linux_old1/drivers/mfd/twl4030-irq.c

794 lines
20 KiB
C
Raw Normal View History

/*
* twl4030-irq.c - TWL4030/TPS659x0 irq support
*
* Copyright (C) 2005-2006 Texas Instruments, Inc.
*
* Modifications to defer interrupt handling to a kernel thread:
* Copyright (C) 2006 MontaVista Software, Inc.
*
* Based on tlv320aic23.c:
* Copyright (c) by Kai Svahn <kai.svahn@nokia.com>
*
* Code cleanup and modifications to IRQ handler.
* by syed khasim <x0khasim@ti.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/export.h>
#include <linux/interrupt.h>
#include <linux/irq.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/of.h>
#include <linux/irqdomain.h>
#include <linux/i2c/twl.h>
#include "twl-core.h"
/*
* TWL4030 IRQ handling has two stages in hardware, and thus in software.
* The Primary Interrupt Handler (PIH) stage exposes status bits saying
* which Secondary Interrupt Handler (SIH) stage is raising an interrupt.
* SIH modules are more traditional IRQ components, which support per-IRQ
* enable/disable and trigger controls; they do most of the work.
*
* These chips are designed to support IRQ handling from two different
* I2C masters. Each has a dedicated IRQ line, and dedicated IRQ status
* and mask registers in the PIH and SIH modules.
*
* We set up IRQs starting at a platform-specified base, always starting
* with PIH and the SIH for PWR_INT and then usually adding GPIO:
* base + 0 .. base + 7 PIH
* base + 8 .. base + 15 SIH for PWR_INT
* base + 16 .. base + 33 SIH for GPIO
*/
#define TWL4030_CORE_NR_IRQS 8
#define TWL4030_PWR_NR_IRQS 8
/* PIH register offsets */
#define REG_PIH_ISR_P1 0x01
#define REG_PIH_ISR_P2 0x02
#define REG_PIH_SIR 0x03 /* for testing */
/* Linux could (eventually) use either IRQ line */
static int irq_line;
struct sih {
char name[8];
u8 module; /* module id */
u8 control_offset; /* for SIH_CTRL */
bool set_cor;
u8 bits; /* valid in isr/imr */
u8 bytes_ixr; /* bytelen of ISR/IMR/SIR */
u8 edr_offset;
u8 bytes_edr; /* bytelen of EDR */
u8 irq_lines; /* number of supported irq lines */
/* SIR ignored -- set interrupt, for testing only */
struct sih_irq_data {
u8 isr_offset;
u8 imr_offset;
} mask[2];
/* + 2 bytes padding */
};
static const struct sih *sih_modules;
static int nr_sih_modules;
#define SIH_INITIALIZER(modname, nbits) \
.module = TWL4030_MODULE_ ## modname, \
.control_offset = TWL4030_ ## modname ## _SIH_CTRL, \
.bits = nbits, \
.bytes_ixr = DIV_ROUND_UP(nbits, 8), \
.edr_offset = TWL4030_ ## modname ## _EDR, \
.bytes_edr = DIV_ROUND_UP((2*(nbits)), 8), \
.irq_lines = 2, \
.mask = { { \
.isr_offset = TWL4030_ ## modname ## _ISR1, \
.imr_offset = TWL4030_ ## modname ## _IMR1, \
}, \
{ \
.isr_offset = TWL4030_ ## modname ## _ISR2, \
.imr_offset = TWL4030_ ## modname ## _IMR2, \
}, },
/* register naming policies are inconsistent ... */
#define TWL4030_INT_PWR_EDR TWL4030_INT_PWR_EDR1
#define TWL4030_MODULE_KEYPAD_KEYP TWL4030_MODULE_KEYPAD
#define TWL4030_MODULE_INT_PWR TWL4030_MODULE_INT
/*
* Order in this table matches order in PIH_ISR. That is,
* BIT(n) in PIH_ISR is sih_modules[n].
*/
/* sih_modules_twl4030 is used both in twl4030 and twl5030 */
static const struct sih sih_modules_twl4030[6] = {
[0] = {
.name = "gpio",
.module = TWL4030_MODULE_GPIO,
.control_offset = REG_GPIO_SIH_CTRL,
.set_cor = true,
.bits = TWL4030_GPIO_MAX,
.bytes_ixr = 3,
/* Note: *all* of these IRQs default to no-trigger */
.edr_offset = REG_GPIO_EDR1,
.bytes_edr = 5,
.irq_lines = 2,
.mask = { {
.isr_offset = REG_GPIO_ISR1A,
.imr_offset = REG_GPIO_IMR1A,
}, {
.isr_offset = REG_GPIO_ISR1B,
.imr_offset = REG_GPIO_IMR1B,
}, },
},
[1] = {
.name = "keypad",
.set_cor = true,
SIH_INITIALIZER(KEYPAD_KEYP, 4)
},
[2] = {
.name = "bci",
.module = TWL4030_MODULE_INTERRUPTS,
.control_offset = TWL4030_INTERRUPTS_BCISIHCTRL,
.set_cor = true,
.bits = 12,
.bytes_ixr = 2,
.edr_offset = TWL4030_INTERRUPTS_BCIEDR1,
/* Note: most of these IRQs default to no-trigger */
.bytes_edr = 3,
.irq_lines = 2,
.mask = { {
.isr_offset = TWL4030_INTERRUPTS_BCIISR1A,
.imr_offset = TWL4030_INTERRUPTS_BCIIMR1A,
}, {
.isr_offset = TWL4030_INTERRUPTS_BCIISR1B,
.imr_offset = TWL4030_INTERRUPTS_BCIIMR1B,
}, },
},
[3] = {
.name = "madc",
SIH_INITIALIZER(MADC, 4)
},
[4] = {
/* USB doesn't use the same SIH organization */
.name = "usb",
},
[5] = {
.name = "power",
.set_cor = true,
SIH_INITIALIZER(INT_PWR, 8)
},
/* there are no SIH modules #6 or #7 ... */
};
static const struct sih sih_modules_twl5031[8] = {
[0] = {
.name = "gpio",
.module = TWL4030_MODULE_GPIO,
.control_offset = REG_GPIO_SIH_CTRL,
.set_cor = true,
.bits = TWL4030_GPIO_MAX,
.bytes_ixr = 3,
/* Note: *all* of these IRQs default to no-trigger */
.edr_offset = REG_GPIO_EDR1,
.bytes_edr = 5,
.irq_lines = 2,
.mask = { {
.isr_offset = REG_GPIO_ISR1A,
.imr_offset = REG_GPIO_IMR1A,
}, {
.isr_offset = REG_GPIO_ISR1B,
.imr_offset = REG_GPIO_IMR1B,
}, },
},
[1] = {
.name = "keypad",
.set_cor = true,
SIH_INITIALIZER(KEYPAD_KEYP, 4)
},
[2] = {
.name = "bci",
.module = TWL5031_MODULE_INTERRUPTS,
.control_offset = TWL5031_INTERRUPTS_BCISIHCTRL,
.bits = 7,
.bytes_ixr = 1,
.edr_offset = TWL5031_INTERRUPTS_BCIEDR1,
/* Note: most of these IRQs default to no-trigger */
.bytes_edr = 2,
.irq_lines = 2,
.mask = { {
.isr_offset = TWL5031_INTERRUPTS_BCIISR1,
.imr_offset = TWL5031_INTERRUPTS_BCIIMR1,
}, {
.isr_offset = TWL5031_INTERRUPTS_BCIISR2,
.imr_offset = TWL5031_INTERRUPTS_BCIIMR2,
}, },
},
[3] = {
.name = "madc",
SIH_INITIALIZER(MADC, 4)
},
[4] = {
/* USB doesn't use the same SIH organization */
.name = "usb",
},
[5] = {
.name = "power",
.set_cor = true,
SIH_INITIALIZER(INT_PWR, 8)
},
[6] = {
/*
* ECI/DBI doesn't use the same SIH organization.
* For example, it supports only one interrupt output line.
* That is, the interrupts are seen on both INT1 and INT2 lines.
*/
.name = "eci_dbi",
.module = TWL5031_MODULE_ACCESSORY,
.bits = 9,
.bytes_ixr = 2,
.irq_lines = 1,
.mask = { {
.isr_offset = TWL5031_ACIIDR_LSB,
.imr_offset = TWL5031_ACIIMR_LSB,
}, },
},
[7] = {
/* Audio accessory */
.name = "audio",
.module = TWL5031_MODULE_ACCESSORY,
.control_offset = TWL5031_ACCSIHCTRL,
.bits = 2,
.bytes_ixr = 1,
.edr_offset = TWL5031_ACCEDR1,
/* Note: most of these IRQs default to no-trigger */
.bytes_edr = 1,
.irq_lines = 2,
.mask = { {
.isr_offset = TWL5031_ACCISR1,
.imr_offset = TWL5031_ACCIMR1,
}, {
.isr_offset = TWL5031_ACCISR2,
.imr_offset = TWL5031_ACCIMR2,
}, },
},
};
#undef TWL4030_MODULE_KEYPAD_KEYP
#undef TWL4030_MODULE_INT_PWR
#undef TWL4030_INT_PWR_EDR
/*----------------------------------------------------------------------*/
static unsigned twl4030_irq_base;
/*
* handle_twl4030_pih() is the desc->handle method for the twl4030 interrupt.
* This is a chained interrupt, so there is no desc->action method for it.
* Now we need to query the interrupt controller in the twl4030 to determine
* which module is generating the interrupt request. However, we can't do i2c
* transactions in interrupt context, so we must defer that work to a kernel
* thread. All we do here is acknowledge and mask the interrupt and wakeup
* the kernel thread.
*/
static irqreturn_t handle_twl4030_pih(int irq, void *devid)
{
irqreturn_t ret;
u8 pih_isr;
ret = twl_i2c_read_u8(TWL_MODULE_PIH, &pih_isr,
REG_PIH_ISR_P1);
if (ret) {
pr_warn("twl4030: I2C error %d reading PIH ISR\n", ret);
return IRQ_NONE;
}
while (pih_isr) {
unsigned long pending = __ffs(pih_isr);
unsigned int irq;
pih_isr &= ~BIT(pending);
irq = pending + twl4030_irq_base;
handle_nested_irq(irq);
}
return IRQ_HANDLED;
}
/*----------------------------------------------------------------------*/
/*
* twl4030_init_sih_modules() ... start from a known state where no
* IRQs will be coming in, and where we can quickly enable them then
* handle them as they arrive. Mask all IRQs: maybe init SIH_CTRL.
*
* NOTE: we don't touch EDR registers here; they stay with hardware
* defaults or whatever the last value was. Note that when both EDR
* bits for an IRQ are clear, that's as if its IMR bit is set...
*/
static int twl4030_init_sih_modules(unsigned line)
{
const struct sih *sih;
u8 buf[4];
int i;
int status;
/* line 0 == int1_n signal; line 1 == int2_n signal */
if (line > 1)
return -EINVAL;
irq_line = line;
/* disable all interrupts on our line */
memset(buf, 0xff, sizeof(buf));
sih = sih_modules;
for (i = 0; i < nr_sih_modules; i++, sih++) {
/* skip USB -- it's funky */
if (!sih->bytes_ixr)
continue;
/* Not all the SIH modules support multiple interrupt lines */
if (sih->irq_lines <= line)
continue;
status = twl_i2c_write(sih->module, buf,
sih->mask[line].imr_offset, sih->bytes_ixr);
if (status < 0)
pr_err("twl4030: err %d initializing %s %s\n",
status, sih->name, "IMR");
/*
* Maybe disable "exclusive" mode; buffer second pending irq;
* set Clear-On-Read (COR) bit.
*
* NOTE that sometimes COR polarity is documented as being
* inverted: for MADC, COR=1 means "clear on write".
* And for PWR_INT it's not documented...
*/
if (sih->set_cor) {
status = twl_i2c_write_u8(sih->module,
TWL4030_SIH_CTRL_COR_MASK,
sih->control_offset);
if (status < 0)
pr_err("twl4030: err %d initializing %s %s\n",
status, sih->name, "SIH_CTRL");
}
}
sih = sih_modules;
for (i = 0; i < nr_sih_modules; i++, sih++) {
u8 rxbuf[4];
int j;
/* skip USB */
if (!sih->bytes_ixr)
continue;
/* Not all the SIH modules support multiple interrupt lines */
if (sih->irq_lines <= line)
continue;
/*
* Clear pending interrupt status. Either the read was
* enough, or we need to write those bits. Repeat, in
* case an IRQ is pending (PENDDIS=0) ... that's not
* uncommon with PWR_INT.PWRON.
*/
for (j = 0; j < 2; j++) {
status = twl_i2c_read(sih->module, rxbuf,
sih->mask[line].isr_offset, sih->bytes_ixr);
if (status < 0)
pr_err("twl4030: err %d initializing %s %s\n",
status, sih->name, "ISR");
if (!sih->set_cor)
status = twl_i2c_write(sih->module, buf,
sih->mask[line].isr_offset,
sih->bytes_ixr);
/*
* else COR=1 means read sufficed.
* (for most SIH modules...)
*/
}
}
return 0;
}
static inline void activate_irq(int irq)
{
#ifdef CONFIG_ARM
/*
* ARM requires an extra step to clear IRQ_NOREQUEST, which it
* sets on behalf of every irq_chip. Also sets IRQ_NOPROBE.
*/
set_irq_flags(irq, IRQF_VALID);
#else
/* same effect on other architectures */
irq_set_noprobe(irq);
#endif
}
/*----------------------------------------------------------------------*/
struct sih_agent {
int irq_base;
const struct sih *sih;
u32 imr;
bool imr_change_pending;
u32 edge_change;
struct mutex irq_lock;
char *irq_name;
};
/*----------------------------------------------------------------------*/
/*
* All irq_chip methods get issued from code holding irq_desc[irq].lock,
* which can't perform the underlying I2C operations (because they sleep).
* So we must hand them off to a thread (workqueue) and cope with asynch
* completion, potentially including some re-ordering, of these requests.
*/
static void twl4030_sih_mask(struct irq_data *data)
{
struct sih_agent *agent = irq_data_get_irq_chip_data(data);
agent->imr |= BIT(data->irq - agent->irq_base);
agent->imr_change_pending = true;
}
static void twl4030_sih_unmask(struct irq_data *data)
{
struct sih_agent *agent = irq_data_get_irq_chip_data(data);
agent->imr &= ~BIT(data->irq - agent->irq_base);
agent->imr_change_pending = true;
}
static int twl4030_sih_set_type(struct irq_data *data, unsigned trigger)
{
struct sih_agent *agent = irq_data_get_irq_chip_data(data);
if (trigger & ~(IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
return -EINVAL;
if (irqd_get_trigger_type(data) != trigger)
agent->edge_change |= BIT(data->irq - agent->irq_base);
return 0;
}
static void twl4030_sih_bus_lock(struct irq_data *data)
{
struct sih_agent *agent = irq_data_get_irq_chip_data(data);
mutex_lock(&agent->irq_lock);
}
static void twl4030_sih_bus_sync_unlock(struct irq_data *data)
{
struct sih_agent *agent = irq_data_get_irq_chip_data(data);
const struct sih *sih = agent->sih;
int status;
if (agent->imr_change_pending) {
union {
u32 word;
u8 bytes[4];
} imr;
/* byte[0] gets overwritten as we write ... */
imr.word = cpu_to_le32(agent->imr);
agent->imr_change_pending = false;
/* write the whole mask ... simpler than subsetting it */
status = twl_i2c_write(sih->module, imr.bytes,
sih->mask[irq_line].imr_offset,
sih->bytes_ixr);
if (status)
pr_err("twl4030: %s, %s --> %d\n", __func__,
"write", status);
}
if (agent->edge_change) {
u32 edge_change;
u8 bytes[6];
edge_change = agent->edge_change;
agent->edge_change = 0;
/*
* Read, reserving first byte for write scratch. Yes, this
* could be cached for some speedup ... but be careful about
* any processor on the other IRQ line, EDR registers are
* shared.
*/
status = twl_i2c_read(sih->module, bytes,
sih->edr_offset, sih->bytes_edr);
if (status) {
pr_err("twl4030: %s, %s --> %d\n", __func__,
"read", status);
return;
}
/* Modify only the bits we know must change */
while (edge_change) {
int i = fls(edge_change) - 1;
int byte = i >> 2;
int off = (i & 0x3) * 2;
unsigned int type;
bytes[byte] &= ~(0x03 << off);
type = irq_get_trigger_type(i + agent->irq_base);
if (type & IRQ_TYPE_EDGE_RISING)
bytes[byte] |= BIT(off + 1);
if (type & IRQ_TYPE_EDGE_FALLING)
bytes[byte] |= BIT(off + 0);
edge_change &= ~BIT(i);
}
/* Write */
status = twl_i2c_write(sih->module, bytes,
sih->edr_offset, sih->bytes_edr);
if (status)
pr_err("twl4030: %s, %s --> %d\n", __func__,
"write", status);
}
mutex_unlock(&agent->irq_lock);
}
static struct irq_chip twl4030_sih_irq_chip = {
.name = "twl4030",
.irq_mask = twl4030_sih_mask,
.irq_unmask = twl4030_sih_unmask,
.irq_set_type = twl4030_sih_set_type,
.irq_bus_lock = twl4030_sih_bus_lock,
.irq_bus_sync_unlock = twl4030_sih_bus_sync_unlock,
.flags = IRQCHIP_SKIP_SET_WAKE,
};
/*----------------------------------------------------------------------*/
static inline int sih_read_isr(const struct sih *sih)
{
int status;
union {
u8 bytes[4];
u32 word;
} isr;
/* FIXME need retry-on-error ... */
isr.word = 0;
status = twl_i2c_read(sih->module, isr.bytes,
sih->mask[irq_line].isr_offset, sih->bytes_ixr);
return (status < 0) ? status : le32_to_cpu(isr.word);
}
/*
* Generic handler for SIH interrupts ... we "know" this is called
* in task context, with IRQs enabled.
*/
static irqreturn_t handle_twl4030_sih(int irq, void *data)
{
struct sih_agent *agent = irq_get_handler_data(irq);
const struct sih *sih = agent->sih;
int isr;
/* reading ISR acks the IRQs, using clear-on-read mode */
isr = sih_read_isr(sih);
if (isr < 0) {
pr_err("twl4030: %s SIH, read ISR error %d\n",
sih->name, isr);
/* REVISIT: recover; eventually mask it all, etc */
return IRQ_HANDLED;
}
while (isr) {
irq = fls(isr);
irq--;
isr &= ~BIT(irq);
if (irq < sih->bits)
handle_nested_irq(agent->irq_base + irq);
else
pr_err("twl4030: %s SIH, invalid ISR bit %d\n",
sih->name, irq);
}
return IRQ_HANDLED;
}
/* returns the first IRQ used by this SIH bank, or negative errno */
int twl4030_sih_setup(struct device *dev, int module, int irq_base)
{
int sih_mod;
const struct sih *sih = NULL;
struct sih_agent *agent;
int i, irq;
int status = -EINVAL;
/* only support modules with standard clear-on-read for now */
for (sih_mod = 0, sih = sih_modules; sih_mod < nr_sih_modules;
sih_mod++, sih++) {
if (sih->module == module && sih->set_cor) {
status = 0;
break;
}
}
if (status < 0)
return status;
agent = kzalloc(sizeof(*agent), GFP_KERNEL);
if (!agent)
return -ENOMEM;
agent->irq_base = irq_base;
agent->sih = sih;
agent->imr = ~0;
mutex_init(&agent->irq_lock);
for (i = 0; i < sih->bits; i++) {
irq = irq_base + i;
irq_set_chip_data(irq, agent);
irq_set_chip_and_handler(irq, &twl4030_sih_irq_chip,
handle_edge_irq);
irq_set_nested_thread(irq, 1);
activate_irq(irq);
}
/* replace generic PIH handler (handle_simple_irq) */
irq = sih_mod + twl4030_irq_base;
irq_set_handler_data(irq, agent);
agent->irq_name = kasprintf(GFP_KERNEL, "twl4030_%s", sih->name);
status = request_threaded_irq(irq, NULL, handle_twl4030_sih,
IRQF_EARLY_RESUME,
agent->irq_name ?: sih->name, NULL);
dev_info(dev, "%s (irq %d) chaining IRQs %d..%d\n", sih->name,
irq, irq_base, irq_base + i - 1);
return status < 0 ? status : irq_base;
}
/* FIXME need a call to reverse twl4030_sih_setup() ... */
/*----------------------------------------------------------------------*/
/* FIXME pass in which interrupt line we'll use ... */
#define twl_irq_line 0
int twl4030_init_irq(struct device *dev, int irq_num)
{
static struct irq_chip twl4030_irq_chip;
int status, i;
int irq_base, irq_end, nr_irqs;
struct device_node *node = dev->of_node;
/*
* TWL core and pwr interrupts must be contiguous because
* the hwirqs numbers are defined contiguously from 1 to 15.
* Create only one domain for both.
*/
nr_irqs = TWL4030_PWR_NR_IRQS + TWL4030_CORE_NR_IRQS;
irq_base = irq_alloc_descs(-1, 0, nr_irqs, 0);
if (IS_ERR_VALUE(irq_base)) {
dev_err(dev, "Fail to allocate IRQ descs\n");
return irq_base;
}
irq_domain_add_legacy(node, nr_irqs, irq_base, 0,
&irq_domain_simple_ops, NULL);
irq_end = irq_base + TWL4030_CORE_NR_IRQS;
/*
* Mask and clear all TWL4030 interrupts since initially we do
* not have any TWL4030 module interrupt handlers present
*/
status = twl4030_init_sih_modules(twl_irq_line);
if (status < 0)
return status;
twl4030_irq_base = irq_base;
/*
* Install an irq handler for each of the SIH modules;
* clone dummy irq_chip since PIH can't *do* anything
*/
twl4030_irq_chip = dummy_irq_chip;
twl4030_irq_chip.name = "twl4030";
twl4030_sih_irq_chip.irq_ack = dummy_irq_chip.irq_ack;
for (i = irq_base; i < irq_end; i++) {
irq_set_chip_and_handler(i, &twl4030_irq_chip,
handle_simple_irq);
irq_set_nested_thread(i, 1);
activate_irq(i);
}
dev_info(dev, "%s (irq %d) chaining IRQs %d..%d\n", "PIH",
irq_num, irq_base, irq_end);
/* ... and the PWR_INT module ... */
status = twl4030_sih_setup(dev, TWL4030_MODULE_INT, irq_end);
if (status < 0) {
dev_err(dev, "sih_setup PWR INT --> %d\n", status);
goto fail;
}
/* install an irq handler to demultiplex the TWL4030 interrupt */
status = request_threaded_irq(irq_num, NULL, handle_twl4030_pih,
IRQF_ONESHOT,
"TWL4030-PIH", NULL);
if (status < 0) {
dev_err(dev, "could not claim irq%d: %d\n", irq_num, status);
goto fail_rqirq;
}
enable_irq_wake(irq_num);
return irq_base;
fail_rqirq:
/* clean up twl4030_sih_setup */
fail:
for (i = irq_base; i < irq_end; i++) {
irq_set_nested_thread(i, 0);
irq_set_chip_and_handler(i, NULL, NULL);
}
return status;
}
int twl4030_exit_irq(void)
{
/* FIXME undo twl_init_irq() */
if (twl4030_irq_base) {
pr_err("twl4030: can't yet clean up IRQs?\n");
return -ENOSYS;
}
return 0;
}
int twl4030_init_chip_irq(const char *chip)
{
if (!strcmp(chip, "twl5031")) {
sih_modules = sih_modules_twl5031;
nr_sih_modules = ARRAY_SIZE(sih_modules_twl5031);
} else {
sih_modules = sih_modules_twl4030;
nr_sih_modules = ARRAY_SIZE(sih_modules_twl4030);
}
return 0;
}