linux_old1/drivers/gpu/drm/radeon/radeon_display.c

715 lines
21 KiB
C
Raw Normal View History

drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
/*
* Copyright 2007-8 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Authors: Dave Airlie
* Alex Deucher
*/
#include "drmP.h"
#include "radeon_drm.h"
#include "radeon.h"
#include "atom.h"
#include <asm/div64.h>
#include "drm_crtc_helper.h"
#include "drm_edid.h"
static int radeon_ddc_dump(struct drm_connector *connector);
static void avivo_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
DRM_DEBUG("%d\n", radeon_crtc->crtc_id);
WREG32(AVIVO_DC_LUTA_CONTROL + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_BLUE + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_GREEN + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_BLACK_OFFSET_RED + radeon_crtc->crtc_offset, 0);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_BLUE + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_GREEN + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUTA_WHITE_OFFSET_RED + radeon_crtc->crtc_offset, 0xffff);
WREG32(AVIVO_DC_LUT_RW_SELECT, radeon_crtc->crtc_id);
WREG32(AVIVO_DC_LUT_RW_MODE, 0);
WREG32(AVIVO_DC_LUT_WRITE_EN_MASK, 0x0000003f);
WREG8(AVIVO_DC_LUT_RW_INDEX, 0);
for (i = 0; i < 256; i++) {
WREG32(AVIVO_DC_LUT_30_COLOR,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
WREG32(AVIVO_D1GRPH_LUT_SEL + radeon_crtc->crtc_offset, radeon_crtc->crtc_id);
}
static void legacy_crtc_load_lut(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
int i;
uint32_t dac2_cntl;
dac2_cntl = RREG32(RADEON_DAC_CNTL2);
if (radeon_crtc->crtc_id == 0)
dac2_cntl &= (uint32_t)~RADEON_DAC2_PALETTE_ACC_CTL;
else
dac2_cntl |= RADEON_DAC2_PALETTE_ACC_CTL;
WREG32(RADEON_DAC_CNTL2, dac2_cntl);
WREG8(RADEON_PALETTE_INDEX, 0);
for (i = 0; i < 256; i++) {
WREG32(RADEON_PALETTE_30_DATA,
(radeon_crtc->lut_r[i] << 20) |
(radeon_crtc->lut_g[i] << 10) |
(radeon_crtc->lut_b[i] << 0));
}
}
void radeon_crtc_load_lut(struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct radeon_device *rdev = dev->dev_private;
if (!crtc->enabled)
return;
if (ASIC_IS_AVIVO(rdev))
avivo_crtc_load_lut(crtc);
else
legacy_crtc_load_lut(crtc);
}
/** Sets the color ramps on behalf of RandR */
void radeon_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
u16 blue, int regno)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
if (regno == 0)
DRM_DEBUG("gamma set %d\n", radeon_crtc->crtc_id);
radeon_crtc->lut_r[regno] = red >> 6;
radeon_crtc->lut_g[regno] = green >> 6;
radeon_crtc->lut_b[regno] = blue >> 6;
}
static void radeon_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
u16 *blue, uint32_t size)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
int i, j;
if (size != 256) {
return;
}
if (crtc->fb == NULL) {
return;
}
if (crtc->fb->depth == 16) {
for (i = 0; i < 64; i++) {
if (i <= 31) {
for (j = 0; j < 8; j++) {
radeon_crtc->lut_r[i * 8 + j] = red[i] >> 6;
radeon_crtc->lut_b[i * 8 + j] = blue[i] >> 6;
}
}
for (j = 0; j < 4; j++)
radeon_crtc->lut_g[i * 4 + j] = green[i] >> 6;
}
} else {
for (i = 0; i < 256; i++) {
radeon_crtc->lut_r[i] = red[i] >> 6;
radeon_crtc->lut_g[i] = green[i] >> 6;
radeon_crtc->lut_b[i] = blue[i] >> 6;
}
}
radeon_crtc_load_lut(crtc);
}
static void radeon_crtc_destroy(struct drm_crtc *crtc)
{
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
drm_crtc_cleanup(crtc);
kfree(radeon_crtc);
}
static const struct drm_crtc_funcs radeon_crtc_funcs = {
.cursor_set = radeon_crtc_cursor_set,
.cursor_move = radeon_crtc_cursor_move,
.gamma_set = radeon_crtc_gamma_set,
.set_config = drm_crtc_helper_set_config,
.destroy = radeon_crtc_destroy,
};
static void radeon_crtc_init(struct drm_device *dev, int index)
{
struct radeon_device *rdev = dev->dev_private;
struct radeon_crtc *radeon_crtc;
int i;
radeon_crtc = kzalloc(sizeof(struct radeon_crtc) + (RADEONFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
if (radeon_crtc == NULL)
return;
drm_crtc_init(dev, &radeon_crtc->base, &radeon_crtc_funcs);
drm_mode_crtc_set_gamma_size(&radeon_crtc->base, 256);
radeon_crtc->crtc_id = index;
rdev->mode_info.crtcs[index] = radeon_crtc;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
#if 0
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
radeon_crtc->mode_set.crtc = &radeon_crtc->base;
radeon_crtc->mode_set.connectors = (struct drm_connector **)(radeon_crtc + 1);
radeon_crtc->mode_set.num_connectors = 0;
#endif
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
for (i = 0; i < 256; i++) {
radeon_crtc->lut_r[i] = i << 2;
radeon_crtc->lut_g[i] = i << 2;
radeon_crtc->lut_b[i] = i << 2;
}
if (rdev->is_atom_bios && (ASIC_IS_AVIVO(rdev) || radeon_r4xx_atom))
radeon_atombios_init_crtc(dev, radeon_crtc);
else
radeon_legacy_init_crtc(dev, radeon_crtc);
}
static const char *encoder_names[34] = {
"NONE",
"INTERNAL_LVDS",
"INTERNAL_TMDS1",
"INTERNAL_TMDS2",
"INTERNAL_DAC1",
"INTERNAL_DAC2",
"INTERNAL_SDVOA",
"INTERNAL_SDVOB",
"SI170B",
"CH7303",
"CH7301",
"INTERNAL_DVO1",
"EXTERNAL_SDVOA",
"EXTERNAL_SDVOB",
"TITFP513",
"INTERNAL_LVTM1",
"VT1623",
"HDMI_SI1930",
"HDMI_INTERNAL",
"INTERNAL_KLDSCP_TMDS1",
"INTERNAL_KLDSCP_DVO1",
"INTERNAL_KLDSCP_DAC1",
"INTERNAL_KLDSCP_DAC2",
"SI178",
"MVPU_FPGA",
"INTERNAL_DDI",
"VT1625",
"HDMI_SI1932",
"DP_AN9801",
"DP_DP501",
"INTERNAL_UNIPHY",
"INTERNAL_KLDSCP_LVTMA",
"INTERNAL_UNIPHY1",
"INTERNAL_UNIPHY2",
};
static const char *connector_names[13] = {
"Unknown",
"VGA",
"DVI-I",
"DVI-D",
"DVI-A",
"Composite",
"S-video",
"LVDS",
"Component",
"DIN",
"DisplayPort",
"HDMI-A",
"HDMI-B",
};
static void radeon_print_display_setup(struct drm_device *dev)
{
struct drm_connector *connector;
struct radeon_connector *radeon_connector;
struct drm_encoder *encoder;
struct radeon_encoder *radeon_encoder;
uint32_t devices;
int i = 0;
DRM_INFO("Radeon Display Connectors\n");
list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
radeon_connector = to_radeon_connector(connector);
DRM_INFO("Connector %d:\n", i);
DRM_INFO(" %s\n", connector_names[connector->connector_type]);
if (radeon_connector->ddc_bus)
DRM_INFO(" DDC: 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x 0x%x\n",
radeon_connector->ddc_bus->rec.mask_clk_reg,
radeon_connector->ddc_bus->rec.mask_data_reg,
radeon_connector->ddc_bus->rec.a_clk_reg,
radeon_connector->ddc_bus->rec.a_data_reg,
radeon_connector->ddc_bus->rec.put_clk_reg,
radeon_connector->ddc_bus->rec.put_data_reg,
radeon_connector->ddc_bus->rec.get_clk_reg,
radeon_connector->ddc_bus->rec.get_data_reg);
DRM_INFO(" Encoders:\n");
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
radeon_encoder = to_radeon_encoder(encoder);
devices = radeon_encoder->devices & radeon_connector->devices;
if (devices) {
if (devices & ATOM_DEVICE_CRT1_SUPPORT)
DRM_INFO(" CRT1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_CRT2_SUPPORT)
DRM_INFO(" CRT2: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_LCD1_SUPPORT)
DRM_INFO(" LCD1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP1_SUPPORT)
DRM_INFO(" DFP1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP2_SUPPORT)
DRM_INFO(" DFP2: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP3_SUPPORT)
DRM_INFO(" DFP3: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP4_SUPPORT)
DRM_INFO(" DFP4: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_DFP5_SUPPORT)
DRM_INFO(" DFP5: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_TV1_SUPPORT)
DRM_INFO(" TV1: %s\n", encoder_names[radeon_encoder->encoder_id]);
if (devices & ATOM_DEVICE_CV_SUPPORT)
DRM_INFO(" CV: %s\n", encoder_names[radeon_encoder->encoder_id]);
}
}
i++;
}
}
static bool radeon_setup_enc_conn(struct drm_device *dev)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
{
struct radeon_device *rdev = dev->dev_private;
struct drm_connector *drm_connector;
bool ret = false;
if (rdev->bios) {
if (rdev->is_atom_bios) {
if (rdev->family >= CHIP_R600)
ret = radeon_get_atom_connector_info_from_object_table(dev);
else
ret = radeon_get_atom_connector_info_from_supported_devices_table(dev);
} else
ret = radeon_get_legacy_connector_info_from_bios(dev);
} else {
if (!ASIC_IS_AVIVO(rdev))
ret = radeon_get_legacy_connector_info_from_table(dev);
}
if (ret) {
radeon_print_display_setup(dev);
list_for_each_entry(drm_connector, &dev->mode_config.connector_list, head)
radeon_ddc_dump(drm_connector);
}
return ret;
}
int radeon_ddc_get_modes(struct radeon_connector *radeon_connector)
{
struct edid *edid;
int ret = 0;
if (!radeon_connector->ddc_bus)
return -1;
if (!radeon_connector->edid) {
radeon_i2c_do_lock(radeon_connector, 1);
edid = drm_get_edid(&radeon_connector->base, &radeon_connector->ddc_bus->adapter);
radeon_i2c_do_lock(radeon_connector, 0);
} else
edid = radeon_connector->edid;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
if (edid) {
/* update digital bits here */
if (edid->input & DRM_EDID_INPUT_DIGITAL)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
radeon_connector->use_digital = 1;
else
radeon_connector->use_digital = 0;
drm_mode_connector_update_edid_property(&radeon_connector->base, edid);
ret = drm_add_edid_modes(&radeon_connector->base, edid);
kfree(edid);
return ret;
}
drm_mode_connector_update_edid_property(&radeon_connector->base, NULL);
return -1;
}
static int radeon_ddc_dump(struct drm_connector *connector)
{
struct edid *edid;
struct radeon_connector *radeon_connector = to_radeon_connector(connector);
int ret = 0;
if (!radeon_connector->ddc_bus)
return -1;
radeon_i2c_do_lock(radeon_connector, 1);
edid = drm_get_edid(connector, &radeon_connector->ddc_bus->adapter);
radeon_i2c_do_lock(radeon_connector, 0);
if (edid) {
kfree(edid);
}
return ret;
}
static inline uint32_t radeon_div(uint64_t n, uint32_t d)
{
uint64_t mod;
n += d / 2;
mod = do_div(n, d);
return n;
}
void radeon_compute_pll(struct radeon_pll *pll,
uint64_t freq,
uint32_t *dot_clock_p,
uint32_t *fb_div_p,
uint32_t *frac_fb_div_p,
uint32_t *ref_div_p,
uint32_t *post_div_p,
int flags)
{
uint32_t min_ref_div = pll->min_ref_div;
uint32_t max_ref_div = pll->max_ref_div;
uint32_t min_fractional_feed_div = 0;
uint32_t max_fractional_feed_div = 0;
uint32_t best_vco = pll->best_vco;
uint32_t best_post_div = 1;
uint32_t best_ref_div = 1;
uint32_t best_feedback_div = 1;
uint32_t best_frac_feedback_div = 0;
uint32_t best_freq = -1;
uint32_t best_error = 0xffffffff;
uint32_t best_vco_diff = 1;
uint32_t post_div;
DRM_DEBUG("PLL freq %llu %u %u\n", freq, pll->min_ref_div, pll->max_ref_div);
freq = freq * 1000;
if (flags & RADEON_PLL_USE_REF_DIV)
min_ref_div = max_ref_div = pll->reference_div;
else {
while (min_ref_div < max_ref_div-1) {
uint32_t mid = (min_ref_div + max_ref_div) / 2;
uint32_t pll_in = pll->reference_freq / mid;
if (pll_in < pll->pll_in_min)
max_ref_div = mid;
else if (pll_in > pll->pll_in_max)
min_ref_div = mid;
else
break;
}
}
if (flags & RADEON_PLL_USE_FRAC_FB_DIV) {
min_fractional_feed_div = pll->min_frac_feedback_div;
max_fractional_feed_div = pll->max_frac_feedback_div;
}
for (post_div = pll->min_post_div; post_div <= pll->max_post_div; ++post_div) {
uint32_t ref_div;
if ((flags & RADEON_PLL_NO_ODD_POST_DIV) && (post_div & 1))
continue;
/* legacy radeons only have a few post_divs */
if (flags & RADEON_PLL_LEGACY) {
if ((post_div == 5) ||
(post_div == 7) ||
(post_div == 9) ||
(post_div == 10) ||
(post_div == 11) ||
(post_div == 13) ||
(post_div == 14) ||
(post_div == 15))
continue;
}
for (ref_div = min_ref_div; ref_div <= max_ref_div; ++ref_div) {
uint32_t feedback_div, current_freq = 0, error, vco_diff;
uint32_t pll_in = pll->reference_freq / ref_div;
uint32_t min_feed_div = pll->min_feedback_div;
uint32_t max_feed_div = pll->max_feedback_div + 1;
if (pll_in < pll->pll_in_min || pll_in > pll->pll_in_max)
continue;
while (min_feed_div < max_feed_div) {
uint32_t vco;
uint32_t min_frac_feed_div = min_fractional_feed_div;
uint32_t max_frac_feed_div = max_fractional_feed_div + 1;
uint32_t frac_feedback_div;
uint64_t tmp;
feedback_div = (min_feed_div + max_feed_div) / 2;
tmp = (uint64_t)pll->reference_freq * feedback_div;
vco = radeon_div(tmp, ref_div);
if (vco < pll->pll_out_min) {
min_feed_div = feedback_div + 1;
continue;
} else if (vco > pll->pll_out_max) {
max_feed_div = feedback_div;
continue;
}
while (min_frac_feed_div < max_frac_feed_div) {
frac_feedback_div = (min_frac_feed_div + max_frac_feed_div) / 2;
tmp = (uint64_t)pll->reference_freq * 10000 * feedback_div;
tmp += (uint64_t)pll->reference_freq * 1000 * frac_feedback_div;
current_freq = radeon_div(tmp, ref_div * post_div);
if (flags & RADEON_PLL_PREFER_CLOSEST_LOWER) {
error = freq - current_freq;
error = error < 0 ? 0xffffffff : error;
} else
error = abs(current_freq - freq);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
vco_diff = abs(vco - best_vco);
if ((best_vco == 0 && error < best_error) ||
(best_vco != 0 &&
(error < best_error - 100 ||
(abs(error - best_error) < 100 && vco_diff < best_vco_diff)))) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if (current_freq == freq) {
if (best_freq == -1) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
} else if (((flags & RADEON_PLL_PREFER_LOW_REF_DIV) && (ref_div < best_ref_div)) ||
((flags & RADEON_PLL_PREFER_HIGH_REF_DIV) && (ref_div > best_ref_div)) ||
((flags & RADEON_PLL_PREFER_LOW_FB_DIV) && (feedback_div < best_feedback_div)) ||
((flags & RADEON_PLL_PREFER_HIGH_FB_DIV) && (feedback_div > best_feedback_div)) ||
((flags & RADEON_PLL_PREFER_LOW_POST_DIV) && (post_div < best_post_div)) ||
((flags & RADEON_PLL_PREFER_HIGH_POST_DIV) && (post_div > best_post_div))) {
best_post_div = post_div;
best_ref_div = ref_div;
best_feedback_div = feedback_div;
best_frac_feedback_div = frac_feedback_div;
best_freq = current_freq;
best_error = error;
best_vco_diff = vco_diff;
}
}
if (current_freq < freq)
min_frac_feed_div = frac_feedback_div + 1;
else
max_frac_feed_div = frac_feedback_div;
}
if (current_freq < freq)
min_feed_div = feedback_div + 1;
else
max_feed_div = feedback_div;
}
}
}
*dot_clock_p = best_freq / 10000;
*fb_div_p = best_feedback_div;
*frac_fb_div_p = best_frac_feedback_div;
*ref_div_p = best_ref_div;
*post_div_p = best_post_div;
}
static void radeon_user_framebuffer_destroy(struct drm_framebuffer *fb)
{
struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb);
struct drm_device *dev = fb->dev;
if (fb->fbdev)
radeonfb_remove(dev, fb);
if (radeon_fb->obj) {
radeon_gem_object_unpin(radeon_fb->obj);
mutex_lock(&dev->struct_mutex);
drm_gem_object_unreference(radeon_fb->obj);
mutex_unlock(&dev->struct_mutex);
}
drm_framebuffer_cleanup(fb);
kfree(radeon_fb);
}
static int radeon_user_framebuffer_create_handle(struct drm_framebuffer *fb,
struct drm_file *file_priv,
unsigned int *handle)
{
struct radeon_framebuffer *radeon_fb = to_radeon_framebuffer(fb);
return drm_gem_handle_create(file_priv, radeon_fb->obj, handle);
}
static const struct drm_framebuffer_funcs radeon_fb_funcs = {
.destroy = radeon_user_framebuffer_destroy,
.create_handle = radeon_user_framebuffer_create_handle,
};
struct drm_framebuffer *
radeon_framebuffer_create(struct drm_device *dev,
struct drm_mode_fb_cmd *mode_cmd,
struct drm_gem_object *obj)
{
struct radeon_framebuffer *radeon_fb;
radeon_fb = kzalloc(sizeof(*radeon_fb), GFP_KERNEL);
if (radeon_fb == NULL) {
return NULL;
}
drm_framebuffer_init(dev, &radeon_fb->base, &radeon_fb_funcs);
drm_helper_mode_fill_fb_struct(&radeon_fb->base, mode_cmd);
radeon_fb->obj = obj;
return &radeon_fb->base;
}
static struct drm_framebuffer *
radeon_user_framebuffer_create(struct drm_device *dev,
struct drm_file *file_priv,
struct drm_mode_fb_cmd *mode_cmd)
{
struct drm_gem_object *obj;
obj = drm_gem_object_lookup(dev, file_priv, mode_cmd->handle);
return radeon_framebuffer_create(dev, mode_cmd, obj);
}
static const struct drm_mode_config_funcs radeon_mode_funcs = {
.fb_create = radeon_user_framebuffer_create,
.fb_changed = radeonfb_probe,
};
int radeon_modeset_init(struct radeon_device *rdev)
{
int num_crtc = 2, i;
int ret;
drm_mode_config_init(rdev->ddev);
rdev->mode_info.mode_config_initialized = true;
rdev->ddev->mode_config.funcs = (void *)&radeon_mode_funcs;
if (ASIC_IS_AVIVO(rdev)) {
rdev->ddev->mode_config.max_width = 8192;
rdev->ddev->mode_config.max_height = 8192;
} else {
rdev->ddev->mode_config.max_width = 4096;
rdev->ddev->mode_config.max_height = 4096;
}
rdev->ddev->mode_config.fb_base = rdev->mc.aper_base;
/* allocate crtcs - TODO single crtc */
for (i = 0; i < num_crtc; i++) {
radeon_crtc_init(rdev->ddev, i);
}
/* okay we should have all the bios connectors */
ret = radeon_setup_enc_conn(rdev->ddev);
if (!ret) {
return ret;
}
drm_helper_initial_config(rdev->ddev);
return 0;
}
void radeon_modeset_fini(struct radeon_device *rdev)
{
if (rdev->mode_info.mode_config_initialized) {
drm_mode_config_cleanup(rdev->ddev);
rdev->mode_info.mode_config_initialized = false;
}
}
bool radeon_crtc_scaling_mode_fixup(struct drm_crtc *crtc,
struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
{
struct drm_device *dev = crtc->dev;
struct drm_encoder *encoder;
struct radeon_crtc *radeon_crtc = to_radeon_crtc(crtc);
struct radeon_encoder *radeon_encoder;
bool first = true;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
radeon_encoder = to_radeon_encoder(encoder);
if (encoder->crtc != crtc)
continue;
if (first) {
radeon_crtc->rmx_type = radeon_encoder->rmx_type;
memcpy(&radeon_crtc->native_mode,
&radeon_encoder->native_mode,
sizeof(struct radeon_native_mode));
first = false;
} else {
if (radeon_crtc->rmx_type != radeon_encoder->rmx_type) {
/* WARNING: Right now this can't happen but
* in the future we need to check that scaling
* are consistent accross different encoder
* (ie all encoder can work with the same
* scaling).
*/
DRM_ERROR("Scaling not consistent accross encoder.\n");
return false;
}
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
}
if (radeon_crtc->rmx_type != RMX_OFF) {
fixed20_12 a, b;
a.full = rfixed_const(crtc->mode.vdisplay);
b.full = rfixed_const(radeon_crtc->native_mode.panel_xres);
radeon_crtc->vsc.full = rfixed_div(a, b);
a.full = rfixed_const(crtc->mode.hdisplay);
b.full = rfixed_const(radeon_crtc->native_mode.panel_yres);
radeon_crtc->hsc.full = rfixed_div(a, b);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
} else {
radeon_crtc->vsc.full = rfixed_const(1);
radeon_crtc->hsc.full = rfixed_const(1);
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}
return true;
drm/radeon: introduce kernel modesetting for radeon hardware Add kernel modesetting support to radeon driver, use the ttm memory manager to manage memory and DRM/GEM to provide userspace API. In order to avoid backward compatibility issue and to allow clean design and code the radeon kernel modesetting use different code path than old radeon/drm driver. When kernel modesetting is enabled the IOCTL of radeon/drm driver are considered as invalid and an error message is printed in the log and they return failure. KMS enabled userspace will use new API to talk with the radeon/drm driver. The new API provide functions to create/destroy/share/mmap buffer object which are then managed by the kernel memory manager (here TTM). In order to submit command to the GPU the userspace provide a buffer holding the command stream, along this buffer userspace have to provide a list of buffer object used by the command stream. The kernel radeon driver will then place buffer in GPU accessible memory and will update command stream to reflect the position of the different buffers. The kernel will also perform security check on command stream provided by the user, we want to catch and forbid any illegal use of the GPU such as DMA into random system memory or into memory not owned by the process supplying the command stream. This part of the code is still incomplete and this why we propose that patch as a staging driver addition, future security might forbid current experimental userspace to run. This code support the following hardware : R1XX,R2XX,R3XX,R4XX,R5XX (radeon up to X1950). Works is underway to provide support for R6XX, R7XX and newer hardware (radeon from HD2XXX to HD4XXX). Authors: Jerome Glisse <jglisse@redhat.com> Dave Airlie <airlied@redhat.com> Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Jerome Glisse <jglisse@redhat.com> Signed-off-by: Dave Airlie <airlied@redhat.com> Signed-off-by: Alex Deucher <alexdeucher@gmail.com> Signed-off-by: Dave Airlie <airlied@redhat.com>
2009-06-05 20:42:42 +08:00
}