfer_reply() and afs_extract_data() mark that an skb has been
consumed (thereby cranking the state) without the need to
conditionally free the skb to make sure the state is correct on an
incoming call for when the call processor tries to send the reply.
(3) rxrpc_recvmsg() now has to call kernel_rxrpc_data_consumed() when it
has finished with a packet and MSG_PEEK isn't set.
(4) rxrpc_packet_destructor() no longer calls rxrpc_hard_ACK_data().
Because of this, we no longer need to clear the destructor and put the
call before we free the skb in cases where we don't want the ACK/call
state to be cranked.
(5) The ->deliver() call-type callbacks are made to return -EAGAIN rather
than 0 if they expect more data (afs_extract_data() returns -EAGAIN to
the delivery function already), and the caller is now responsible for
producing an abort if that was the last packet.
(6) There are many bits of unmarshalling code where:
ret = afs_extract_data(call, skb, last, ...);
switch (ret) {
case 0: break;
case -EAGAIN: return 0;
default: return ret;
}
is to be found. As -EAGAIN can now be passed back to the caller, we
now just return if ret < 0:
ret = afs_extract_data(call, skb, last, ...);
if (ret < 0)
return ret;
(7) Checks for trailing data and empty final data packets has been
consolidated as afs_data_complete(). So:
if (skb->len > 0)
return -EBADMSG;
if (!last)
return 0;
becomes:
ret = afs_data_complete(call, skb, last);
if (ret < 0)
return ret;
(8) afs_transfer_reply() now checks the amount of data it has against the
amount of data desired and the amount of data in the skb and returns
an error to induce an abort if we don't get exactly what we want.
Without these changes, the following oops can occasionally be observed,
particularly if some printks are inserted into the delivery path:
general protection fault: 0000 [#1] SMP
Modules linked in: kafs(E) af_rxrpc(E) [last unloaded: af_rxrpc]
CPU: 0 PID: 1305 Comm: kworker/u8:3 Tainted: G E 4.7.0-fsdevel+ #1303
Hardware name: ASUS All Series/H97-PLUS, BIOS 2306 10/09/2014
Workqueue: kafsd afs_async_workfn [kafs]
task: ffff88040be041c0 ti: ffff88040c070000 task.ti: ffff88040c070000
RIP: 0010:[<ffffffff8108fd3c>] [<ffffffff8108fd3c>] __lock_acquire+0xcf/0x15a1
RSP: 0018:ffff88040c073bc0 EFLAGS: 00010002
RAX: 6b6b6b6b6b6b6b6b RBX: 0000000000000000 RCX: ffff88040d29a710
RDX: 0000000000000000 RSI: 0000000000000000 RDI: ffff88040d29a710
RBP: ffff88040c073c70 R08: 0000000000000001 R09: 0000000000000001
R10: 0000000000000001 R11: 0000000000000000 R12: 0000000000000000
R13: 0000000000000000 R14: ffff88040be041c0 R15: ffffffff814c928f
FS: 0000000000000000(0000) GS:ffff88041fa00000(0000) knlGS:0000000000000000
CS: 0010 DS: 0000 ES: 0000 CR0: 0000000080050033
CR2: 00007fa4595f4750 CR3: 0000000001c14000 CR4: 00000000001406f0
Stack:
0000000000000006 000000000be04930 0000000000000000 ffff880400000000
ffff880400000000 ffffffff8108f847 ffff88040be041c0 ffffffff81050446
ffff8803fc08a920 ffff8803fc08a958 ffff88040be041c0 ffff88040c073c38
Call Trace:
[<ffffffff8108f847>] ? mark_held_locks+0x5e/0x74
[<ffffffff81050446>] ? __local_bh_enable_ip+0x9b/0xa1
[<ffffffff8108f9ca>] ? trace_hardirqs_on_caller+0x16d/0x189
[<ffffffff810915f4>] lock_acquire+0x122/0x1b6
[<ffffffff810915f4>] ? lock_acquire+0x122/0x1b6
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff81609dbf>] _raw_spin_lock_irqsave+0x35/0x49
[<ffffffff814c928f>] ? skb_dequeue+0x18/0x61
[<ffffffff814c928f>] skb_dequeue+0x18/0x61
[<ffffffffa009aa92>] afs_deliver_to_call+0x344/0x39d [kafs]
[<ffffffffa009ab37>] afs_process_async_call+0x4c/0xd5 [kafs]
[<ffffffffa0099e9c>] afs_async_workfn+0xe/0x10 [kafs]
[<ffffffff81063a3a>] process_one_work+0x29d/0x57c
[<ffffffff81064ac2>] worker_thread+0x24a/0x385
[<ffffffff81064878>] ? rescuer_thread+0x2d0/0x2d0
[<ffffffff810696f5>] kthread+0xf3/0xfb
[<ffffffff8160a6ff>] ret_from_fork+0x1f/0x40
[<ffffffff81069602>] ? kthread_create_on_node+0x1cf/0x1cf
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-03 21:11:40 +08:00
|
|
|
* Extract a piece of data from the received data socket buffers.
|
2007-04-27 06:55:03 +08:00
|
|
|
*/
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
int afs_extract_data(struct afs_call *call, void *buf, size_t count,
|
|
|
|
bool want_more)
|
2007-04-27 06:55:03 +08:00
|
|
|
{
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
int ret;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
_enter("{%s,%zu},,%zu,%d",
|
|
|
|
call->type->name, call->offset, count, want_more);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ASSERTCMP(call->offset, <=, count);
|
2007-04-27 06:55:03 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
ret = rxrpc_kernel_recv_data(afs_socket, call->rxcall,
|
|
|
|
buf, count, &call->offset,
|
|
|
|
want_more, &call->abort_code);
|
2017-01-05 18:38:34 +08:00
|
|
|
trace_afs_recv_data(call, count, call->offset, want_more, ret);
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
if (ret == 0 || ret == -EAGAIN)
|
|
|
|
return ret;
|
2007-04-27 06:55:03 +08:00
|
|
|
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
if (ret == 1) {
|
|
|
|
switch (call->state) {
|
|
|
|
case AFS_CALL_AWAIT_REPLY:
|
|
|
|
call->state = AFS_CALL_COMPLETE;
|
|
|
|
break;
|
|
|
|
case AFS_CALL_AWAIT_REQUEST:
|
|
|
|
call->state = AFS_CALL_REPLYING;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
return 0;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|
rxrpc: Don't expose skbs to in-kernel users [ver #2]
Don't expose skbs to in-kernel users, such as the AFS filesystem, but
instead provide a notification hook the indicates that a call needs
attention and another that indicates that there's a new call to be
collected.
This makes the following possibilities more achievable:
(1) Call refcounting can be made simpler if skbs don't hold refs to calls.
(2) skbs referring to non-data events will be able to be freed much sooner
rather than being queued for AFS to pick up as rxrpc_kernel_recv_data
will be able to consult the call state.
(3) We can shortcut the receive phase when a call is remotely aborted
because we don't have to go through all the packets to get to the one
cancelling the operation.
(4) It makes it easier to do encryption/decryption directly between AFS's
buffers and sk_buffs.
(5) Encryption/decryption can more easily be done in the AFS's thread
contexts - usually that of the userspace process that issued a syscall
- rather than in one of rxrpc's background threads on a workqueue.
(6) AFS will be able to wait synchronously on a call inside AF_RXRPC.
To make this work, the following interface function has been added:
int rxrpc_kernel_recv_data(
struct socket *sock, struct rxrpc_call *call,
void *buffer, size_t bufsize, size_t *_offset,
bool want_more, u32 *_abort_code);
This is the recvmsg equivalent. It allows the caller to find out about the
state of a specific call and to transfer received data into a buffer
piecemeal.
afs_extract_data() and rxrpc_kernel_recv_data() now do all the extraction
logic between them. They don't wait synchronously yet because the socket
lock needs to be dealt with.
Five interface functions have been removed:
rxrpc_kernel_is_data_last()
rxrpc_kernel_get_abort_code()
rxrpc_kernel_get_error_number()
rxrpc_kernel_free_skb()
rxrpc_kernel_data_consumed()
As a temporary hack, sk_buffs going to an in-kernel call are queued on the
rxrpc_call struct (->knlrecv_queue) rather than being handed over to the
in-kernel user. To process the queue internally, a temporary function,
temp_deliver_data() has been added. This will be replaced with common code
between the rxrpc_recvmsg() path and the kernel_rxrpc_recv_data() path in a
future patch.
Signed-off-by: David Howells <dhowells@redhat.com>
Signed-off-by: David S. Miller <davem@davemloft.net>
2016-08-31 03:42:14 +08:00
|
|
|
|
|
|
|
if (ret == -ECONNABORTED)
|
|
|
|
call->error = call->type->abort_to_error(call->abort_code);
|
|
|
|
else
|
|
|
|
call->error = ret;
|
|
|
|
call->state = AFS_CALL_COMPLETE;
|
|
|
|
return ret;
|
2007-04-27 06:55:03 +08:00
|
|
|
}
|