linux_old1/drivers/gpu/drm/radeon/radeon_atombios.c

1357 lines
41 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "atom.h"
#include "atom-bits.h"
/* from radeon_encoder.c */
extern uint32_t
radeon_get_encoder_id(struct drm_device *dev, uint32_t supported_device,
uint8_t dac);
extern void radeon_link_encoder_connector(struct drm_device *dev);
extern void
radeon_add_atom_encoder(struct drm_device *dev, uint32_t encoder_id,
uint32_t supported_device);
/* from radeon_connector.c */
extern void
radeon_add_atom_connector(struct drm_device *dev,
uint32_t connector_id,
uint32_t supported_device,
int connector_type,
struct radeon_i2c_bus_rec *i2c_bus,
bool linkb, uint32_t igp_lane_info);
/* from radeon_legacy_encoder.c */
extern void
radeon_add_legacy_encoder(struct drm_device *dev, uint32_t encoder_id,
uint32_t supported_device);
union atom_supported_devices {
struct _ATOM_SUPPORTED_DEVICES_INFO info;
struct _ATOM_SUPPORTED_DEVICES_INFO_2 info_2;
struct _ATOM_SUPPORTED_DEVICES_INFO_2d1 info_2d1;
};
static inline struct radeon_i2c_bus_rec radeon_lookup_gpio(struct drm_device
*dev, uint8_t id)
{
struct radeon_device *rdev = dev->dev_private;
struct atom_context *ctx = rdev->mode_info.atom_context;
ATOM_GPIO_I2C_ASSIGMENT gpio;
struct radeon_i2c_bus_rec i2c;
int index = GetIndexIntoMasterTable(DATA, GPIO_I2C_Info);
struct _ATOM_GPIO_I2C_INFO *i2c_info;
uint16_t data_offset;
memset(&i2c, 0, sizeof(struct radeon_i2c_bus_rec));
i2c.valid = false;
atom_parse_data_header(ctx, index, NULL, NULL, NULL, &data_offset);
i2c_info = (struct _ATOM_GPIO_I2C_INFO *)(ctx->bios + data_offset);
gpio = i2c_info->asGPIO_Info[id];
i2c.mask_clk_reg = le16_to_cpu(gpio.usClkMaskRegisterIndex) * 4;
i2c.mask_data_reg = le16_to_cpu(gpio.usDataMaskRegisterIndex) * 4;
i2c.put_clk_reg = le16_to_cpu(gpio.usClkEnRegisterIndex) * 4;
i2c.put_data_reg = le16_to_cpu(gpio.usDataEnRegisterIndex) * 4;
i2c.get_clk_reg = le16_to_cpu(gpio.usClkY_RegisterIndex) * 4;
i2c.get_data_reg = le16_to_cpu(gpio.usDataY_RegisterIndex) * 4;
i2c.a_clk_reg = le16_to_cpu(gpio.usClkA_RegisterIndex) * 4;
i2c.a_data_reg = le16_to_cpu(gpio.usDataA_RegisterIndex) * 4;
i2c.mask_clk_mask = (1 << gpio.ucClkMaskShift);
i2c.mask_data_mask = (1 << gpio.ucDataMaskShift);
i2c.put_clk_mask = (1 << gpio.ucClkEnShift);
i2c.put_data_mask = (1 << gpio.ucDataEnShift);
i2c.get_clk_mask = (1 << gpio.ucClkY_Shift);
i2c.get_data_mask = (1 << gpio.ucDataY_Shift);
i2c.a_clk_mask = (1 << gpio.ucClkA_Shift);
i2c.a_data_mask = (1 << gpio.ucDataA_Shift);
i2c.valid = true;
return i2c;
}
static bool radeon_atom_apply_quirks(struct drm_device *dev,
uint32_t supported_device,
int *connector_type,
struct radeon_i2c_bus_rec *i2c_bus,
uint8_t *line_mux)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
{
/* Asus M2A-VM HDMI board lists the DVI port as HDMI */
if ((dev->pdev->device == 0x791e) &&
(dev->pdev->subsystem_vendor == 0x1043) &&
(dev->pdev->subsystem_device == 0x826d)) {
if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) &&
(supported_device == ATOM_DEVICE_DFP3_SUPPORT))
*connector_type = DRM_MODE_CONNECTOR_DVID;
}
/* a-bit f-i90hd - ciaranm on #radeonhd - this board has no DVI */
if ((dev->pdev->device == 0x7941) &&
(dev->pdev->subsystem_vendor == 0x147b) &&
(dev->pdev->subsystem_device == 0x2412)) {
if (*connector_type == DRM_MODE_CONNECTOR_DVII)
return false;
}
/* Falcon NW laptop lists vga ddc line for LVDS */
if ((dev->pdev->device == 0x5653) &&
(dev->pdev->subsystem_vendor == 0x1462) &&
(dev->pdev->subsystem_device == 0x0291)) {
if (*connector_type == DRM_MODE_CONNECTOR_LVDS) {
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
i2c_bus->valid = false;
*line_mux = 53;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
/* Funky macbooks */
if ((dev->pdev->device == 0x71C5) &&
(dev->pdev->subsystem_vendor == 0x106b) &&
(dev->pdev->subsystem_device == 0x0080)) {
if ((supported_device == ATOM_DEVICE_CRT1_SUPPORT) ||
(supported_device == ATOM_DEVICE_DFP2_SUPPORT))
return false;
}
/* some BIOSes seem to report DAC on HDMI - they hurt me with their lies */
if ((*connector_type == DRM_MODE_CONNECTOR_HDMIA) ||
(*connector_type == DRM_MODE_CONNECTOR_HDMIB)) {
if (supported_device & (ATOM_DEVICE_CRT_SUPPORT)) {
return false;
}
}
/* ASUS HD 3600 XT board lists the DVI port as HDMI */
if ((dev->pdev->device == 0x9598) &&
(dev->pdev->subsystem_vendor == 0x1043) &&
(dev->pdev->subsystem_device == 0x01da)) {
if (*connector_type == DRM_MODE_CONNECTOR_HDMIB) {
*connector_type = DRM_MODE_CONNECTOR_DVID;
}
}
return true;
}
const int supported_devices_connector_convert[] = {
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_VGA,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_DVIA,
DRM_MODE_CONNECTOR_SVIDEO,
DRM_MODE_CONNECTOR_Composite,
DRM_MODE_CONNECTOR_LVDS,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_HDMIA,
DRM_MODE_CONNECTOR_HDMIB,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_DisplayPort
};
const int object_connector_convert[] = {
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVII,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_DVID,
DRM_MODE_CONNECTOR_VGA,
DRM_MODE_CONNECTOR_Composite,
DRM_MODE_CONNECTOR_SVIDEO,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_HDMIA,
DRM_MODE_CONNECTOR_HDMIB,
DRM_MODE_CONNECTOR_HDMIB,
DRM_MODE_CONNECTOR_LVDS,
DRM_MODE_CONNECTOR_9PinDIN,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_Unknown,
DRM_MODE_CONNECTOR_DisplayPort
};
bool radeon_get_atom_connector_info_from_object_table(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct atom_context *ctx = mode_info->atom_context;
int index = GetIndexIntoMasterTable(DATA, Object_Header);
uint16_t size, data_offset;
uint8_t frev, crev, line_mux = 0;
ATOM_CONNECTOR_OBJECT_TABLE *con_obj;
ATOM_DISPLAY_OBJECT_PATH_TABLE *path_obj;
ATOM_OBJECT_HEADER *obj_header;
int i, j, path_size, device_support;
int connector_type;
uint16_t igp_lane_info;
bool linkb;
struct radeon_i2c_bus_rec ddc_bus;
atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset);
if (data_offset == 0)
return false;
if (crev < 2)
return false;
obj_header = (ATOM_OBJECT_HEADER *) (ctx->bios + data_offset);
path_obj = (ATOM_DISPLAY_OBJECT_PATH_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usDisplayPathTableOffset));
con_obj = (ATOM_CONNECTOR_OBJECT_TABLE *)
(ctx->bios + data_offset +
le16_to_cpu(obj_header->usConnectorObjectTableOffset));
device_support = le16_to_cpu(obj_header->usDeviceSupport);
path_size = 0;
for (i = 0; i < path_obj->ucNumOfDispPath; i++) {
uint8_t *addr = (uint8_t *) path_obj->asDispPath;
ATOM_DISPLAY_OBJECT_PATH *path;
addr += path_size;
path = (ATOM_DISPLAY_OBJECT_PATH *) addr;
path_size += le16_to_cpu(path->usSize);
linkb = false;
if (device_support & le16_to_cpu(path->usDeviceTag)) {
uint8_t con_obj_id, con_obj_num, con_obj_type;
con_obj_id =
(le16_to_cpu(path->usConnObjectId) & OBJECT_ID_MASK)
>> OBJECT_ID_SHIFT;
con_obj_num =
(le16_to_cpu(path->usConnObjectId) & ENUM_ID_MASK)
>> ENUM_ID_SHIFT;
con_obj_type =
(le16_to_cpu(path->usConnObjectId) &
OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT;
if ((le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_TV1_SUPPORT)
|| (le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_TV2_SUPPORT)
|| (le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_CV_SUPPORT))
continue;
if ((rdev->family == CHIP_RS780) &&
(con_obj_id ==
CONNECTOR_OBJECT_ID_PCIE_CONNECTOR)) {
uint16_t igp_offset = 0;
ATOM_INTEGRATED_SYSTEM_INFO_V2 *igp_obj;
index =
GetIndexIntoMasterTable(DATA,
IntegratedSystemInfo);
atom_parse_data_header(ctx, index, &size, &frev,
&crev, &igp_offset);
if (crev >= 2) {
igp_obj =
(ATOM_INTEGRATED_SYSTEM_INFO_V2
*) (ctx->bios + igp_offset);
if (igp_obj) {
uint32_t slot_config, ct;
if (con_obj_num == 1)
slot_config =
igp_obj->
ulDDISlot1Config;
else
slot_config =
igp_obj->
ulDDISlot2Config;
ct = (slot_config >> 16) & 0xff;
connector_type =
object_connector_convert
[ct];
igp_lane_info =
slot_config & 0xffff;
} else
continue;
} else
continue;
} else {
igp_lane_info = 0;
connector_type =
object_connector_convert[con_obj_id];
}
if (connector_type == DRM_MODE_CONNECTOR_Unknown)
continue;
for (j = 0; j < ((le16_to_cpu(path->usSize) - 8) / 2);
j++) {
uint8_t enc_obj_id, enc_obj_num, enc_obj_type;
enc_obj_id =
(le16_to_cpu(path->usGraphicObjIds[j]) &
OBJECT_ID_MASK) >> OBJECT_ID_SHIFT;
enc_obj_num =
(le16_to_cpu(path->usGraphicObjIds[j]) &
ENUM_ID_MASK) >> ENUM_ID_SHIFT;
enc_obj_type =
(le16_to_cpu(path->usGraphicObjIds[j]) &
OBJECT_TYPE_MASK) >> OBJECT_TYPE_SHIFT;
/* FIXME: add support for router objects */
if (enc_obj_type == GRAPH_OBJECT_TYPE_ENCODER) {
if (enc_obj_num == 2)
linkb = true;
else
linkb = false;
radeon_add_atom_encoder(dev,
enc_obj_id,
le16_to_cpu
(path->
usDeviceTag));
}
}
/* look up gpio for ddc */
if ((le16_to_cpu(path->usDeviceTag) &
(ATOM_DEVICE_TV_SUPPORT | ATOM_DEVICE_CV_SUPPORT))
== 0) {
for (j = 0; j < con_obj->ucNumberOfObjects; j++) {
if (le16_to_cpu(path->usConnObjectId) ==
le16_to_cpu(con_obj->asObjects[j].
usObjectID)) {
ATOM_COMMON_RECORD_HEADER
*record =
(ATOM_COMMON_RECORD_HEADER
*)
(ctx->bios + data_offset +
le16_to_cpu(con_obj->
asObjects[j].
usRecordOffset));
ATOM_I2C_RECORD *i2c_record;
while (record->ucRecordType > 0
&& record->
ucRecordType <=
ATOM_MAX_OBJECT_RECORD_NUMBER) {
switch (record->
ucRecordType) {
case ATOM_I2C_RECORD_TYPE:
i2c_record =
(ATOM_I2C_RECORD
*) record;
line_mux =
i2c_record->
sucI2cId.
bfI2C_LineMux;
break;
}
record =
(ATOM_COMMON_RECORD_HEADER
*) ((char *)record
+
record->
ucRecordSize);
}
break;
}
}
} else
line_mux = 0;
if ((le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_TV1_SUPPORT)
|| (le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_TV2_SUPPORT)
|| (le16_to_cpu(path->usDeviceTag) ==
ATOM_DEVICE_CV_SUPPORT))
ddc_bus.valid = false;
else
ddc_bus = radeon_lookup_gpio(dev, line_mux);
radeon_add_atom_connector(dev,
le16_to_cpu(path->
usConnObjectId),
le16_to_cpu(path->
usDeviceTag),
connector_type, &ddc_bus,
linkb, igp_lane_info);
}
}
radeon_link_encoder_connector(dev);
return true;
}
struct bios_connector {
bool valid;
uint8_t line_mux;
uint16_t devices;
int connector_type;
struct radeon_i2c_bus_rec ddc_bus;
};
bool radeon_get_atom_connector_info_from_supported_devices_table(struct
drm_device
*dev)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
struct atom_context *ctx = mode_info->atom_context;
int index = GetIndexIntoMasterTable(DATA, SupportedDevicesInfo);
uint16_t size, data_offset;
uint8_t frev, crev;
uint16_t device_support;
uint8_t dac;
union atom_supported_devices *supported_devices;
int i, j;
struct bios_connector bios_connectors[ATOM_MAX_SUPPORTED_DEVICE];
atom_parse_data_header(ctx, index, &size, &frev, &crev, &data_offset);
supported_devices =
(union atom_supported_devices *)(ctx->bios + data_offset);
device_support = le16_to_cpu(supported_devices->info.usDeviceSupport);
for (i = 0; i < ATOM_MAX_SUPPORTED_DEVICE; i++) {
ATOM_CONNECTOR_INFO_I2C ci =
supported_devices->info.asConnInfo[i];
bios_connectors[i].valid = false;
if (!(device_support & (1 << i))) {
continue;
}
if (i == ATOM_DEVICE_CV_INDEX) {
DRM_DEBUG("Skipping Component Video\n");
continue;
}
bios_connectors[i].connector_type =
supported_devices_connector_convert[ci.sucConnectorInfo.
sbfAccess.
bfConnectorType];
if (bios_connectors[i].connector_type ==
DRM_MODE_CONNECTOR_Unknown)
continue;
dac = ci.sucConnectorInfo.sbfAccess.bfAssociatedDAC;
if ((rdev->family == CHIP_RS690) ||
(rdev->family == CHIP_RS740)) {
if ((i == ATOM_DEVICE_DFP2_INDEX)
&& (ci.sucI2cId.sbfAccess.bfI2C_LineMux == 2))
bios_connectors[i].line_mux =
ci.sucI2cId.sbfAccess.bfI2C_LineMux + 1;
else if ((i == ATOM_DEVICE_DFP3_INDEX)
&& (ci.sucI2cId.sbfAccess.bfI2C_LineMux == 1))
bios_connectors[i].line_mux =
ci.sucI2cId.sbfAccess.bfI2C_LineMux + 1;
else
bios_connectors[i].line_mux =
ci.sucI2cId.sbfAccess.bfI2C_LineMux;
} else
bios_connectors[i].line_mux =
ci.sucI2cId.sbfAccess.bfI2C_LineMux;
/* give tv unique connector ids */
if (i == ATOM_DEVICE_TV1_INDEX) {
bios_connectors[i].ddc_bus.valid = false;
bios_connectors[i].line_mux = 50;
} else if (i == ATOM_DEVICE_TV2_INDEX) {
bios_connectors[i].ddc_bus.valid = false;
bios_connectors[i].line_mux = 51;
} else if (i == ATOM_DEVICE_CV_INDEX) {
bios_connectors[i].ddc_bus.valid = false;
bios_connectors[i].line_mux = 52;
} else
bios_connectors[i].ddc_bus =
radeon_lookup_gpio(dev,
bios_connectors[i].line_mux);
/* Always set the connector type to VGA for CRT1/CRT2. if they are
* shared with a DVI port, we'll pick up the DVI connector when we
* merge the outputs. Some bioses incorrectly list VGA ports as DVI.
*/
if (i == ATOM_DEVICE_CRT1_INDEX || i == ATOM_DEVICE_CRT2_INDEX)
bios_connectors[i].connector_type =
DRM_MODE_CONNECTOR_VGA;
if (!radeon_atom_apply_quirks
(dev, (1 << i), &bios_connectors[i].connector_type,
&bios_connectors[i].ddc_bus, &bios_connectors[i].line_mux))
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
continue;
bios_connectors[i].valid = true;
bios_connectors[i].devices = (1 << i);
if (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom)
radeon_add_atom_encoder(dev,
radeon_get_encoder_id(dev,
(1 << i),
dac),
(1 << i));
else
radeon_add_legacy_encoder(dev,
radeon_get_encoder_id(dev,
(1 <<
i),
dac),
(1 << i));
}
/* combine shared connectors */
for (i = 0; i < ATOM_MAX_SUPPORTED_DEVICE; i++) {
if (bios_connectors[i].valid) {
for (j = 0; j < ATOM_MAX_SUPPORTED_DEVICE; j++) {
if (bios_connectors[j].valid && (i != j)) {
if (bios_connectors[i].line_mux ==
bios_connectors[j].line_mux) {
if (((bios_connectors[i].
devices &
(ATOM_DEVICE_DFP_SUPPORT))
&& (bios_connectors[j].
devices &
(ATOM_DEVICE_CRT_SUPPORT)))
||
((bios_connectors[j].
devices &
(ATOM_DEVICE_DFP_SUPPORT))
&& (bios_connectors[i].
devices &
(ATOM_DEVICE_CRT_SUPPORT)))) {
bios_connectors[i].
devices |=
bios_connectors[j].
devices;
bios_connectors[i].
connector_type =
DRM_MODE_CONNECTOR_DVII;
bios_connectors[j].
valid = false;
}
}
}
}
}
}
/* add the connectors */
for (i = 0; i < ATOM_MAX_SUPPORTED_DEVICE; i++) {
if (bios_connectors[i].valid)
radeon_add_atom_connector(dev,
bios_connectors[i].line_mux,
bios_connectors[i].devices,
bios_connectors[i].
connector_type,
&bios_connectors[i].ddc_bus,
false, 0);
}
radeon_link_encoder_connector(dev);
return true;
}
union firmware_info {
ATOM_FIRMWARE_INFO info;
ATOM_FIRMWARE_INFO_V1_2 info_12;
ATOM_FIRMWARE_INFO_V1_3 info_13;
ATOM_FIRMWARE_INFO_V1_4 info_14;
};
bool radeon_atom_get_clock_info(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, FirmwareInfo);
union firmware_info *firmware_info;
uint8_t frev, crev;
struct radeon_pll *p1pll = &rdev->clock.p1pll;
struct radeon_pll *p2pll = &rdev->clock.p2pll;
struct radeon_pll *spll = &rdev->clock.spll;
struct radeon_pll *mpll = &rdev->clock.mpll;
uint16_t data_offset;
atom_parse_data_header(mode_info->atom_context, index, NULL, &frev,
&crev, &data_offset);
firmware_info =
(union firmware_info *)(mode_info->atom_context->bios +
data_offset);
if (firmware_info) {
/* pixel clocks */
p1pll->reference_freq =
le16_to_cpu(firmware_info->info.usReferenceClock);
p1pll->reference_div = 0;
p1pll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Output);
p1pll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxPixelClockPLL_Output);
if (p1pll->pll_out_min == 0) {
if (ASIC_IS_AVIVO(rdev))
p1pll->pll_out_min = 64800;
else
p1pll->pll_out_min = 20000;
}
p1pll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinPixelClockPLL_Input);
p1pll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxPixelClockPLL_Input);
*p2pll = *p1pll;
/* system clock */
spll->reference_freq =
le16_to_cpu(firmware_info->info.usReferenceClock);
spll->reference_div = 0;
spll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Output);
spll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxEngineClockPLL_Output);
/* ??? */
if (spll->pll_out_min == 0) {
if (ASIC_IS_AVIVO(rdev))
spll->pll_out_min = 64800;
else
spll->pll_out_min = 20000;
}
spll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinEngineClockPLL_Input);
spll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxEngineClockPLL_Input);
/* memory clock */
mpll->reference_freq =
le16_to_cpu(firmware_info->info.usReferenceClock);
mpll->reference_div = 0;
mpll->pll_out_min =
le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Output);
mpll->pll_out_max =
le32_to_cpu(firmware_info->info.ulMaxMemoryClockPLL_Output);
/* ??? */
if (mpll->pll_out_min == 0) {
if (ASIC_IS_AVIVO(rdev))
mpll->pll_out_min = 64800;
else
mpll->pll_out_min = 20000;
}
mpll->pll_in_min =
le16_to_cpu(firmware_info->info.usMinMemoryClockPLL_Input);
mpll->pll_in_max =
le16_to_cpu(firmware_info->info.usMaxMemoryClockPLL_Input);
rdev->clock.default_sclk =
le32_to_cpu(firmware_info->info.ulDefaultEngineClock);
rdev->clock.default_mclk =
le32_to_cpu(firmware_info->info.ulDefaultMemoryClock);
return true;
}
return false;
}
struct radeon_encoder_int_tmds *radeon_atombios_get_tmds_info(struct
radeon_encoder
*encoder)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, TMDS_Info);
uint16_t data_offset;
struct _ATOM_TMDS_INFO *tmds_info;
uint8_t frev, crev;
uint16_t maxfreq;
int i;
struct radeon_encoder_int_tmds *tmds = NULL;
atom_parse_data_header(mode_info->atom_context, index, NULL, &frev,
&crev, &data_offset);
tmds_info =
(struct _ATOM_TMDS_INFO *)(mode_info->atom_context->bios +
data_offset);
if (tmds_info) {
tmds =
kzalloc(sizeof(struct radeon_encoder_int_tmds), GFP_KERNEL);
if (!tmds)
return NULL;
maxfreq = le16_to_cpu(tmds_info->usMaxFrequency);
for (i = 0; i < 4; i++) {
tmds->tmds_pll[i].freq =
le16_to_cpu(tmds_info->asMiscInfo[i].usFrequency);
tmds->tmds_pll[i].value =
tmds_info->asMiscInfo[i].ucPLL_ChargePump & 0x3f;
tmds->tmds_pll[i].value |=
(tmds_info->asMiscInfo[i].
ucPLL_VCO_Gain & 0x3f) << 6;
tmds->tmds_pll[i].value |=
(tmds_info->asMiscInfo[i].
ucPLL_DutyCycle & 0xf) << 12;
tmds->tmds_pll[i].value |=
(tmds_info->asMiscInfo[i].
ucPLL_VoltageSwing & 0xf) << 16;
DRM_DEBUG("TMDS PLL From ATOMBIOS %u %x\n",
tmds->tmds_pll[i].freq,
tmds->tmds_pll[i].value);
if (maxfreq == tmds->tmds_pll[i].freq) {
tmds->tmds_pll[i].freq = 0xffffffff;
break;
}
}
}
return tmds;
}
union lvds_info {
struct _ATOM_LVDS_INFO info;
struct _ATOM_LVDS_INFO_V12 info_12;
};
struct radeon_encoder_atom_dig *radeon_atombios_get_lvds_info(struct
radeon_encoder
*encoder)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, LVDS_Info);
uint16_t data_offset;
union lvds_info *lvds_info;
uint8_t frev, crev;
struct radeon_encoder_atom_dig *lvds = NULL;
atom_parse_data_header(mode_info->atom_context, index, NULL, &frev,
&crev, &data_offset);
lvds_info =
(union lvds_info *)(mode_info->atom_context->bios + data_offset);
if (lvds_info) {
lvds =
kzalloc(sizeof(struct radeon_encoder_atom_dig), GFP_KERNEL);
if (!lvds)
return NULL;
lvds->native_mode.dotclock =
le16_to_cpu(lvds_info->info.sLCDTiming.usPixClk) * 10;
lvds->native_mode.panel_xres =
le16_to_cpu(lvds_info->info.sLCDTiming.usHActive);
lvds->native_mode.panel_yres =
le16_to_cpu(lvds_info->info.sLCDTiming.usVActive);
lvds->native_mode.hblank =
le16_to_cpu(lvds_info->info.sLCDTiming.usHBlanking_Time);
lvds->native_mode.hoverplus =
le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncOffset);
lvds->native_mode.hsync_width =
le16_to_cpu(lvds_info->info.sLCDTiming.usHSyncWidth);
lvds->native_mode.vblank =
le16_to_cpu(lvds_info->info.sLCDTiming.usVBlanking_Time);
lvds->native_mode.voverplus =
le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncOffset);
lvds->native_mode.vsync_width =
le16_to_cpu(lvds_info->info.sLCDTiming.usVSyncWidth);
lvds->panel_pwr_delay =
le16_to_cpu(lvds_info->info.usOffDelayInMs);
lvds->lvds_misc = lvds_info->info.ucLVDS_Misc;
encoder->native_mode = lvds->native_mode;
}
return lvds;
}
struct radeon_encoder_primary_dac *
radeon_atombios_get_primary_dac_info(struct radeon_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, CompassionateData);
uint16_t data_offset;
struct _COMPASSIONATE_DATA *dac_info;
uint8_t frev, crev;
uint8_t bg, dac;
struct radeon_encoder_primary_dac *p_dac = NULL;
atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset);
dac_info = (struct _COMPASSIONATE_DATA *)(mode_info->atom_context->bios + data_offset);
if (dac_info) {
p_dac = kzalloc(sizeof(struct radeon_encoder_primary_dac), GFP_KERNEL);
if (!p_dac)
return NULL;
bg = dac_info->ucDAC1_BG_Adjustment;
dac = dac_info->ucDAC1_DAC_Adjustment;
p_dac->ps2_pdac_adj = (bg << 8) | (dac);
}
return p_dac;
}
bool radeon_atom_get_tv_timings(struct radeon_device *rdev, int index,
SET_CRTC_TIMING_PARAMETERS_PS_ALLOCATION *crtc_timing,
int32_t *pixel_clock)
{
struct radeon_mode_info *mode_info = &rdev->mode_info;
ATOM_ANALOG_TV_INFO *tv_info;
ATOM_ANALOG_TV_INFO_V1_2 *tv_info_v1_2;
ATOM_DTD_FORMAT *dtd_timings;
int data_index = GetIndexIntoMasterTable(DATA, AnalogTV_Info);
u8 frev, crev;
uint16_t data_offset;
atom_parse_data_header(mode_info->atom_context, data_index, NULL, &frev, &crev, &data_offset);
switch (crev) {
case 1:
tv_info = (ATOM_ANALOG_TV_INFO *)(mode_info->atom_context->bios + data_offset);
if (index > MAX_SUPPORTED_TV_TIMING)
return false;
crtc_timing->usH_Total = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Total);
crtc_timing->usH_Disp = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_Disp);
crtc_timing->usH_SyncStart = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncStart);
crtc_timing->usH_SyncWidth = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_H_SyncWidth);
crtc_timing->usV_Total = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Total);
crtc_timing->usV_Disp = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_Disp);
crtc_timing->usV_SyncStart = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncStart);
crtc_timing->usV_SyncWidth = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_V_SyncWidth);
crtc_timing->susModeMiscInfo = tv_info->aModeTimings[index].susModeMiscInfo;
crtc_timing->ucOverscanRight = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_OverscanRight);
crtc_timing->ucOverscanLeft = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_OverscanLeft);
crtc_timing->ucOverscanBottom = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_OverscanBottom);
crtc_timing->ucOverscanTop = le16_to_cpu(tv_info->aModeTimings[index].usCRTC_OverscanTop);
*pixel_clock = le16_to_cpu(tv_info->aModeTimings[index].usPixelClock) * 10;
if (index == 1) {
/* PAL timings appear to have wrong values for totals */
crtc_timing->usH_Total -= 1;
crtc_timing->usV_Total -= 1;
}
break;
case 2:
tv_info_v1_2 = (ATOM_ANALOG_TV_INFO_V1_2 *)(mode_info->atom_context->bios + data_offset);
if (index > MAX_SUPPORTED_TV_TIMING_V1_2)
return false;
dtd_timings = &tv_info_v1_2->aModeTimings[index];
crtc_timing->usH_Total = le16_to_cpu(dtd_timings->usHActive) + le16_to_cpu(dtd_timings->usHBlanking_Time);
crtc_timing->usH_Disp = le16_to_cpu(dtd_timings->usHActive);
crtc_timing->usH_SyncStart = le16_to_cpu(dtd_timings->usHActive) + le16_to_cpu(dtd_timings->usHSyncOffset);
crtc_timing->usH_SyncWidth = le16_to_cpu(dtd_timings->usHSyncWidth);
crtc_timing->usV_Total = le16_to_cpu(dtd_timings->usVActive) + le16_to_cpu(dtd_timings->usVBlanking_Time);
crtc_timing->usV_Disp = le16_to_cpu(dtd_timings->usVActive);
crtc_timing->usV_SyncStart = le16_to_cpu(dtd_timings->usVActive) + le16_to_cpu(dtd_timings->usVSyncOffset);
crtc_timing->usV_SyncWidth = le16_to_cpu(dtd_timings->usVSyncWidth);
crtc_timing->susModeMiscInfo.usAccess = le16_to_cpu(dtd_timings->susModeMiscInfo.usAccess);
*pixel_clock = le16_to_cpu(dtd_timings->usPixClk) * 10;
break;
}
return true;
}
struct radeon_encoder_tv_dac *
radeon_atombios_get_tv_dac_info(struct radeon_encoder *encoder)
{
struct drm_device *dev = encoder->base.dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_mode_info *mode_info = &rdev->mode_info;
int index = GetIndexIntoMasterTable(DATA, CompassionateData);
uint16_t data_offset;
struct _COMPASSIONATE_DATA *dac_info;
uint8_t frev, crev;
uint8_t bg, dac;
struct radeon_encoder_tv_dac *tv_dac = NULL;
atom_parse_data_header(mode_info->atom_context, index, NULL, &frev, &crev, &data_offset);
dac_info = (struct _COMPASSIONATE_DATA *)(mode_info->atom_context->bios + data_offset);
if (dac_info) {
tv_dac = kzalloc(sizeof(struct radeon_encoder_tv_dac), GFP_KERNEL);
if (!tv_dac)
return NULL;
bg = dac_info->ucDAC2_CRT2_BG_Adjustment;
dac = dac_info->ucDAC2_CRT2_DAC_Adjustment;
tv_dac->ps2_tvdac_adj = (bg << 16) | (dac << 20);
bg = dac_info->ucDAC2_PAL_BG_Adjustment;
dac = dac_info->ucDAC2_PAL_DAC_Adjustment;
tv_dac->pal_tvdac_adj = (bg << 16) | (dac << 20);
bg = dac_info->ucDAC2_NTSC_BG_Adjustment;
dac = dac_info->ucDAC2_NTSC_DAC_Adjustment;
tv_dac->ntsc_tvdac_adj = (bg << 16) | (dac << 20);
}
return tv_dac;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
void radeon_atom_set_clock_gating(struct radeon_device *rdev, int enable)
{
DYNAMIC_CLOCK_GATING_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, DynamicClockGating);
args.ucEnable = enable;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_static_pwrmgt_setup(struct radeon_device *rdev, int enable)
{
ENABLE_ASIC_STATIC_PWR_MGT_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, EnableASIC_StaticPwrMgt);
args.ucEnable = enable;
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_set_engine_clock(struct radeon_device *rdev,
uint32_t eng_clock)
{
SET_ENGINE_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetEngineClock);
args.ulTargetEngineClock = eng_clock; /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_set_memory_clock(struct radeon_device *rdev,
uint32_t mem_clock)
{
SET_MEMORY_CLOCK_PS_ALLOCATION args;
int index = GetIndexIntoMasterTable(COMMAND, SetMemoryClock);
if (rdev->flags & RADEON_IS_IGP)
return;
args.ulTargetMemoryClock = mem_clock; /* 10 khz */
atom_execute_table(rdev->mode_info.atom_context, index, (uint32_t *)&args);
}
void radeon_atom_initialize_bios_scratch_regs(struct drm_device *dev)
{
struct radeon_device *rdev = dev->dev_private;
uint32_t bios_2_scratch, bios_6_scratch;
if (rdev->family >= CHIP_R600) {
bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH);
} else {
bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH);
}
/* let the bios control the backlight */
bios_2_scratch &= ~ATOM_S2_VRI_BRIGHT_ENABLE;
/* tell the bios not to handle mode switching */
bios_6_scratch |= (ATOM_S6_ACC_BLOCK_DISPLAY_SWITCH | ATOM_S6_ACC_MODE);
if (rdev->family >= CHIP_R600) {
WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch);
WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch);
} else {
WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch);
WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch);
}
}
void radeon_atom_output_lock(struct drm_encoder *encoder, bool lock)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
uint32_t bios_6_scratch;
if (rdev->family >= CHIP_R600)
bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH);
else
bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH);
if (lock)
bios_6_scratch |= ATOM_S6_CRITICAL_STATE;
else
bios_6_scratch &= ~ATOM_S6_CRITICAL_STATE;
if (rdev->family >= CHIP_R600)
WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch);
else
WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch);
}
/* at some point we may want to break this out into individual functions */
void
radeon_atombios_connected_scratch_regs(struct drm_connector *connector,
struct drm_encoder *encoder,
bool connected)
{
struct drm_device *dev = connector->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_connector *radeon_connector =
to_radeon_connector(connector);
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
uint32_t bios_0_scratch, bios_3_scratch, bios_6_scratch;
if (rdev->family >= CHIP_R600) {
bios_0_scratch = RREG32(R600_BIOS_0_SCRATCH);
bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH);
bios_6_scratch = RREG32(R600_BIOS_6_SCRATCH);
} else {
bios_0_scratch = RREG32(RADEON_BIOS_0_SCRATCH);
bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH);
bios_6_scratch = RREG32(RADEON_BIOS_6_SCRATCH);
}
if ((radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_TV1_SUPPORT)) {
if (connected) {
DRM_DEBUG("TV1 connected\n");
bios_3_scratch |= ATOM_S3_TV1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_TV1;
} else {
DRM_DEBUG("TV1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_TV1_MASK;
bios_3_scratch &= ~ATOM_S3_TV1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_TV1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_CV_SUPPORT)) {
if (connected) {
DRM_DEBUG("CV connected\n");
bios_3_scratch |= ATOM_S3_CV_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_CV;
} else {
DRM_DEBUG("CV disconnected\n");
bios_0_scratch &= ~ATOM_S0_CV_MASK;
bios_3_scratch &= ~ATOM_S3_CV_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_CV;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_LCD1_SUPPORT)) {
if (connected) {
DRM_DEBUG("LCD1 connected\n");
bios_0_scratch |= ATOM_S0_LCD1;
bios_3_scratch |= ATOM_S3_LCD1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_LCD1;
} else {
DRM_DEBUG("LCD1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_LCD1;
bios_3_scratch &= ~ATOM_S3_LCD1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_LCD1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_CRT1_SUPPORT)) {
if (connected) {
DRM_DEBUG("CRT1 connected\n");
bios_0_scratch |= ATOM_S0_CRT1_COLOR;
bios_3_scratch |= ATOM_S3_CRT1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_CRT1;
} else {
DRM_DEBUG("CRT1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_CRT1_MASK;
bios_3_scratch &= ~ATOM_S3_CRT1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_CRT2_SUPPORT)) {
if (connected) {
DRM_DEBUG("CRT2 connected\n");
bios_0_scratch |= ATOM_S0_CRT2_COLOR;
bios_3_scratch |= ATOM_S3_CRT2_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_CRT2;
} else {
DRM_DEBUG("CRT2 disconnected\n");
bios_0_scratch &= ~ATOM_S0_CRT2_MASK;
bios_3_scratch &= ~ATOM_S3_CRT2_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_CRT2;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP1_SUPPORT)) {
if (connected) {
DRM_DEBUG("DFP1 connected\n");
bios_0_scratch |= ATOM_S0_DFP1;
bios_3_scratch |= ATOM_S3_DFP1_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP1;
} else {
DRM_DEBUG("DFP1 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP1;
bios_3_scratch &= ~ATOM_S3_DFP1_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP1;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP2_SUPPORT)) {
if (connected) {
DRM_DEBUG("DFP2 connected\n");
bios_0_scratch |= ATOM_S0_DFP2;
bios_3_scratch |= ATOM_S3_DFP2_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP2;
} else {
DRM_DEBUG("DFP2 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP2;
bios_3_scratch &= ~ATOM_S3_DFP2_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP2;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP3_SUPPORT)) {
if (connected) {
DRM_DEBUG("DFP3 connected\n");
bios_0_scratch |= ATOM_S0_DFP3;
bios_3_scratch |= ATOM_S3_DFP3_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP3;
} else {
DRM_DEBUG("DFP3 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP3;
bios_3_scratch &= ~ATOM_S3_DFP3_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP3;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP4_SUPPORT)) {
if (connected) {
DRM_DEBUG("DFP4 connected\n");
bios_0_scratch |= ATOM_S0_DFP4;
bios_3_scratch |= ATOM_S3_DFP4_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP4;
} else {
DRM_DEBUG("DFP4 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP4;
bios_3_scratch &= ~ATOM_S3_DFP4_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP4;
}
}
if ((radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) &&
(radeon_connector->devices & ATOM_DEVICE_DFP5_SUPPORT)) {
if (connected) {
DRM_DEBUG("DFP5 connected\n");
bios_0_scratch |= ATOM_S0_DFP5;
bios_3_scratch |= ATOM_S3_DFP5_ACTIVE;
bios_6_scratch |= ATOM_S6_ACC_REQ_DFP5;
} else {
DRM_DEBUG("DFP5 disconnected\n");
bios_0_scratch &= ~ATOM_S0_DFP5;
bios_3_scratch &= ~ATOM_S3_DFP5_ACTIVE;
bios_6_scratch &= ~ATOM_S6_ACC_REQ_DFP5;
}
}
if (rdev->family >= CHIP_R600) {
WREG32(R600_BIOS_0_SCRATCH, bios_0_scratch);
WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch);
WREG32(R600_BIOS_6_SCRATCH, bios_6_scratch);
} else {
WREG32(RADEON_BIOS_0_SCRATCH, bios_0_scratch);
WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch);
WREG32(RADEON_BIOS_6_SCRATCH, bios_6_scratch);
}
}
void
radeon_atombios_encoder_crtc_scratch_regs(struct drm_encoder *encoder, int crtc)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
uint32_t bios_3_scratch;
if (rdev->family >= CHIP_R600)
bios_3_scratch = RREG32(R600_BIOS_3_SCRATCH);
else
bios_3_scratch = RREG32(RADEON_BIOS_3_SCRATCH);
if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_TV1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 18);
}
if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_CV_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 24);
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_CRT1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 16);
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_CRT2_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 20);
}
if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_LCD1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 17);
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_DFP1_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 19);
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_DFP2_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 23);
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) {
bios_3_scratch &= ~ATOM_S3_DFP3_CRTC_ACTIVE;
bios_3_scratch |= (crtc << 25);
}
if (rdev->family >= CHIP_R600)
WREG32(R600_BIOS_3_SCRATCH, bios_3_scratch);
else
WREG32(RADEON_BIOS_3_SCRATCH, bios_3_scratch);
}
void
radeon_atombios_encoder_dpms_scratch_regs(struct drm_encoder *encoder, bool on)
{
struct drm_device *dev = encoder->dev;
struct radeon_device *rdev = dev->dev_private;
struct radeon_encoder *radeon_encoder = to_radeon_encoder(encoder);
uint32_t bios_2_scratch;
if (rdev->family >= CHIP_R600)
bios_2_scratch = RREG32(R600_BIOS_2_SCRATCH);
else
bios_2_scratch = RREG32(RADEON_BIOS_2_SCRATCH);
if (radeon_encoder->devices & ATOM_DEVICE_TV1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_TV1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_TV1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_CV_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_CV_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_CV_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_CRT1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_CRT1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_CRT2_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_CRT2_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_CRT2_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_LCD1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_LCD1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_LCD1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP1_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP1_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP1_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP2_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP2_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP2_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP3_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP3_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP3_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP4_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP4_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP4_DPMS_STATE;
}
if (radeon_encoder->devices & ATOM_DEVICE_DFP5_SUPPORT) {
if (on)
bios_2_scratch &= ~ATOM_S2_DFP5_DPMS_STATE;
else
bios_2_scratch |= ATOM_S2_DFP5_DPMS_STATE;
}
if (rdev->family >= CHIP_R600)
WREG32(R600_BIOS_2_SCRATCH, bios_2_scratch);
else
WREG32(RADEON_BIOS_2_SCRATCH, bios_2_scratch);
}