linux_old1/drivers/nvme/host/nvme.h

226 lines
6.1 KiB
C
Raw Normal View History

/*
* Copyright (c) 2011-2014, Intel Corporation.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms and conditions of the GNU General Public License,
* version 2, as published by the Free Software Foundation.
*
* This program is distributed in the hope it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*/
#ifndef _NVME_H
#define _NVME_H
#include <linux/nvme.h>
#include <linux/pci.h>
#include <linux/kref.h>
#include <linux/blk-mq.h>
struct nvme_passthru_cmd;
extern unsigned char nvme_io_timeout;
#define NVME_IO_TIMEOUT (nvme_io_timeout * HZ)
extern unsigned char admin_timeout;
#define ADMIN_TIMEOUT (admin_timeout * HZ)
extern unsigned char shutdown_timeout;
#define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
enum {
NVME_NS_LBA = 0,
NVME_NS_LIGHTNVM = 1,
};
/*
* List of workarounds for devices that required behavior not specified in
* the standard.
*/
enum nvme_quirks {
/*
* Prefers I/O aligned to a stripe size specified in a vendor
* specific Identify field.
*/
NVME_QUIRK_STRIPE_SIZE = (1 << 0),
};
struct nvme_ctrl {
const struct nvme_ctrl_ops *ops;
struct request_queue *admin_q;
struct device *dev;
struct kref kref;
int instance;
char name[12];
char serial[20];
char model[40];
char firmware_rev[8];
u32 ctrl_config;
u32 page_size;
u32 max_hw_sectors;
u32 stripe_size;
u16 oncs;
u16 abort_limit;
u8 event_limit;
u8 vwc;
unsigned long quirks;
};
/*
* An NVM Express namespace is equivalent to a SCSI LUN
*/
struct nvme_ns {
struct list_head list;
struct nvme_ctrl *ctrl;
struct request_queue *queue;
struct gendisk *disk;
struct kref kref;
unsigned ns_id;
int lba_shift;
u16 ms;
bool ext;
u8 pi_type;
int type;
u64 mode_select_num_blocks;
u32 mode_select_block_len;
};
struct nvme_ctrl_ops {
int (*reg_read32)(struct nvme_ctrl *ctrl, u32 off, u32 *val);
int (*reg_write32)(struct nvme_ctrl *ctrl, u32 off, u32 val);
int (*reg_read64)(struct nvme_ctrl *ctrl, u32 off, u64 *val);
void (*free_ctrl)(struct nvme_ctrl *ctrl);
};
static inline bool nvme_ctrl_ready(struct nvme_ctrl *ctrl)
{
u32 val = 0;
if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &val))
return false;
return val & NVME_CSTS_RDY;
}
static inline u64 nvme_block_nr(struct nvme_ns *ns, sector_t sector)
{
return (sector >> (ns->lba_shift - 9));
}
static inline void nvme_setup_flush(struct nvme_ns *ns,
struct nvme_command *cmnd)
{
memset(cmnd, 0, sizeof(*cmnd));
cmnd->common.opcode = nvme_cmd_flush;
cmnd->common.nsid = cpu_to_le32(ns->ns_id);
}
static inline void nvme_setup_rw(struct nvme_ns *ns, struct request *req,
struct nvme_command *cmnd)
{
u16 control = 0;
u32 dsmgmt = 0;
if (req->cmd_flags & REQ_FUA)
control |= NVME_RW_FUA;
if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
control |= NVME_RW_LR;
if (req->cmd_flags & REQ_RAHEAD)
dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
memset(cmnd, 0, sizeof(*cmnd));
cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
cmnd->rw.command_id = req->tag;
cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
if (ns->ms) {
switch (ns->pi_type) {
case NVME_NS_DPS_PI_TYPE3:
control |= NVME_RW_PRINFO_PRCHK_GUARD;
break;
case NVME_NS_DPS_PI_TYPE1:
case NVME_NS_DPS_PI_TYPE2:
control |= NVME_RW_PRINFO_PRCHK_GUARD |
NVME_RW_PRINFO_PRCHK_REF;
cmnd->rw.reftag = cpu_to_le32(
nvme_block_nr(ns, blk_rq_pos(req)));
break;
}
if (!blk_integrity_rq(req))
control |= NVME_RW_PRINFO_PRACT;
}
cmnd->rw.control = cpu_to_le16(control);
cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
}
static inline int nvme_error_status(u16 status)
{
switch (status & 0x7ff) {
case NVME_SC_SUCCESS:
return 0;
case NVME_SC_CAP_EXCEEDED:
return -ENOSPC;
default:
return -EIO;
}
}
int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap);
int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap);
int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl);
void nvme_put_ctrl(struct nvme_ctrl *ctrl);
int nvme_init_identify(struct nvme_ctrl *ctrl);
void nvme_put_ns(struct nvme_ns *ns);
struct request *nvme_alloc_request(struct request_queue *q,
struct nvme_command *cmd, unsigned int flags);
int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buf, unsigned bufflen);
int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
void *buffer, unsigned bufflen, u32 *result, unsigned timeout);
int nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen, u32 *result,
unsigned timeout);
int __nvme_submit_user_cmd(struct request_queue *q, struct nvme_command *cmd,
void __user *ubuffer, unsigned bufflen,
void __user *meta_buffer, unsigned meta_len, u32 meta_seed,
u32 *result, unsigned timeout);
int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id);
int nvme_identify_ns(struct nvme_ctrl *dev, unsigned nsid,
struct nvme_id_ns **id);
int nvme_get_log_page(struct nvme_ctrl *dev, struct nvme_smart_log **log);
int nvme_get_features(struct nvme_ctrl *dev, unsigned fid, unsigned nsid,
dma_addr_t dma_addr, u32 *result);
int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
dma_addr_t dma_addr, u32 *result);
extern const struct block_device_operations nvme_fops;
extern spinlock_t dev_list_lock;
int nvme_revalidate_disk(struct gendisk *disk);
int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
struct nvme_passthru_cmd __user *ucmd);
struct sg_io_hdr;
int nvme_sg_io(struct nvme_ns *ns, struct sg_io_hdr __user *u_hdr);
int nvme_sg_io32(struct nvme_ns *ns, unsigned long arg);
int nvme_sg_get_version_num(int __user *ip);
int nvme_nvm_ns_supported(struct nvme_ns *ns, struct nvme_id_ns *id);
int nvme_nvm_register(struct request_queue *q, char *disk_name);
void nvme_nvm_unregister(struct request_queue *q, char *disk_name);
#endif /* _NVME_H */