drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/*
|
|
|
|
* Copyright (C) 2011 Samsung Electronics Co.Ltd
|
|
|
|
* Authors:
|
|
|
|
* Seung-Woo Kim <sw0312.kim@samsung.com>
|
|
|
|
* Inki Dae <inki.dae@samsung.com>
|
|
|
|
* Joonyoung Shim <jy0922.shim@samsung.com>
|
|
|
|
*
|
|
|
|
* Based on drivers/media/video/s5p-tv/hdmi_drv.c
|
|
|
|
*
|
|
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
|
|
* under the terms of the GNU General Public License as published by the
|
|
|
|
* Free Software Foundation; either version 2 of the License, or (at your
|
|
|
|
* option) any later version.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
2012-10-03 01:01:07 +08:00
|
|
|
#include <drm/drmP.h>
|
|
|
|
#include <drm/drm_edid.h>
|
|
|
|
#include <drm/drm_crtc_helper.h>
|
2015-06-01 23:04:44 +08:00
|
|
|
#include <drm/drm_atomic_helper.h>
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
#include "regs-hdmi.h"
|
|
|
|
|
|
|
|
#include <linux/kernel.h>
|
|
|
|
#include <linux/wait.h>
|
|
|
|
#include <linux/i2c.h>
|
|
|
|
#include <linux/platform_device.h>
|
|
|
|
#include <linux/interrupt.h>
|
|
|
|
#include <linux/irq.h>
|
|
|
|
#include <linux/delay.h>
|
|
|
|
#include <linux/pm_runtime.h>
|
|
|
|
#include <linux/clk.h>
|
|
|
|
#include <linux/regulator/consumer.h>
|
2012-10-04 23:18:55 +08:00
|
|
|
#include <linux/io.h>
|
2014-05-09 14:34:18 +08:00
|
|
|
#include <linux/of_address.h>
|
2015-07-09 22:28:09 +08:00
|
|
|
#include <linux/of_device.h>
|
2012-10-04 23:18:55 +08:00
|
|
|
#include <linux/of_gpio.h>
|
2014-02-04 11:10:18 +08:00
|
|
|
#include <linux/hdmi.h>
|
2014-05-09 13:25:20 +08:00
|
|
|
#include <linux/component.h>
|
2014-05-20 13:06:05 +08:00
|
|
|
#include <linux/mfd/syscon.h>
|
|
|
|
#include <linux/regmap.h>
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
#include <drm/exynos_drm.h>
|
|
|
|
|
|
|
|
#include "exynos_drm_drv.h"
|
2014-05-09 13:25:20 +08:00
|
|
|
#include "exynos_drm_crtc.h"
|
2014-01-31 05:19:15 +08:00
|
|
|
#include "exynos_mixer.h"
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-10-04 23:18:46 +08:00
|
|
|
#include <linux/gpio.h>
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
#define ctx_from_connector(c) container_of(c, struct hdmi_context, connector)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
#define HOTPLUG_DEBOUNCE_MS 1100
|
|
|
|
|
2012-11-26 13:22:57 +08:00
|
|
|
/* AVI header and aspect ratio */
|
|
|
|
#define HDMI_AVI_VERSION 0x02
|
|
|
|
#define HDMI_AVI_LENGTH 0x0D
|
|
|
|
|
|
|
|
/* AUI header info */
|
|
|
|
#define HDMI_AUI_VERSION 0x01
|
|
|
|
#define HDMI_AUI_LENGTH 0x0A
|
2014-03-13 13:28:28 +08:00
|
|
|
#define AVI_SAME_AS_PIC_ASPECT_RATIO 0x8
|
|
|
|
#define AVI_4_3_CENTER_RATIO 0x9
|
|
|
|
#define AVI_16_9_CENTER_RATIO 0xa
|
2012-11-26 13:22:57 +08:00
|
|
|
|
2012-10-04 23:18:54 +08:00
|
|
|
enum hdmi_type {
|
|
|
|
HDMI_TYPE13,
|
|
|
|
HDMI_TYPE14,
|
|
|
|
};
|
|
|
|
|
2014-03-06 13:18:17 +08:00
|
|
|
struct hdmi_driver_data {
|
|
|
|
unsigned int type;
|
2014-05-09 14:34:18 +08:00
|
|
|
const struct hdmiphy_config *phy_confs;
|
|
|
|
unsigned int phy_conf_count;
|
2014-03-06 13:18:17 +08:00
|
|
|
unsigned int is_apb_phy:1;
|
|
|
|
};
|
|
|
|
|
2012-03-16 17:47:14 +08:00
|
|
|
struct hdmi_resources {
|
|
|
|
struct clk *hdmi;
|
|
|
|
struct clk *sclk_hdmi;
|
|
|
|
struct clk *sclk_pixel;
|
|
|
|
struct clk *sclk_hdmiphy;
|
2013-06-11 14:54:03 +08:00
|
|
|
struct clk *mout_hdmi;
|
2012-03-16 17:47:14 +08:00
|
|
|
struct regulator_bulk_data *regul_bulk;
|
2014-07-01 16:10:06 +08:00
|
|
|
struct regulator *reg_hdmi_en;
|
2012-03-16 17:47:14 +08:00
|
|
|
int regul_count;
|
|
|
|
};
|
|
|
|
|
|
|
|
struct hdmi_context {
|
2015-08-11 16:38:06 +08:00
|
|
|
struct exynos_drm_encoder encoder;
|
2012-03-16 17:47:14 +08:00
|
|
|
struct device *dev;
|
|
|
|
struct drm_device *drm_dev;
|
2014-01-31 05:19:29 +08:00
|
|
|
struct drm_connector connector;
|
2015-08-11 16:38:06 +08:00
|
|
|
bool hpd;
|
2012-04-23 18:35:50 +08:00
|
|
|
bool powered;
|
2012-04-24 16:39:15 +08:00
|
|
|
bool dvi_mode;
|
2012-03-16 17:47:14 +08:00
|
|
|
|
|
|
|
void __iomem *regs;
|
2013-01-16 23:17:20 +08:00
|
|
|
int irq;
|
2014-05-09 14:05:10 +08:00
|
|
|
struct delayed_work hotplug_work;
|
2012-03-16 17:47:14 +08:00
|
|
|
|
2014-03-13 15:38:31 +08:00
|
|
|
struct i2c_adapter *ddc_adpt;
|
2012-03-16 17:47:14 +08:00
|
|
|
struct i2c_client *hdmiphy_port;
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
/* current hdmiphy conf regs */
|
2014-04-03 23:11:04 +08:00
|
|
|
struct drm_display_mode current_mode;
|
2015-07-09 22:28:10 +08:00
|
|
|
u8 cea_video_id;
|
2012-03-16 17:47:14 +08:00
|
|
|
|
|
|
|
struct hdmi_resources res;
|
2015-07-09 22:28:09 +08:00
|
|
|
const struct hdmi_driver_data *drv_data;
|
2012-04-23 18:35:47 +08:00
|
|
|
|
2012-10-04 23:18:46 +08:00
|
|
|
int hpd_gpio;
|
2014-05-09 14:34:18 +08:00
|
|
|
void __iomem *regs_hdmiphy;
|
2012-10-04 23:18:54 +08:00
|
|
|
|
2014-05-20 13:06:05 +08:00
|
|
|
struct regmap *pmureg;
|
2012-03-16 17:47:14 +08:00
|
|
|
};
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static inline struct hdmi_context *encoder_to_hdmi(struct exynos_drm_encoder *e)
|
2014-11-17 16:54:21 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
return container_of(e, struct hdmi_context, encoder);
|
2014-11-17 16:54:21 +08:00
|
|
|
}
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
struct hdmiphy_config {
|
|
|
|
int pixel_clock;
|
|
|
|
u8 conf[32];
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
};
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
/* list of phy config settings */
|
|
|
|
static const struct hdmiphy_config hdmiphy_v13_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x1C, 0x30, 0x40,
|
|
|
|
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD4, 0x10, 0x9C, 0x09, 0x64,
|
|
|
|
0x6B, 0x10, 0x02, 0x51, 0xDF, 0xF2, 0x54, 0x87,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xE3, 0x26, 0x00, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xef, 0x5B,
|
|
|
|
0x6D, 0x10, 0x01, 0x51, 0xef, 0xF3, 0x54, 0xb9,
|
|
|
|
0x84, 0x00, 0x30, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xa5, 0x26, 0x01, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xd8, 0x10, 0x9c, 0xf8, 0x40,
|
|
|
|
0x6a, 0x10, 0x01, 0x51, 0xff, 0xf1, 0x54, 0xba,
|
|
|
|
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xe0,
|
|
|
|
0x22, 0x40, 0xa4, 0x26, 0x01, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
2013-03-06 16:33:29 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x05, 0x00, 0xD8, 0x10, 0x9C, 0xf8, 0x40,
|
|
|
|
0x6A, 0x18, 0x00, 0x51, 0xff, 0xF1, 0x54, 0xba,
|
|
|
|
0x84, 0x00, 0x10, 0x38, 0x00, 0x08, 0x10, 0xE0,
|
|
|
|
0x22, 0x40, 0xa4, 0x26, 0x02, 0x00, 0x00, 0x00,
|
|
|
|
},
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2013-01-15 21:11:08 +08:00
|
|
|
static const struct hdmiphy_config hdmiphy_v14_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 25200000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2A, 0x75, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0xfc, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xf4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x22, 0x51, 0x40, 0x08, 0xfc, 0x20,
|
|
|
|
0x98, 0xa0, 0xcb, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x06, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xe4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x2d, 0x72, 0x40, 0x64, 0x12, 0x08,
|
|
|
|
0x43, 0xa0, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xe3, 0x24, 0x00, 0x00, 0x00, 0x01, 0x00,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 36000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x55, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xab, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 40000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x32, 0x55, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x2c, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x9a, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 65000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x36, 0x34, 0x40, 0x1e, 0x0a, 0x08,
|
|
|
|
0x82, 0xa0, 0x45, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xbd, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2014-03-13 13:28:27 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 71000000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x3b, 0x35, 0x40, 0x0c, 0x04, 0x08,
|
|
|
|
0x85, 0xa0, 0x63, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0xad, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 73250000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x3d, 0x35, 0x40, 0x18, 0x02, 0x08,
|
|
|
|
0x83, 0xa0, 0x6e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0xa8, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x3e, 0x35, 0x40, 0x5b, 0xde, 0x08,
|
|
|
|
0x82, 0xa0, 0x73, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x56, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xa6, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x1f, 0x10, 0x40, 0x40, 0xf8, 0x08,
|
|
|
|
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xa5, 0x24, 0x01, 0x00, 0x00, 0x01, 0x00,
|
|
|
|
},
|
2012-04-24 16:55:06 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 83500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x23, 0x11, 0x40, 0x0c, 0xfb, 0x08,
|
|
|
|
0x85, 0xa0, 0xd1, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x93, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-04-24 16:55:06 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 106500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x2c, 0x12, 0x40, 0x0c, 0x09, 0x08,
|
|
|
|
0x84, 0xa0, 0x0a, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x73, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 108000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2d, 0x15, 0x40, 0x01, 0x00, 0x08,
|
|
|
|
0x82, 0x80, 0x0e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0xc7, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2014-03-13 13:28:27 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 115500000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x30, 0x12, 0x40, 0x40, 0x10, 0x08,
|
|
|
|
0x80, 0x80, 0x21, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0xaa, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 119000000,
|
|
|
|
.conf = {
|
2014-05-05 12:57:51 +08:00
|
|
|
0x01, 0xd1, 0x32, 0x1a, 0x40, 0x30, 0xd8, 0x08,
|
|
|
|
0x04, 0xa0, 0x2a, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
2014-03-13 13:28:27 +08:00
|
|
|
0x54, 0x9d, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 146250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x3d, 0x15, 0x40, 0x18, 0xfd, 0x08,
|
|
|
|
0x83, 0xa0, 0x6e, 0xd9, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x08, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x50, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
2013-01-15 21:11:08 +08:00
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xd1, 0x1f, 0x00, 0x40, 0x40, 0xf8, 0x08,
|
|
|
|
0x81, 0xa0, 0xba, 0xd8, 0x45, 0xa0, 0xac, 0x80,
|
|
|
|
0x3c, 0x80, 0x11, 0x04, 0x02, 0x22, 0x44, 0x86,
|
|
|
|
0x54, 0x4b, 0x25, 0x03, 0x00, 0x00, 0x01, 0x00,
|
|
|
|
},
|
2012-03-16 17:47:03 +08:00
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2014-04-20 18:21:17 +08:00
|
|
|
static const struct hdmiphy_config hdmiphy_5420_configs[] = {
|
|
|
|
{
|
|
|
|
.pixel_clock = 25200000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x52, 0x3F, 0x55, 0x40, 0x01, 0x00, 0xC8,
|
|
|
|
0x82, 0xC8, 0xBD, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x06, 0x80, 0x01, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xF4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 27000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x22, 0x51, 0x40, 0x08, 0xFC, 0xE0,
|
|
|
|
0x98, 0xE8, 0xCB, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x06, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xE4, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 27027000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x2D, 0x72, 0x40, 0x64, 0x12, 0xC8,
|
|
|
|
0x43, 0xE8, 0x0E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x26, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xE3, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 36000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2D, 0x55, 0x40, 0x40, 0x00, 0xC8,
|
|
|
|
0x02, 0xC8, 0x0E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xAB, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 40000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x21, 0x31, 0x40, 0x3C, 0x28, 0xC8,
|
|
|
|
0x87, 0xE8, 0xC8, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x9A, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 65000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x36, 0x34, 0x40, 0x0C, 0x04, 0xC8,
|
|
|
|
0x82, 0xE8, 0x45, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xBD, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 71000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x3B, 0x35, 0x40, 0x0C, 0x04, 0xC8,
|
|
|
|
0x85, 0xE8, 0x63, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x57, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 73250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x10, 0x40, 0x78, 0x8D, 0xC8,
|
|
|
|
0x81, 0xE8, 0xB7, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x56, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xA8, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 74176000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x10, 0x40, 0x5B, 0xEF, 0xC8,
|
|
|
|
0x81, 0xE8, 0xB9, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x56, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xA6, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 74250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x10, 0x40, 0x40, 0xF8, 0x08,
|
|
|
|
0x81, 0xE8, 0xBA, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x26, 0x80, 0x09, 0x84, 0x05, 0x22, 0x24, 0x66,
|
|
|
|
0x54, 0xA5, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 83500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x23, 0x11, 0x40, 0x0C, 0xFB, 0xC8,
|
|
|
|
0x85, 0xE8, 0xD1, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x4A, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 88750000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x25, 0x11, 0x40, 0x18, 0xFF, 0xC8,
|
|
|
|
0x83, 0xE8, 0xDE, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x45, 0x24, 0x00, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 106500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x2C, 0x12, 0x40, 0x0C, 0x09, 0xC8,
|
|
|
|
0x84, 0xE8, 0x0A, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x73, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 108000000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0x51, 0x2D, 0x15, 0x40, 0x01, 0x00, 0xC8,
|
|
|
|
0x82, 0xC8, 0x0E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0xC7, 0x25, 0x03, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 115500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x30, 0x14, 0x40, 0x0C, 0x03, 0xC8,
|
|
|
|
0x88, 0xE8, 0x21, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x6A, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 146250000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x3D, 0x15, 0x40, 0x18, 0xFD, 0xC8,
|
|
|
|
0x83, 0xE8, 0x6E, 0xD9, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x08, 0x80, 0x09, 0x84, 0x05, 0x02, 0x24, 0x66,
|
|
|
|
0x54, 0x54, 0x24, 0x01, 0x00, 0x00, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
{
|
|
|
|
.pixel_clock = 148500000,
|
|
|
|
.conf = {
|
|
|
|
0x01, 0xD1, 0x1F, 0x00, 0x40, 0x40, 0xF8, 0x08,
|
|
|
|
0x81, 0xE8, 0xBA, 0xD8, 0x45, 0xA0, 0xAC, 0x80,
|
|
|
|
0x26, 0x80, 0x09, 0x84, 0x05, 0x22, 0x24, 0x66,
|
|
|
|
0x54, 0x4B, 0x25, 0x03, 0x00, 0x80, 0x01, 0x80,
|
|
|
|
},
|
|
|
|
},
|
|
|
|
};
|
|
|
|
|
2014-05-22 13:02:56 +08:00
|
|
|
static struct hdmi_driver_data exynos5420_hdmi_driver_data = {
|
2014-04-20 18:21:17 +08:00
|
|
|
.type = HDMI_TYPE14,
|
|
|
|
.phy_confs = hdmiphy_5420_configs,
|
|
|
|
.phy_conf_count = ARRAY_SIZE(hdmiphy_5420_configs),
|
|
|
|
.is_apb_phy = 1,
|
|
|
|
};
|
2014-05-09 14:34:18 +08:00
|
|
|
|
2014-05-22 13:02:56 +08:00
|
|
|
static struct hdmi_driver_data exynos4212_hdmi_driver_data = {
|
2014-05-09 14:34:18 +08:00
|
|
|
.type = HDMI_TYPE14,
|
|
|
|
.phy_confs = hdmiphy_v14_configs,
|
|
|
|
.phy_conf_count = ARRAY_SIZE(hdmiphy_v14_configs),
|
|
|
|
.is_apb_phy = 0,
|
|
|
|
};
|
|
|
|
|
2014-07-01 16:10:07 +08:00
|
|
|
static struct hdmi_driver_data exynos4210_hdmi_driver_data = {
|
|
|
|
.type = HDMI_TYPE13,
|
|
|
|
.phy_confs = hdmiphy_v13_configs,
|
|
|
|
.phy_conf_count = ARRAY_SIZE(hdmiphy_v13_configs),
|
|
|
|
.is_apb_phy = 0,
|
|
|
|
};
|
|
|
|
|
2014-05-22 13:02:56 +08:00
|
|
|
static struct hdmi_driver_data exynos5_hdmi_driver_data = {
|
2014-05-09 14:34:18 +08:00
|
|
|
.type = HDMI_TYPE14,
|
|
|
|
.phy_confs = hdmiphy_v13_configs,
|
|
|
|
.phy_conf_count = ARRAY_SIZE(hdmiphy_v13_configs),
|
|
|
|
.is_apb_phy = 0,
|
|
|
|
};
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static inline u32 hdmi_reg_read(struct hdmi_context *hdata, u32 reg_id)
|
|
|
|
{
|
|
|
|
return readl(hdata->regs + reg_id);
|
|
|
|
}
|
|
|
|
|
|
|
|
static inline void hdmi_reg_writeb(struct hdmi_context *hdata,
|
|
|
|
u32 reg_id, u8 value)
|
|
|
|
{
|
|
|
|
writeb(value, hdata->regs + reg_id);
|
|
|
|
}
|
|
|
|
|
2015-07-09 22:28:11 +08:00
|
|
|
static inline void hdmi_reg_writev(struct hdmi_context *hdata, u32 reg_id,
|
|
|
|
int bytes, u32 val)
|
|
|
|
{
|
|
|
|
while (--bytes >= 0) {
|
|
|
|
writeb(val & 0xff, hdata->regs + reg_id);
|
|
|
|
val >>= 8;
|
|
|
|
reg_id += 4;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static inline void hdmi_reg_writemask(struct hdmi_context *hdata,
|
|
|
|
u32 reg_id, u32 value, u32 mask)
|
|
|
|
{
|
|
|
|
u32 old = readl(hdata->regs + reg_id);
|
|
|
|
value = (value & mask) | (old & ~mask);
|
|
|
|
writel(value, hdata->regs + reg_id);
|
|
|
|
}
|
|
|
|
|
2014-05-09 14:34:18 +08:00
|
|
|
static int hdmiphy_reg_writeb(struct hdmi_context *hdata,
|
|
|
|
u32 reg_offset, u8 value)
|
|
|
|
{
|
|
|
|
if (hdata->hdmiphy_port) {
|
|
|
|
u8 buffer[2];
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
buffer[0] = reg_offset;
|
|
|
|
buffer[1] = value;
|
|
|
|
|
|
|
|
ret = i2c_master_send(hdata->hdmiphy_port, buffer, 2);
|
|
|
|
if (ret == 2)
|
|
|
|
return 0;
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
writeb(value, hdata->regs_hdmiphy + (reg_offset<<2));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
static int hdmiphy_reg_write_buf(struct hdmi_context *hdata,
|
|
|
|
u32 reg_offset, const u8 *buf, u32 len)
|
|
|
|
{
|
|
|
|
if ((reg_offset + len) > 32)
|
|
|
|
return -EINVAL;
|
|
|
|
|
|
|
|
if (hdata->hdmiphy_port) {
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
ret = i2c_master_send(hdata->hdmiphy_port, buf, len);
|
|
|
|
if (ret == len)
|
|
|
|
return 0;
|
|
|
|
return ret;
|
|
|
|
} else {
|
|
|
|
int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
|
|
writeb(buf[i], hdata->regs_hdmiphy +
|
|
|
|
((reg_offset + i)<<2));
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
static void hdmi_v13_regs_dump(struct hdmi_context *hdata, char *prefix)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
|
|
|
#define DUMPREG(reg_id) \
|
|
|
|
DRM_DEBUG_KMS("%s:" #reg_id " = %08x\n", prefix, \
|
|
|
|
readl(hdata->regs + reg_id))
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CONTROL REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_INTC_FLAG);
|
|
|
|
DUMPREG(HDMI_INTC_CON);
|
|
|
|
DUMPREG(HDMI_HPD_STATUS);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_V13_PHY_RSTOUT);
|
|
|
|
DUMPREG(HDMI_V13_PHY_VPLL);
|
|
|
|
DUMPREG(HDMI_V13_PHY_CMU);
|
|
|
|
DUMPREG(HDMI_V13_CORE_RSTOUT);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_CON_0);
|
|
|
|
DUMPREG(HDMI_CON_1);
|
|
|
|
DUMPREG(HDMI_CON_2);
|
|
|
|
DUMPREG(HDMI_SYS_STATUS);
|
|
|
|
DUMPREG(HDMI_V13_PHY_STATUS);
|
|
|
|
DUMPREG(HDMI_STATUS_EN);
|
|
|
|
DUMPREG(HDMI_HPD);
|
|
|
|
DUMPREG(HDMI_MODE_SEL);
|
|
|
|
DUMPREG(HDMI_V13_HPD_GEN);
|
|
|
|
DUMPREG(HDMI_V13_DC_CONTROL);
|
|
|
|
DUMPREG(HDMI_V13_VIDEO_PATTERN_GEN);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE SYNC REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_H_BLANK_0);
|
|
|
|
DUMPREG(HDMI_H_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_0);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_2);
|
|
|
|
DUMPREG(HDMI_V13_H_V_LINE_0);
|
|
|
|
DUMPREG(HDMI_V13_H_V_LINE_1);
|
|
|
|
DUMPREG(HDMI_V13_H_V_LINE_2);
|
|
|
|
DUMPREG(HDMI_VSYNC_POL);
|
|
|
|
DUMPREG(HDMI_INT_PRO_MODE);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_F_0);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_F_1);
|
|
|
|
DUMPREG(HDMI_V13_V_BLANK_F_2);
|
|
|
|
DUMPREG(HDMI_V13_H_SYNC_GEN_0);
|
|
|
|
DUMPREG(HDMI_V13_H_SYNC_GEN_1);
|
|
|
|
DUMPREG(HDMI_V13_H_SYNC_GEN_2);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_1_0);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_1_1);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_1_2);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_2_0);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_2_1);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_2_2);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_3_0);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_3_1);
|
|
|
|
DUMPREG(HDMI_V13_V_SYNC_GEN_3_2);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- TG REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_TG_CMD);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_H);
|
|
|
|
#undef DUMPREG
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_v14_regs_dump(struct hdmi_context *hdata, char *prefix)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
#define DUMPREG(reg_id) \
|
|
|
|
DRM_DEBUG_KMS("%s:" #reg_id " = %08x\n", prefix, \
|
|
|
|
readl(hdata->regs + reg_id))
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CONTROL REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_INTC_CON);
|
|
|
|
DUMPREG(HDMI_INTC_FLAG);
|
|
|
|
DUMPREG(HDMI_HPD_STATUS);
|
|
|
|
DUMPREG(HDMI_INTC_CON_1);
|
|
|
|
DUMPREG(HDMI_INTC_FLAG_1);
|
|
|
|
DUMPREG(HDMI_PHY_STATUS_0);
|
|
|
|
DUMPREG(HDMI_PHY_STATUS_PLL);
|
|
|
|
DUMPREG(HDMI_PHY_CON_0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_PHY_RSTOUT);
|
|
|
|
DUMPREG(HDMI_PHY_VPLL);
|
|
|
|
DUMPREG(HDMI_PHY_CMU);
|
|
|
|
DUMPREG(HDMI_CORE_RSTOUT);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_CON_0);
|
|
|
|
DUMPREG(HDMI_CON_1);
|
|
|
|
DUMPREG(HDMI_CON_2);
|
|
|
|
DUMPREG(HDMI_SYS_STATUS);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_PHY_STATUS_0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_STATUS_EN);
|
|
|
|
DUMPREG(HDMI_HPD);
|
|
|
|
DUMPREG(HDMI_MODE_SEL);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_ENC_EN);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_DC_CONTROL);
|
|
|
|
DUMPREG(HDMI_VIDEO_PATTERN_GEN);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- CORE SYNC REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_H_BLANK_0);
|
|
|
|
DUMPREG(HDMI_H_BLANK_1);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_V2_BLANK_0);
|
|
|
|
DUMPREG(HDMI_V2_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V1_BLANK_0);
|
|
|
|
DUMPREG(HDMI_V1_BLANK_1);
|
|
|
|
DUMPREG(HDMI_V_LINE_0);
|
|
|
|
DUMPREG(HDMI_V_LINE_1);
|
|
|
|
DUMPREG(HDMI_H_LINE_0);
|
|
|
|
DUMPREG(HDMI_H_LINE_1);
|
|
|
|
DUMPREG(HDMI_HSYNC_POL);
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_VSYNC_POL);
|
|
|
|
DUMPREG(HDMI_INT_PRO_MODE);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_V_BLANK_F0_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F0_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F1_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_H_SYNC_START_0);
|
|
|
|
DUMPREG(HDMI_H_SYNC_START_1);
|
|
|
|
DUMPREG(HDMI_H_SYNC_END_0);
|
|
|
|
DUMPREG(HDMI_H_SYNC_END_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_2_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_2_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_1_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_BEF_1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_2_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_2_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_1_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_2_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_2_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_1_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_1_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_BLANK_F2_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F2_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F3_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F3_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F4_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F4_1);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F5_0);
|
|
|
|
DUMPREG(HDMI_V_BLANK_F5_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_3_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_3_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_4_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_4_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_5_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_5_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_6_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_6_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_3_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_3_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_4_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_4_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_5_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_5_1);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_6_0);
|
|
|
|
DUMPREG(HDMI_V_SYNC_LINE_AFT_PXL_6_1);
|
|
|
|
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_1_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_1_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_2_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_2_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_3_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_3_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_4_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_4_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_5_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_5_1);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_6_0);
|
|
|
|
DUMPREG(HDMI_VACT_SPACE_6_1);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- TG REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_TG_CMD);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_H_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_HACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_L);
|
|
|
|
DUMPREG(HDMI_TG_V_FSZ_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC2_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_SZ_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_CHG_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST2_H);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_TG_VACT_ST3_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST3_H);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST4_L);
|
|
|
|
DUMPREG(HDMI_TG_VACT_ST4_H);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_VSYNC_BOT_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_TOP_HDMI_H);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_L);
|
|
|
|
DUMPREG(HDMI_TG_FIELD_BOT_HDMI_H);
|
2012-03-16 17:47:03 +08:00
|
|
|
DUMPREG(HDMI_TG_3D);
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s: ---- PACKET REGISTERS ----\n", prefix);
|
|
|
|
DUMPREG(HDMI_AVI_CON);
|
|
|
|
DUMPREG(HDMI_AVI_HEADER0);
|
|
|
|
DUMPREG(HDMI_AVI_HEADER1);
|
|
|
|
DUMPREG(HDMI_AVI_HEADER2);
|
|
|
|
DUMPREG(HDMI_AVI_CHECK_SUM);
|
|
|
|
DUMPREG(HDMI_VSI_CON);
|
|
|
|
DUMPREG(HDMI_VSI_HEADER0);
|
|
|
|
DUMPREG(HDMI_VSI_HEADER1);
|
|
|
|
DUMPREG(HDMI_VSI_HEADER2);
|
|
|
|
for (i = 0; i < 7; ++i)
|
|
|
|
DUMPREG(HDMI_VSI_DATA(i));
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
#undef DUMPREG
|
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
static void hdmi_regs_dump(struct hdmi_context *hdata, char *prefix)
|
|
|
|
{
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type == HDMI_TYPE13)
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_v13_regs_dump(hdata, prefix);
|
|
|
|
else
|
|
|
|
hdmi_v14_regs_dump(hdata, prefix);
|
|
|
|
}
|
|
|
|
|
2012-11-26 13:22:57 +08:00
|
|
|
static u8 hdmi_chksum(struct hdmi_context *hdata,
|
|
|
|
u32 start, u8 len, u32 hdr_sum)
|
|
|
|
{
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* hdr_sum : header0 + header1 + header2
|
|
|
|
* start : start address of packet byte1
|
|
|
|
* len : packet bytes - 1 */
|
|
|
|
for (i = 0; i < len; ++i)
|
|
|
|
hdr_sum += 0xff & hdmi_reg_read(hdata, start + i * 4);
|
|
|
|
|
|
|
|
/* return 2's complement of 8 bit hdr_sum */
|
|
|
|
return (u8)(~(hdr_sum & 0xff) + 1);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_reg_infoframe(struct hdmi_context *hdata,
|
2014-02-04 11:10:18 +08:00
|
|
|
union hdmi_infoframe *infoframe)
|
2012-11-26 13:22:57 +08:00
|
|
|
{
|
|
|
|
u32 hdr_sum;
|
|
|
|
u8 chksum;
|
|
|
|
u32 mod;
|
2015-07-09 22:28:10 +08:00
|
|
|
u8 ar;
|
2012-11-26 13:22:57 +08:00
|
|
|
|
|
|
|
mod = hdmi_reg_read(hdata, HDMI_MODE_SEL);
|
|
|
|
if (hdata->dvi_mode) {
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_VSI_CON,
|
|
|
|
HDMI_VSI_CON_DO_NOT_TRANSMIT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CON,
|
|
|
|
HDMI_AVI_CON_DO_NOT_TRANSMIT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, HDMI_AUI_CON_NO_TRAN);
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2014-02-04 11:10:18 +08:00
|
|
|
switch (infoframe->any.type) {
|
|
|
|
case HDMI_INFOFRAME_TYPE_AVI:
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CON, HDMI_AVI_CON_EVERY_VSYNC);
|
2014-02-04 11:10:18 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER0, infoframe->any.type);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER1,
|
|
|
|
infoframe->any.version);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_HEADER2, infoframe->any.length);
|
|
|
|
hdr_sum = infoframe->any.type + infoframe->any.version +
|
|
|
|
infoframe->any.length;
|
2012-11-26 13:22:57 +08:00
|
|
|
|
|
|
|
/* Output format zero hardcoded ,RGB YBCR selection */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(1), 0 << 5 |
|
|
|
|
AVI_ACTIVE_FORMAT_VALID |
|
|
|
|
AVI_UNDERSCANNED_DISPLAY_VALID);
|
|
|
|
|
2014-03-13 13:28:28 +08:00
|
|
|
/*
|
|
|
|
* Set the aspect ratio as per the mode, mentioned in
|
|
|
|
* Table 9 AVI InfoFrame Data Byte 2 of CEA-861-D Standard
|
|
|
|
*/
|
2015-07-09 22:28:10 +08:00
|
|
|
ar = hdata->current_mode.picture_aspect_ratio;
|
|
|
|
switch (ar) {
|
2014-03-13 13:28:28 +08:00
|
|
|
case HDMI_PICTURE_ASPECT_4_3:
|
2015-07-09 22:28:10 +08:00
|
|
|
ar |= AVI_4_3_CENTER_RATIO;
|
2014-03-13 13:28:28 +08:00
|
|
|
break;
|
|
|
|
case HDMI_PICTURE_ASPECT_16_9:
|
2015-07-09 22:28:10 +08:00
|
|
|
ar |= AVI_16_9_CENTER_RATIO;
|
2014-03-13 13:28:28 +08:00
|
|
|
break;
|
|
|
|
case HDMI_PICTURE_ASPECT_NONE:
|
|
|
|
default:
|
2015-07-09 22:28:10 +08:00
|
|
|
ar |= AVI_SAME_AS_PIC_ASPECT_RATIO;
|
2014-03-13 13:28:28 +08:00
|
|
|
break;
|
|
|
|
}
|
2015-07-09 22:28:10 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(2), ar);
|
2012-11-26 13:22:57 +08:00
|
|
|
|
2015-07-09 22:28:10 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_BYTE(4), hdata->cea_video_id);
|
2012-11-26 13:22:57 +08:00
|
|
|
|
|
|
|
chksum = hdmi_chksum(hdata, HDMI_AVI_BYTE(1),
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe->any.length, hdr_sum);
|
2012-11-26 13:22:57 +08:00
|
|
|
DRM_DEBUG_KMS("AVI checksum = 0x%x\n", chksum);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AVI_CHECK_SUM, chksum);
|
|
|
|
break;
|
2014-02-04 11:10:18 +08:00
|
|
|
case HDMI_INFOFRAME_TYPE_AUDIO:
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, 0x02);
|
2014-02-04 11:10:18 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER0, infoframe->any.type);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER1,
|
|
|
|
infoframe->any.version);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_HEADER2, infoframe->any.length);
|
|
|
|
hdr_sum = infoframe->any.type + infoframe->any.version +
|
|
|
|
infoframe->any.length;
|
2012-11-26 13:22:57 +08:00
|
|
|
chksum = hdmi_chksum(hdata, HDMI_AUI_BYTE(1),
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe->any.length, hdr_sum);
|
2012-11-26 13:22:57 +08:00
|
|
|
DRM_DEBUG_KMS("AUI checksum = 0x%x\n", chksum);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CHECK_SUM, chksum);
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
static enum drm_connector_status hdmi_detect(struct drm_connector *connector,
|
|
|
|
bool force)
|
2014-01-31 05:19:05 +08:00
|
|
|
{
|
2014-01-31 05:19:29 +08:00
|
|
|
struct hdmi_context *hdata = ctx_from_connector(connector);
|
2014-01-31 05:19:05 +08:00
|
|
|
|
2015-07-09 22:28:07 +08:00
|
|
|
if (gpio_get_value(hdata->hpd_gpio))
|
|
|
|
return connector_status_connected;
|
2014-04-03 23:11:03 +08:00
|
|
|
|
2015-07-09 22:28:07 +08:00
|
|
|
return connector_status_disconnected;
|
2014-01-31 05:19:05 +08:00
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
static void hdmi_connector_destroy(struct drm_connector *connector)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-09-09 21:16:13 +08:00
|
|
|
drm_connector_unregister(connector);
|
|
|
|
drm_connector_cleanup(connector);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
static struct drm_connector_funcs hdmi_connector_funcs = {
|
2015-06-01 23:04:53 +08:00
|
|
|
.dpms = drm_atomic_helper_connector_dpms,
|
2014-01-31 05:19:29 +08:00
|
|
|
.fill_modes = drm_helper_probe_single_connector_modes,
|
|
|
|
.detect = hdmi_detect,
|
|
|
|
.destroy = hdmi_connector_destroy,
|
2015-06-01 23:04:44 +08:00
|
|
|
.reset = drm_atomic_helper_connector_reset,
|
|
|
|
.atomic_duplicate_state = drm_atomic_helper_connector_duplicate_state,
|
|
|
|
.atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
|
2014-01-31 05:19:29 +08:00
|
|
|
};
|
|
|
|
|
|
|
|
static int hdmi_get_modes(struct drm_connector *connector)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-01-31 05:19:29 +08:00
|
|
|
struct hdmi_context *hdata = ctx_from_connector(connector);
|
|
|
|
struct edid *edid;
|
2015-07-09 14:25:38 +08:00
|
|
|
int ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-03-13 15:38:31 +08:00
|
|
|
if (!hdata->ddc_adpt)
|
2014-01-31 05:19:29 +08:00
|
|
|
return -ENODEV;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-03-13 15:38:31 +08:00
|
|
|
edid = drm_get_edid(connector, hdata->ddc_adpt);
|
2014-01-31 05:19:29 +08:00
|
|
|
if (!edid)
|
|
|
|
return -ENODEV;
|
2013-01-04 20:59:11 +08:00
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
hdata->dvi_mode = !drm_detect_hdmi_monitor(edid);
|
2013-01-04 20:59:11 +08:00
|
|
|
DRM_DEBUG_KMS("%s : width[%d] x height[%d]\n",
|
|
|
|
(hdata->dvi_mode ? "dvi monitor" : "hdmi monitor"),
|
2014-01-31 05:19:29 +08:00
|
|
|
edid->width_cm, edid->height_cm);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
drm_mode_connector_update_edid_property(connector, edid);
|
|
|
|
|
2015-07-09 14:25:38 +08:00
|
|
|
ret = drm_add_edid_modes(connector, edid);
|
|
|
|
|
|
|
|
kfree(edid);
|
|
|
|
|
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-03-06 16:33:29 +08:00
|
|
|
static int hdmi_find_phy_conf(struct hdmi_context *hdata, u32 pixel_clock)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-05-09 14:34:18 +08:00
|
|
|
int i;
|
2013-03-06 16:33:29 +08:00
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
for (i = 0; i < hdata->drv_data->phy_conf_count; i++)
|
|
|
|
if (hdata->drv_data->phy_confs[i].pixel_clock == pixel_clock)
|
2013-01-15 21:11:08 +08:00
|
|
|
return i;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("Could not find phy config for %d\n", pixel_clock);
|
|
|
|
return -EINVAL;
|
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
static int hdmi_mode_valid(struct drm_connector *connector,
|
2014-01-31 05:19:15 +08:00
|
|
|
struct drm_display_mode *mode)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2014-01-31 05:19:29 +08:00
|
|
|
struct hdmi_context *hdata = ctx_from_connector(connector);
|
2013-03-06 16:33:29 +08:00
|
|
|
int ret;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%d clock=%d\n",
|
|
|
|
mode->hdisplay, mode->vdisplay, mode->vrefresh,
|
|
|
|
(mode->flags & DRM_MODE_FLAG_INTERLACE) ? true :
|
|
|
|
false, mode->clock * 1000);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2014-01-31 05:19:15 +08:00
|
|
|
ret = mixer_check_mode(mode);
|
|
|
|
if (ret)
|
2014-01-31 05:19:29 +08:00
|
|
|
return MODE_BAD;
|
2014-01-31 05:19:15 +08:00
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
ret = hdmi_find_phy_conf(hdata, mode->clock * 1000);
|
2013-03-06 16:33:29 +08:00
|
|
|
if (ret < 0)
|
2014-01-31 05:19:29 +08:00
|
|
|
return MODE_BAD;
|
|
|
|
|
|
|
|
return MODE_OK;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct drm_encoder *hdmi_best_encoder(struct drm_connector *connector)
|
|
|
|
{
|
|
|
|
struct hdmi_context *hdata = ctx_from_connector(connector);
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
return &hdata->encoder.base;
|
2014-01-31 05:19:29 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static struct drm_connector_helper_funcs hdmi_connector_helper_funcs = {
|
|
|
|
.get_modes = hdmi_get_modes,
|
|
|
|
.mode_valid = hdmi_mode_valid,
|
|
|
|
.best_encoder = hdmi_best_encoder,
|
|
|
|
};
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static int hdmi_create_connector(struct exynos_drm_encoder *exynos_encoder)
|
2014-01-31 05:19:29 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(exynos_encoder);
|
2014-01-31 05:19:29 +08:00
|
|
|
struct drm_connector *connector = &hdata->connector;
|
|
|
|
int ret;
|
|
|
|
|
|
|
|
connector->interlace_allowed = true;
|
|
|
|
connector->polled = DRM_CONNECTOR_POLL_HPD;
|
|
|
|
|
|
|
|
ret = drm_connector_init(hdata->drm_dev, connector,
|
|
|
|
&hdmi_connector_funcs, DRM_MODE_CONNECTOR_HDMIA);
|
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("Failed to initialize connector with drm\n");
|
2013-03-06 16:33:29 +08:00
|
|
|
return ret;
|
2014-01-31 05:19:29 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
drm_connector_helper_add(connector, &hdmi_connector_helper_funcs);
|
2014-05-29 23:57:41 +08:00
|
|
|
drm_connector_register(connector);
|
2015-08-11 16:38:06 +08:00
|
|
|
drm_mode_connector_attach_encoder(connector, &exynos_encoder->base);
|
2014-01-31 05:19:29 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static void hdmi_mode_fixup(struct exynos_drm_encoder *encoder,
|
2014-01-31 05:19:15 +08:00
|
|
|
struct drm_connector *connector,
|
|
|
|
const struct drm_display_mode *mode,
|
|
|
|
struct drm_display_mode *adjusted_mode)
|
|
|
|
{
|
|
|
|
struct drm_display_mode *m;
|
|
|
|
int mode_ok;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("%s\n", __FILE__);
|
|
|
|
|
|
|
|
drm_mode_set_crtcinfo(adjusted_mode, 0);
|
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
mode_ok = hdmi_mode_valid(connector, adjusted_mode);
|
2014-01-31 05:19:15 +08:00
|
|
|
|
|
|
|
/* just return if user desired mode exists. */
|
2014-01-31 05:19:29 +08:00
|
|
|
if (mode_ok == MODE_OK)
|
2014-01-31 05:19:15 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
/*
|
|
|
|
* otherwise, find the most suitable mode among modes and change it
|
|
|
|
* to adjusted_mode.
|
|
|
|
*/
|
|
|
|
list_for_each_entry(m, &connector->modes, head) {
|
2014-01-31 05:19:29 +08:00
|
|
|
mode_ok = hdmi_mode_valid(connector, m);
|
2014-01-31 05:19:15 +08:00
|
|
|
|
2014-01-31 05:19:29 +08:00
|
|
|
if (mode_ok == MODE_OK) {
|
2014-01-31 05:19:15 +08:00
|
|
|
DRM_INFO("desired mode doesn't exist so\n");
|
|
|
|
DRM_INFO("use the most suitable mode among modes.\n");
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("Adjusted Mode: [%d]x[%d] [%d]Hz\n",
|
|
|
|
m->hdisplay, m->vdisplay, m->vrefresh);
|
|
|
|
|
2014-01-31 05:19:16 +08:00
|
|
|
drm_mode_copy(adjusted_mode, m);
|
2014-01-31 05:19:15 +08:00
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:16 +08:00
|
|
|
static void hdmi_set_acr(u32 freq, u8 *acr)
|
|
|
|
{
|
|
|
|
u32 n, cts;
|
|
|
|
|
|
|
|
switch (freq) {
|
|
|
|
case 32000:
|
|
|
|
n = 4096;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
case 44100:
|
|
|
|
n = 6272;
|
|
|
|
cts = 30000;
|
|
|
|
break;
|
|
|
|
case 88200:
|
|
|
|
n = 12544;
|
|
|
|
cts = 30000;
|
|
|
|
break;
|
|
|
|
case 176400:
|
|
|
|
n = 25088;
|
|
|
|
cts = 30000;
|
|
|
|
break;
|
|
|
|
case 48000:
|
|
|
|
n = 6144;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
case 96000:
|
|
|
|
n = 12288;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
case 192000:
|
|
|
|
n = 24576;
|
|
|
|
cts = 27000;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
n = 0;
|
|
|
|
cts = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
acr[1] = cts >> 16;
|
|
|
|
acr[2] = cts >> 8 & 0xff;
|
|
|
|
acr[3] = cts & 0xff;
|
|
|
|
|
|
|
|
acr[4] = n >> 16;
|
|
|
|
acr[5] = n >> 8 & 0xff;
|
|
|
|
acr[6] = n & 0xff;
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_reg_acr(struct hdmi_context *hdata, u8 *acr)
|
|
|
|
{
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_N0, acr[6]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_N1, acr[5]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_N2, acr[4]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS0, acr[3]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS1, acr[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_MCTS2, acr[1]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CTS0, acr[3]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CTS1, acr[2]);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CTS2, acr[1]);
|
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type == HDMI_TYPE13)
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_ACR_CON, 4);
|
|
|
|
else
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_ACR_CON, 4);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_audio_init(struct hdmi_context *hdata)
|
|
|
|
{
|
2014-07-02 12:03:07 +08:00
|
|
|
u32 sample_rate, bits_per_sample;
|
2012-03-16 17:47:16 +08:00
|
|
|
u32 data_num, bit_ch, sample_frq;
|
|
|
|
u32 val;
|
|
|
|
u8 acr[7];
|
|
|
|
|
|
|
|
sample_rate = 44100;
|
|
|
|
bits_per_sample = 16;
|
|
|
|
|
|
|
|
switch (bits_per_sample) {
|
|
|
|
case 20:
|
|
|
|
data_num = 2;
|
|
|
|
bit_ch = 1;
|
|
|
|
break;
|
|
|
|
case 24:
|
|
|
|
data_num = 3;
|
|
|
|
bit_ch = 1;
|
|
|
|
break;
|
|
|
|
default:
|
|
|
|
data_num = 1;
|
|
|
|
bit_ch = 0;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
|
|
|
|
hdmi_set_acr(sample_rate, acr);
|
|
|
|
hdmi_reg_acr(hdata, acr);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CON, HDMI_I2S_IN_DISABLE
|
|
|
|
| HDMI_I2S_AUD_I2S | HDMI_I2S_CUV_I2S_ENABLE
|
|
|
|
| HDMI_I2S_MUX_ENABLE);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CH, HDMI_I2S_CH0_EN
|
|
|
|
| HDMI_I2S_CH1_EN | HDMI_I2S_CH2_EN);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_MUX_CUV, HDMI_I2S_CUV_RL_EN);
|
|
|
|
|
|
|
|
sample_frq = (sample_rate == 44100) ? 0 :
|
|
|
|
(sample_rate == 48000) ? 2 :
|
|
|
|
(sample_rate == 32000) ? 3 :
|
|
|
|
(sample_rate == 96000) ? 0xa : 0x0;
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_DIS);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CLK_CON, HDMI_I2S_CLK_EN);
|
|
|
|
|
|
|
|
val = hdmi_reg_read(hdata, HDMI_I2S_DSD_CON) | 0x01;
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_DSD_CON, val);
|
|
|
|
|
|
|
|
/* Configuration I2S input ports. Configure I2S_PIN_SEL_0~4 */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_0, HDMI_I2S_SEL_SCLK(5)
|
|
|
|
| HDMI_I2S_SEL_LRCK(6));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_1, HDMI_I2S_SEL_SDATA1(1)
|
|
|
|
| HDMI_I2S_SEL_SDATA2(4));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_2, HDMI_I2S_SEL_SDATA3(1)
|
|
|
|
| HDMI_I2S_SEL_SDATA2(2));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_PIN_SEL_3, HDMI_I2S_SEL_DSD(0));
|
|
|
|
|
|
|
|
/* I2S_CON_1 & 2 */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CON_1, HDMI_I2S_SCLK_FALLING_EDGE
|
|
|
|
| HDMI_I2S_L_CH_LOW_POL);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CON_2, HDMI_I2S_MSB_FIRST_MODE
|
|
|
|
| HDMI_I2S_SET_BIT_CH(bit_ch)
|
|
|
|
| HDMI_I2S_SET_SDATA_BIT(data_num)
|
|
|
|
| HDMI_I2S_BASIC_FORMAT);
|
|
|
|
|
|
|
|
/* Configure register related to CUV information */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_0, HDMI_I2S_CH_STATUS_MODE_0
|
|
|
|
| HDMI_I2S_2AUD_CH_WITHOUT_PREEMPH
|
|
|
|
| HDMI_I2S_COPYRIGHT
|
|
|
|
| HDMI_I2S_LINEAR_PCM
|
|
|
|
| HDMI_I2S_CONSUMER_FORMAT);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_1, HDMI_I2S_CD_PLAYER);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_2, HDMI_I2S_SET_SOURCE_NUM(0));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_3, HDMI_I2S_CLK_ACCUR_LEVEL_2
|
|
|
|
| HDMI_I2S_SET_SMP_FREQ(sample_frq));
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_4,
|
|
|
|
HDMI_I2S_ORG_SMP_FREQ_44_1
|
|
|
|
| HDMI_I2S_WORD_LEN_MAX24_24BITS
|
|
|
|
| HDMI_I2S_WORD_LEN_MAX_24BITS);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_I2S_CH_ST_CON, HDMI_I2S_CH_STATUS_RELOAD);
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_audio_control(struct hdmi_context *hdata, bool onoff)
|
|
|
|
{
|
2012-04-24 16:39:15 +08:00
|
|
|
if (hdata->dvi_mode)
|
2012-03-16 17:47:16 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_AUI_CON, onoff ? 2 : 0);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, onoff ?
|
|
|
|
HDMI_ASP_EN : HDMI_ASP_DIS, HDMI_ASP_MASK);
|
|
|
|
}
|
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
static void hdmi_start(struct hdmi_context *hdata, bool start)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-04-03 23:11:04 +08:00
|
|
|
u32 val = start ? HDMI_TG_EN : 0;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
if (hdata->current_mode.flags & DRM_MODE_FLAG_INTERLACE)
|
|
|
|
val |= HDMI_FIELD_EN;
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, val, HDMI_EN);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_TG_CMD, val, HDMI_TG_EN | HDMI_FIELD_EN);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_conf_init(struct hdmi_context *hdata)
|
|
|
|
{
|
2014-02-04 11:10:18 +08:00
|
|
|
union hdmi_infoframe infoframe;
|
2012-11-26 13:22:57 +08:00
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
/* disable HPD interrupts from HDMI IP block, use GPIO instead */
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_reg_writemask(hdata, HDMI_INTC_CON, 0, HDMI_INTC_EN_GLOBAL |
|
|
|
|
HDMI_INTC_EN_HPD_PLUG | HDMI_INTC_EN_HPD_UNPLUG);
|
|
|
|
|
|
|
|
/* choose HDMI mode */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_MODE_SEL,
|
|
|
|
HDMI_MODE_HDMI_EN, HDMI_MODE_MASK);
|
2014-02-14 15:34:57 +08:00
|
|
|
/* Apply Video preable and Guard band in HDMI mode only */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_CON_2, 0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* disable bluescreen */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, 0, HDMI_BLUE_SCR_EN);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
2012-04-24 16:39:15 +08:00
|
|
|
if (hdata->dvi_mode) {
|
|
|
|
/* choose DVI mode */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_MODE_SEL,
|
|
|
|
HDMI_MODE_DVI_EN, HDMI_MODE_MASK);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_CON_2,
|
|
|
|
HDMI_VID_PREAMBLE_DIS | HDMI_GUARD_BAND_DIS);
|
|
|
|
}
|
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type == HDMI_TYPE13) {
|
2012-03-16 17:47:03 +08:00
|
|
|
/* choose bluescreen (fecal) color */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_0, 0x12);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_1, 0x34);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_BLUE_SCREEN_2, 0x56);
|
|
|
|
|
|
|
|
/* enable AVI packet every vsync, fixes purple line problem */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AVI_CON, 0x02);
|
|
|
|
/* force RGB, look to CEA-861-D, table 7 for more detail */
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AVI_BYTE(0), 0 << 5);
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_1, 0x10 << 5, 0x11 << 5);
|
|
|
|
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_SPD_CON, 0x02);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_AUI_CON, 0x02);
|
|
|
|
hdmi_reg_writeb(hdata, HDMI_V13_ACR_CON, 0x04);
|
|
|
|
} else {
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe.any.type = HDMI_INFOFRAME_TYPE_AVI;
|
|
|
|
infoframe.any.version = HDMI_AVI_VERSION;
|
|
|
|
infoframe.any.length = HDMI_AVI_LENGTH;
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_infoframe(hdata, &infoframe);
|
|
|
|
|
2014-02-04 11:10:18 +08:00
|
|
|
infoframe.any.type = HDMI_INFOFRAME_TYPE_AUDIO;
|
|
|
|
infoframe.any.version = HDMI_AUI_VERSION;
|
|
|
|
infoframe.any.length = HDMI_AUI_LENGTH;
|
2012-11-26 13:22:57 +08:00
|
|
|
hdmi_reg_infoframe(hdata, &infoframe);
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
/* enable AVI packet every vsync, fixes purple line problem */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_1, 2, 3 << 5);
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_v13_mode_apply(struct hdmi_context *hdata)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2015-07-09 22:28:11 +08:00
|
|
|
struct drm_display_mode *m = &hdata->current_mode;
|
|
|
|
unsigned int val;
|
2012-03-16 17:47:03 +08:00
|
|
|
int tries;
|
|
|
|
|
2015-07-09 22:28:11 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_H_BLANK_0, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_H_V_LINE_0, 3,
|
|
|
|
(m->htotal << 12) | m->vtotal);
|
|
|
|
|
|
|
|
val = (m->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VSYNC_POL, 1, val);
|
|
|
|
|
|
|
|
val = (m->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_INT_PRO_MODE, 1, val);
|
|
|
|
|
|
|
|
val = (m->hsync_start - m->hdisplay - 2);
|
|
|
|
val |= ((m->hsync_end - m->hdisplay - 2) << 10);
|
|
|
|
val |= ((m->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0)<<20;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_H_SYNC_GEN_0, 3, val);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Quirk requirement for exynos HDMI IP design,
|
|
|
|
* 2 pixels less than the actual calculation for hsync_start
|
|
|
|
* and end.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Following values & calculations differ for different type of modes */
|
|
|
|
if (m->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
|
|
/* Interlaced Mode */
|
|
|
|
val = ((m->vsync_end - m->vdisplay) / 2);
|
|
|
|
val |= ((m->vsync_start - m->vdisplay) / 2) << 12;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_1_0, 3, val);
|
|
|
|
|
|
|
|
val = m->vtotal / 2;
|
|
|
|
val |= ((m->vtotal - m->vdisplay) / 2) << 11;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_0, 3, val);
|
|
|
|
|
|
|
|
val = (m->vtotal +
|
|
|
|
((m->vsync_end - m->vsync_start) * 4) + 5) / 2;
|
|
|
|
val |= m->vtotal << 11;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_F_0, 3, val);
|
|
|
|
|
|
|
|
val = ((m->vtotal / 2) + 7);
|
|
|
|
val |= ((m->vtotal / 2) + 2) << 12;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_2_0, 3, val);
|
|
|
|
|
|
|
|
val = ((m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
val |= ((m->htotal / 2) +
|
|
|
|
(m->hsync_start - m->hdisplay)) << 12;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_3_0, 3, val);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
(m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay / 2);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST2_L, 2, 0x249);
|
|
|
|
} else {
|
|
|
|
/* Progressive Mode */
|
|
|
|
|
|
|
|
val = m->vtotal;
|
|
|
|
val |= (m->vtotal - m->vdisplay) << 11;
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_0, 3, val);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_BLANK_F_0, 3, 0);
|
|
|
|
|
|
|
|
val = (m->vsync_end - m->vdisplay);
|
|
|
|
val |= ((m->vsync_start - m->vdisplay) << 12);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_1_0, 3, val);
|
|
|
|
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_2_0, 3, 0x1001);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V13_V_SYNC_GEN_3_0, 3, 0x1001);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
m->vtotal - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST2_L, 2, 0x248);
|
|
|
|
}
|
|
|
|
|
2012-03-16 17:47:03 +08:00
|
|
|
/* Timing generator registers */
|
2015-07-09 22:28:11 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_H_FSZ_L, 2, m->htotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_ST_L, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_SZ_L, 2, m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_V_FSZ_L, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_L, 2, 0x1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC2_L, 2, 0x233);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_CHG_L, 2, 0x233);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_TOP_HDMI_L, 2, 0x1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, 2, 0x233);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_TOP_HDMI_L, 2, 0x1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_BOT_HDMI_L, 2, 0x233);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
|
|
|
/* waiting for HDMIPHY's PLL to get to steady state */
|
|
|
|
for (tries = 100; tries; --tries) {
|
|
|
|
u32 val = hdmi_reg_read(hdata, HDMI_V13_PHY_STATUS);
|
|
|
|
if (val & HDMI_PHY_STATUS_READY)
|
|
|
|
break;
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(1000, 2000);
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
/* steady state not achieved */
|
|
|
|
if (tries == 0) {
|
|
|
|
DRM_ERROR("hdmiphy's pll could not reach steady state.\n");
|
|
|
|
hdmi_regs_dump(hdata, "timing apply");
|
|
|
|
}
|
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(hdata->res.sclk_hdmi);
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(hdata->res.mout_hdmi, hdata->res.sclk_hdmiphy);
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(hdata->res.sclk_hdmi);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
|
|
|
/* enable HDMI and timing generator */
|
2014-04-03 23:11:04 +08:00
|
|
|
hdmi_start(hdata, true);
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_v14_mode_apply(struct hdmi_context *hdata)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2015-07-09 22:28:12 +08:00
|
|
|
struct drm_display_mode *m = &hdata->current_mode;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
int tries;
|
|
|
|
|
2015-07-09 22:28:12 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_H_BLANK_0, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_LINE_0, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_H_LINE_0, 2, m->htotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_HSYNC_POL, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_NHSYNC) ? 1 : 0);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VSYNC_POL, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_NVSYNC) ? 1 : 0);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_INT_PRO_MODE, 1,
|
|
|
|
(m->flags & DRM_MODE_FLAG_INTERLACE) ? 1 : 0);
|
|
|
|
|
|
|
|
/*
|
|
|
|
* Quirk requirement for exynos 5 HDMI IP design,
|
|
|
|
* 2 pixels less than the actual calculation for hsync_start
|
|
|
|
* and end.
|
|
|
|
*/
|
|
|
|
|
|
|
|
/* Following values & calculations differ for different type of modes */
|
|
|
|
if (m->flags & DRM_MODE_FLAG_INTERLACE) {
|
|
|
|
/* Interlaced Mode */
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_2_0, 2,
|
|
|
|
(m->vsync_end - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_1_0, 2,
|
|
|
|
(m->vsync_start - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V2_BLANK_0, 2, m->vtotal / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V1_BLANK_0, 2,
|
|
|
|
(m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F0_0, 2,
|
|
|
|
m->vtotal - m->vdisplay / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F1_0, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_2_0, 2,
|
|
|
|
(m->vtotal / 2) + 7);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_1_0, 2,
|
|
|
|
(m->vtotal / 2) + 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_0, 2,
|
|
|
|
(m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_0, 2,
|
|
|
|
(m->htotal / 2) + (m->hsync_start - m->hdisplay));
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
(m->vtotal - m->vdisplay) / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST2_L, 2,
|
|
|
|
m->vtotal - m->vdisplay / 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC2_L, 2,
|
|
|
|
(m->vtotal / 2) + 1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, 2,
|
|
|
|
(m->vtotal / 2) + 1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_BOT_HDMI_L, 2,
|
|
|
|
(m->vtotal / 2) + 1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST3_L, 2, 0x0);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST4_L, 2, 0x0);
|
|
|
|
} else {
|
|
|
|
/* Progressive Mode */
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_2_0, 2,
|
|
|
|
m->vsync_end - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_BEF_1_0, 2,
|
|
|
|
m->vsync_start - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V2_BLANK_0, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V1_BLANK_0, 2,
|
|
|
|
m->vtotal - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F0_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST_L, 2,
|
|
|
|
m->vtotal - m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_SZ_L, 2, m->vdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST2_L, 2, 0x248);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST3_L, 2, 0x47b);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VACT_ST4_L, 2, 0x6ae);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC2_L, 2, 0x233);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_BOT_HDMI_L, 2, 0x233);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_BOT_HDMI_L, 2, 0x233);
|
|
|
|
}
|
|
|
|
|
|
|
|
/* Following values & calculations are same irrespective of mode type */
|
|
|
|
hdmi_reg_writev(hdata, HDMI_H_SYNC_START_0, 2,
|
|
|
|
m->hsync_start - m->hdisplay - 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_H_SYNC_END_0, 2,
|
|
|
|
m->hsync_end - m->hdisplay - 2);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_1_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_VACT_SPACE_6_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F2_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_BLANK_F5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_6_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_3_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_4_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_5_0, 2, 0xffff);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_V_SYNC_LINE_AFT_PXL_6_0, 2, 0xffff);
|
2012-03-16 17:47:03 +08:00
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* Timing generator registers */
|
2015-07-09 22:28:12 +08:00
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_H_FSZ_L, 2, m->htotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_ST_L, 2, m->htotal - m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_HACT_SZ_L, 2, m->hdisplay);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_V_FSZ_L, 2, m->vtotal);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_L, 2, 0x1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_CHG_L, 2, 0x233);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_VSYNC_TOP_HDMI_L, 2, 0x1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_FIELD_TOP_HDMI_L, 2, 0x1);
|
|
|
|
hdmi_reg_writev(hdata, HDMI_TG_3D, 1, 0x0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* waiting for HDMIPHY's PLL to get to steady state */
|
|
|
|
for (tries = 100; tries; --tries) {
|
2012-03-16 17:47:03 +08:00
|
|
|
u32 val = hdmi_reg_read(hdata, HDMI_PHY_STATUS_0);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (val & HDMI_PHY_STATUS_READY)
|
|
|
|
break;
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(1000, 2000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
/* steady state not achieved */
|
|
|
|
if (tries == 0) {
|
|
|
|
DRM_ERROR("hdmiphy's pll could not reach steady state.\n");
|
|
|
|
hdmi_regs_dump(hdata, "timing apply");
|
|
|
|
}
|
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(hdata->res.sclk_hdmi);
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(hdata->res.mout_hdmi, hdata->res.sclk_hdmiphy);
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(hdata->res.sclk_hdmi);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* enable HDMI and timing generator */
|
2014-04-03 23:11:04 +08:00
|
|
|
hdmi_start(hdata, true);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-06-10 17:20:00 +08:00
|
|
|
static void hdmi_mode_apply(struct hdmi_context *hdata)
|
2012-03-16 17:47:03 +08:00
|
|
|
{
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type == HDMI_TYPE13)
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_v13_mode_apply(hdata);
|
2012-03-16 17:47:03 +08:00
|
|
|
else
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_v14_mode_apply(hdata);
|
2012-03-16 17:47:03 +08:00
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmiphy_conf_reset(struct hdmi_context *hdata)
|
|
|
|
{
|
2012-03-16 17:47:03 +08:00
|
|
|
u32 reg;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(hdata->res.sclk_hdmi);
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(hdata->res.mout_hdmi, hdata->res.sclk_pixel);
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(hdata->res.sclk_hdmi);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* operation mode */
|
2015-01-12 13:35:16 +08:00
|
|
|
hdmiphy_reg_writeb(hdata, HDMIPHY_MODE_SET_DONE,
|
|
|
|
HDMI_PHY_ENABLE_MODE_SET);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type == HDMI_TYPE13)
|
2012-03-16 17:47:03 +08:00
|
|
|
reg = HDMI_V13_PHY_RSTOUT;
|
|
|
|
else
|
|
|
|
reg = HDMI_PHY_RSTOUT;
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* reset hdmiphy */
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writemask(hdata, reg, ~0, HDMI_PHY_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
2012-03-16 17:47:03 +08:00
|
|
|
hdmi_reg_writemask(hdata, reg, 0, HDMI_PHY_SW_RSTOUT);
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2012-11-28 14:00:25 +08:00
|
|
|
static void hdmiphy_poweron(struct hdmi_context *hdata)
|
|
|
|
{
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type != HDMI_TYPE14)
|
2014-04-03 23:11:02 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
|
|
|
|
/* For PHY Mode Setting */
|
|
|
|
hdmiphy_reg_writeb(hdata, HDMIPHY_MODE_SET_DONE,
|
|
|
|
HDMI_PHY_ENABLE_MODE_SET);
|
|
|
|
/* Phy Power On */
|
|
|
|
hdmiphy_reg_writeb(hdata, HDMIPHY_POWER,
|
|
|
|
HDMI_PHY_POWER_ON);
|
|
|
|
/* For PHY Mode Setting */
|
|
|
|
hdmiphy_reg_writeb(hdata, HDMIPHY_MODE_SET_DONE,
|
|
|
|
HDMI_PHY_DISABLE_MODE_SET);
|
|
|
|
/* PHY SW Reset */
|
|
|
|
hdmiphy_conf_reset(hdata);
|
2012-11-28 14:00:25 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmiphy_poweroff(struct hdmi_context *hdata)
|
|
|
|
{
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->type != HDMI_TYPE14)
|
2014-04-03 23:11:02 +08:00
|
|
|
return;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("\n");
|
|
|
|
|
|
|
|
/* PHY SW Reset */
|
|
|
|
hdmiphy_conf_reset(hdata);
|
|
|
|
/* For PHY Mode Setting */
|
|
|
|
hdmiphy_reg_writeb(hdata, HDMIPHY_MODE_SET_DONE,
|
|
|
|
HDMI_PHY_ENABLE_MODE_SET);
|
|
|
|
|
|
|
|
/* PHY Power Off */
|
|
|
|
hdmiphy_reg_writeb(hdata, HDMIPHY_POWER,
|
|
|
|
HDMI_PHY_POWER_OFF);
|
|
|
|
|
|
|
|
/* For PHY Mode Setting */
|
|
|
|
hdmiphy_reg_writeb(hdata, HDMIPHY_MODE_SET_DONE,
|
|
|
|
HDMI_PHY_DISABLE_MODE_SET);
|
2012-11-28 14:00:25 +08:00
|
|
|
}
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
static void hdmiphy_conf_apply(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
int ret;
|
|
|
|
int i;
|
|
|
|
|
|
|
|
/* pixel clock */
|
2015-07-09 22:28:10 +08:00
|
|
|
i = hdmi_find_phy_conf(hdata, hdata->current_mode.clock * 1000);
|
2013-03-06 16:33:29 +08:00
|
|
|
if (i < 0) {
|
|
|
|
DRM_ERROR("failed to find hdmiphy conf\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
ret = hdmiphy_reg_write_buf(hdata, 0,
|
|
|
|
hdata->drv_data->phy_confs[i].conf, 32);
|
2014-05-09 14:34:18 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to configure hdmiphy\n");
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
2013-01-15 06:03:20 +08:00
|
|
|
usleep_range(10000, 12000);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-09 14:34:18 +08:00
|
|
|
ret = hdmiphy_reg_writeb(hdata, HDMIPHY_MODE_SET_DONE,
|
|
|
|
HDMI_PHY_DISABLE_MODE_SET);
|
|
|
|
if (ret) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to enable hdmiphy\n");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_conf_apply(struct hdmi_context *hdata)
|
|
|
|
{
|
|
|
|
hdmiphy_conf_reset(hdata);
|
|
|
|
hdmiphy_conf_apply(hdata);
|
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
hdmi_start(hdata, false);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_conf_init(hdata);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_audio_init(hdata);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
/* setting core registers */
|
2013-06-10 17:20:00 +08:00
|
|
|
hdmi_mode_apply(hdata);
|
2012-03-16 17:47:16 +08:00
|
|
|
hdmi_audio_control(hdata, true);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
hdmi_regs_dump(hdata, "start");
|
|
|
|
}
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static void hdmi_mode_set(struct exynos_drm_encoder *encoder,
|
2014-01-31 05:19:15 +08:00
|
|
|
struct drm_display_mode *mode)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
2013-03-06 16:33:29 +08:00
|
|
|
struct drm_display_mode *m = mode;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-12 09:44:40 +08:00
|
|
|
DRM_DEBUG_KMS("xres=%d, yres=%d, refresh=%d, intl=%s\n",
|
|
|
|
m->hdisplay, m->vdisplay,
|
2013-03-06 16:33:29 +08:00
|
|
|
m->vrefresh, (m->flags & DRM_MODE_FLAG_INTERLACE) ?
|
2015-04-07 07:14:50 +08:00
|
|
|
"INTERLACED" : "PROGRESSIVE");
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
drm_mode_copy(&hdata->current_mode, mode);
|
2015-07-09 22:28:10 +08:00
|
|
|
hdata->cea_video_id = drm_match_cea_mode(mode);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static void hdmi_commit(struct exynos_drm_encoder *encoder)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2015-07-09 22:28:08 +08:00
|
|
|
if (!hdata->powered)
|
2013-01-24 11:03:18 +08:00
|
|
|
return;
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
hdmi_conf_apply(hdata);
|
2012-04-23 18:35:50 +08:00
|
|
|
}
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static void hdmi_enable(struct exynos_drm_encoder *encoder)
|
2012-04-23 18:35:50 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
2012-04-23 18:35:50 +08:00
|
|
|
struct hdmi_resources *res = &hdata->res;
|
|
|
|
|
2015-07-09 22:28:08 +08:00
|
|
|
if (hdata->powered)
|
2012-04-23 18:35:50 +08:00
|
|
|
return;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
hdata->powered = true;
|
|
|
|
|
2014-01-31 05:19:27 +08:00
|
|
|
pm_runtime_get_sync(hdata->dev);
|
|
|
|
|
2013-06-05 13:34:38 +08:00
|
|
|
if (regulator_bulk_enable(res->regul_count, res->regul_bulk))
|
|
|
|
DRM_DEBUG_KMS("failed to enable regulator bulk\n");
|
|
|
|
|
2014-05-20 13:06:05 +08:00
|
|
|
/* set pmu hdmiphy control bit to enable hdmiphy */
|
|
|
|
regmap_update_bits(hdata->pmureg, PMU_HDMI_PHY_CONTROL,
|
|
|
|
PMU_HDMI_PHY_ENABLE_BIT, 1);
|
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_prepare_enable(res->hdmi);
|
|
|
|
clk_prepare_enable(res->sclk_hdmi);
|
2012-11-28 14:00:25 +08:00
|
|
|
|
|
|
|
hdmiphy_poweron(hdata);
|
2015-08-11 16:38:06 +08:00
|
|
|
hdmi_commit(encoder);
|
2012-04-23 18:35:50 +08:00
|
|
|
}
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static void hdmi_disable(struct exynos_drm_encoder *encoder)
|
2012-04-23 18:35:50 +08:00
|
|
|
{
|
2015-08-11 16:38:06 +08:00
|
|
|
struct hdmi_context *hdata = encoder_to_hdmi(encoder);
|
2012-04-23 18:35:50 +08:00
|
|
|
struct hdmi_resources *res = &hdata->res;
|
2015-08-11 16:38:06 +08:00
|
|
|
struct drm_crtc *crtc = hdata->encoder.base.crtc;
|
2015-08-11 08:37:04 +08:00
|
|
|
const struct drm_crtc_helper_funcs *funcs = NULL;
|
2012-04-23 18:35:50 +08:00
|
|
|
|
|
|
|
if (!hdata->powered)
|
2015-07-09 22:28:08 +08:00
|
|
|
return;
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2015-08-11 08:37:04 +08:00
|
|
|
/*
|
|
|
|
* The SFRs of VP and Mixer are updated by Vertical Sync of
|
|
|
|
* Timing generator which is a part of HDMI so the sequence
|
|
|
|
* to disable TV Subsystem should be as following,
|
|
|
|
* VP -> Mixer -> HDMI
|
|
|
|
*
|
|
|
|
* Below codes will try to disable Mixer and VP(if used)
|
|
|
|
* prior to disabling HDMI.
|
|
|
|
*/
|
|
|
|
if (crtc)
|
|
|
|
funcs = crtc->helper_private;
|
|
|
|
if (funcs && funcs->disable)
|
|
|
|
(*funcs->disable)(crtc);
|
|
|
|
|
2014-04-03 23:11:04 +08:00
|
|
|
/* HDMI System Disable */
|
|
|
|
hdmi_reg_writemask(hdata, HDMI_CON_0, 0, HDMI_EN);
|
|
|
|
|
2012-11-28 14:00:25 +08:00
|
|
|
hdmiphy_poweroff(hdata);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
cancel_delayed_work(&hdata->hotplug_work);
|
|
|
|
|
2013-06-11 14:54:02 +08:00
|
|
|
clk_disable_unprepare(res->sclk_hdmi);
|
|
|
|
clk_disable_unprepare(res->hdmi);
|
2014-05-20 13:06:05 +08:00
|
|
|
|
|
|
|
/* reset pmu hdmiphy control bit to disable hdmiphy */
|
|
|
|
regmap_update_bits(hdata->pmureg, PMU_HDMI_PHY_CONTROL,
|
|
|
|
PMU_HDMI_PHY_ENABLE_BIT, 0);
|
|
|
|
|
2012-04-23 18:35:50 +08:00
|
|
|
regulator_bulk_disable(res->regul_count, res->regul_bulk);
|
|
|
|
|
2014-01-31 05:19:27 +08:00
|
|
|
pm_runtime_put_sync(hdata->dev);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
|
|
|
hdata->powered = false;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
static struct exynos_drm_encoder_ops hdmi_encoder_ops = {
|
2014-01-31 05:19:29 +08:00
|
|
|
.create_connector = hdmi_create_connector,
|
2014-01-31 05:19:15 +08:00
|
|
|
.mode_fixup = hdmi_mode_fixup,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.mode_set = hdmi_mode_set,
|
2015-08-11 08:37:04 +08:00
|
|
|
.enable = hdmi_enable,
|
|
|
|
.disable = hdmi_disable,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.commit = hdmi_commit,
|
|
|
|
};
|
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
static void hdmi_hotplug_work_func(struct work_struct *work)
|
2012-04-23 18:35:50 +08:00
|
|
|
{
|
2014-05-09 14:05:10 +08:00
|
|
|
struct hdmi_context *hdata;
|
|
|
|
|
|
|
|
hdata = container_of(work, struct hdmi_context, hotplug_work.work);
|
2012-04-23 18:35:50 +08:00
|
|
|
|
2014-01-31 05:19:05 +08:00
|
|
|
if (hdata->drm_dev)
|
|
|
|
drm_helper_hpd_irq_event(hdata->drm_dev);
|
2014-05-09 14:05:10 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static irqreturn_t hdmi_irq_thread(int irq, void *arg)
|
|
|
|
{
|
|
|
|
struct hdmi_context *hdata = arg;
|
|
|
|
|
|
|
|
mod_delayed_work(system_wq, &hdata->hotplug_work,
|
|
|
|
msecs_to_jiffies(HOTPLUG_DEBOUNCE_MS));
|
2012-04-23 18:35:50 +08:00
|
|
|
|
|
|
|
return IRQ_HANDLED;
|
|
|
|
}
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_resources_init(struct hdmi_context *hdata)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
|
|
|
struct device *dev = hdata->dev;
|
|
|
|
struct hdmi_resources *res = &hdata->res;
|
|
|
|
static char *supply[] = {
|
|
|
|
"vdd",
|
|
|
|
"vdd_osc",
|
|
|
|
"vdd_pll",
|
|
|
|
};
|
|
|
|
int i, ret;
|
|
|
|
|
|
|
|
DRM_DEBUG_KMS("HDMI resource init\n");
|
|
|
|
|
|
|
|
/* get clocks, power */
|
2012-11-23 16:43:27 +08:00
|
|
|
res->hdmi = devm_clk_get(dev, "hdmi");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->hdmi)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'hdmi'\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = PTR_ERR(res->hdmi);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
goto fail;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
res->sclk_hdmi = devm_clk_get(dev, "sclk_hdmi");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->sclk_hdmi)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'sclk_hdmi'\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = PTR_ERR(res->sclk_hdmi);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
goto fail;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
res->sclk_pixel = devm_clk_get(dev, "sclk_pixel");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->sclk_pixel)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'sclk_pixel'\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = PTR_ERR(res->sclk_pixel);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
goto fail;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
res->sclk_hdmiphy = devm_clk_get(dev, "sclk_hdmiphy");
|
2013-03-21 18:03:57 +08:00
|
|
|
if (IS_ERR(res->sclk_hdmiphy)) {
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
DRM_ERROR("failed to get clock 'sclk_hdmiphy'\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = PTR_ERR(res->sclk_hdmiphy);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
goto fail;
|
|
|
|
}
|
2013-06-11 14:54:03 +08:00
|
|
|
res->mout_hdmi = devm_clk_get(dev, "mout_hdmi");
|
|
|
|
if (IS_ERR(res->mout_hdmi)) {
|
|
|
|
DRM_ERROR("failed to get clock 'mout_hdmi'\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = PTR_ERR(res->mout_hdmi);
|
2013-06-11 14:54:03 +08:00
|
|
|
goto fail;
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-06-11 14:54:03 +08:00
|
|
|
clk_set_parent(res->mout_hdmi, res->sclk_pixel);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2012-11-23 16:43:27 +08:00
|
|
|
res->regul_bulk = devm_kzalloc(dev, ARRAY_SIZE(supply) *
|
2012-08-31 18:20:47 +08:00
|
|
|
sizeof(res->regul_bulk[0]), GFP_KERNEL);
|
2014-05-29 17:28:02 +08:00
|
|
|
if (!res->regul_bulk) {
|
|
|
|
ret = -ENOMEM;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
goto fail;
|
2014-05-29 17:28:02 +08:00
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
for (i = 0; i < ARRAY_SIZE(supply); ++i) {
|
|
|
|
res->regul_bulk[i].supply = supply[i];
|
|
|
|
res->regul_bulk[i].consumer = NULL;
|
|
|
|
}
|
2012-11-23 16:43:27 +08:00
|
|
|
ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(supply), res->regul_bulk);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to get regulators\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
res->regul_count = ARRAY_SIZE(supply);
|
|
|
|
|
2014-07-01 16:10:06 +08:00
|
|
|
res->reg_hdmi_en = devm_regulator_get(dev, "hdmi-en");
|
|
|
|
if (IS_ERR(res->reg_hdmi_en) && PTR_ERR(res->reg_hdmi_en) != -ENOENT) {
|
|
|
|
DRM_ERROR("failed to get hdmi-en regulator\n");
|
|
|
|
return PTR_ERR(res->reg_hdmi_en);
|
|
|
|
}
|
|
|
|
if (!IS_ERR(res->reg_hdmi_en)) {
|
|
|
|
ret = regulator_enable(res->reg_hdmi_en);
|
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to enable hdmi-en regulator\n");
|
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
} else
|
|
|
|
res->reg_hdmi_en = NULL;
|
|
|
|
|
2014-05-29 17:28:02 +08:00
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
fail:
|
|
|
|
DRM_ERROR("HDMI resource init - failed\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2012-10-04 23:18:55 +08:00
|
|
|
static struct of_device_id hdmi_match_types[] = {
|
|
|
|
{
|
|
|
|
.compatible = "samsung,exynos5-hdmi",
|
2014-03-06 13:18:17 +08:00
|
|
|
.data = &exynos5_hdmi_driver_data,
|
2014-07-01 16:10:07 +08:00
|
|
|
}, {
|
|
|
|
.compatible = "samsung,exynos4210-hdmi",
|
|
|
|
.data = &exynos4210_hdmi_driver_data,
|
2013-06-19 20:51:07 +08:00
|
|
|
}, {
|
|
|
|
.compatible = "samsung,exynos4212-hdmi",
|
2014-03-06 13:18:17 +08:00
|
|
|
.data = &exynos4212_hdmi_driver_data,
|
2014-04-20 18:21:17 +08:00
|
|
|
}, {
|
|
|
|
.compatible = "samsung,exynos5420-hdmi",
|
|
|
|
.data = &exynos5420_hdmi_driver_data,
|
2012-10-04 23:18:44 +08:00
|
|
|
}, {
|
|
|
|
/* end node */
|
|
|
|
}
|
|
|
|
};
|
2014-07-19 04:36:41 +08:00
|
|
|
MODULE_DEVICE_TABLE (of, hdmi_match_types);
|
2012-10-04 23:18:44 +08:00
|
|
|
|
2014-05-09 13:25:20 +08:00
|
|
|
static int hdmi_bind(struct device *dev, struct device *master, void *data)
|
|
|
|
{
|
|
|
|
struct drm_device *drm_dev = data;
|
2014-11-17 16:54:20 +08:00
|
|
|
struct hdmi_context *hdata = dev_get_drvdata(dev);
|
2014-05-09 13:25:20 +08:00
|
|
|
|
|
|
|
hdata->drm_dev = drm_dev;
|
|
|
|
|
2015-08-11 16:38:06 +08:00
|
|
|
return exynos_drm_create_enc_conn(drm_dev, &hdata->encoder,
|
|
|
|
EXYNOS_DISPLAY_TYPE_HDMI);
|
2014-05-09 13:25:20 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
static void hdmi_unbind(struct device *dev, struct device *master, void *data)
|
|
|
|
{
|
|
|
|
}
|
|
|
|
|
|
|
|
static const struct component_ops hdmi_component_ops = {
|
|
|
|
.bind = hdmi_bind,
|
|
|
|
.unbind = hdmi_unbind,
|
|
|
|
};
|
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
static struct device_node *hdmi_legacy_ddc_dt_binding(struct device *dev)
|
|
|
|
{
|
|
|
|
const char *compatible_str = "samsung,exynos4210-hdmiddc";
|
|
|
|
struct device_node *np;
|
|
|
|
|
|
|
|
np = of_find_compatible_node(NULL, NULL, compatible_str);
|
|
|
|
if (np)
|
|
|
|
return of_get_next_parent(np);
|
|
|
|
|
|
|
|
return NULL;
|
|
|
|
}
|
|
|
|
|
|
|
|
static struct device_node *hdmi_legacy_phy_dt_binding(struct device *dev)
|
|
|
|
{
|
|
|
|
const char *compatible_str = "samsung,exynos4212-hdmiphy";
|
|
|
|
|
|
|
|
return of_find_compatible_node(NULL, NULL, compatible_str);
|
|
|
|
}
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_probe(struct platform_device *pdev)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-05-09 13:25:20 +08:00
|
|
|
struct device_node *ddc_node, *phy_node;
|
|
|
|
const struct of_device_id *match;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
struct device *dev = &pdev->dev;
|
|
|
|
struct hdmi_context *hdata;
|
|
|
|
struct resource *res;
|
|
|
|
int ret;
|
|
|
|
|
2013-08-28 13:17:57 +08:00
|
|
|
hdata = devm_kzalloc(dev, sizeof(struct hdmi_context), GFP_KERNEL);
|
2014-11-17 16:54:20 +08:00
|
|
|
if (!hdata)
|
|
|
|
return -ENOMEM;
|
|
|
|
|
2015-07-09 22:28:09 +08:00
|
|
|
match = of_match_device(hdmi_match_types, dev);
|
|
|
|
if (!match)
|
|
|
|
return -ENODEV;
|
|
|
|
|
|
|
|
hdata->drv_data = match->data;
|
2015-08-11 16:38:06 +08:00
|
|
|
hdata->encoder.ops = &hdmi_encoder_ops;
|
2014-11-17 16:54:20 +08:00
|
|
|
|
|
|
|
platform_set_drvdata(pdev, hdata);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
hdata->dev = dev;
|
2015-07-09 22:28:06 +08:00
|
|
|
hdata->hpd_gpio = of_get_named_gpio(dev->of_node, "hpd-gpio", 0);
|
|
|
|
if (hdata->hpd_gpio < 0) {
|
|
|
|
DRM_ERROR("cannot get hpd gpio property\n");
|
|
|
|
return hdata->hpd_gpio;
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
ret = hdmi_resources_init(hdata);
|
|
|
|
if (ret) {
|
2012-10-04 23:18:55 +08:00
|
|
|
DRM_ERROR("hdmi_resources_init failed\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
return ret;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
2013-05-22 20:14:14 +08:00
|
|
|
hdata->regs = devm_ioremap_resource(dev, res);
|
2014-05-29 17:28:02 +08:00
|
|
|
if (IS_ERR(hdata->regs)) {
|
|
|
|
ret = PTR_ERR(hdata->regs);
|
2015-06-11 22:23:37 +08:00
|
|
|
return ret;
|
2014-05-29 17:28:02 +08:00
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2013-05-22 20:14:14 +08:00
|
|
|
ret = devm_gpio_request(dev, hdata->hpd_gpio, "HPD");
|
2012-10-04 23:18:46 +08:00
|
|
|
if (ret) {
|
|
|
|
DRM_ERROR("failed to request HPD gpio\n");
|
2015-06-11 22:23:37 +08:00
|
|
|
return ret;
|
2012-10-04 23:18:46 +08:00
|
|
|
}
|
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
ddc_node = hdmi_legacy_ddc_dt_binding(dev);
|
|
|
|
if (ddc_node)
|
|
|
|
goto out_get_ddc_adpt;
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* DDC i2c driver */
|
2014-02-24 17:52:51 +08:00
|
|
|
ddc_node = of_parse_phandle(dev->of_node, "ddc", 0);
|
|
|
|
if (!ddc_node) {
|
|
|
|
DRM_ERROR("Failed to find ddc node in device tree\n");
|
2015-06-11 22:23:37 +08:00
|
|
|
return -ENODEV;
|
2014-02-24 17:52:51 +08:00
|
|
|
}
|
2014-05-09 15:46:10 +08:00
|
|
|
|
|
|
|
out_get_ddc_adpt:
|
2014-03-13 15:38:31 +08:00
|
|
|
hdata->ddc_adpt = of_find_i2c_adapter_by_node(ddc_node);
|
|
|
|
if (!hdata->ddc_adpt) {
|
|
|
|
DRM_ERROR("Failed to get ddc i2c adapter by node\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
return -EPROBE_DEFER;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
phy_node = hdmi_legacy_phy_dt_binding(dev);
|
|
|
|
if (phy_node)
|
|
|
|
goto out_get_phy_port;
|
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
/* hdmiphy i2c driver */
|
2014-02-24 17:52:51 +08:00
|
|
|
phy_node = of_parse_phandle(dev->of_node, "phy", 0);
|
|
|
|
if (!phy_node) {
|
|
|
|
DRM_ERROR("Failed to find hdmiphy node in device tree\n");
|
|
|
|
ret = -ENODEV;
|
|
|
|
goto err_ddc;
|
|
|
|
}
|
2014-05-09 14:34:18 +08:00
|
|
|
|
2014-05-09 15:46:10 +08:00
|
|
|
out_get_phy_port:
|
2015-07-09 22:28:09 +08:00
|
|
|
if (hdata->drv_data->is_apb_phy) {
|
2014-05-09 14:34:18 +08:00
|
|
|
hdata->regs_hdmiphy = of_iomap(phy_node, 0);
|
|
|
|
if (!hdata->regs_hdmiphy) {
|
|
|
|
DRM_ERROR("failed to ioremap hdmi phy\n");
|
|
|
|
ret = -ENOMEM;
|
|
|
|
goto err_ddc;
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
hdata->hdmiphy_port = of_find_i2c_device_by_node(phy_node);
|
|
|
|
if (!hdata->hdmiphy_port) {
|
|
|
|
DRM_ERROR("Failed to get hdmi phy i2c client\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = -EPROBE_DEFER;
|
2014-05-09 14:34:18 +08:00
|
|
|
goto err_ddc;
|
|
|
|
}
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2013-01-16 23:17:20 +08:00
|
|
|
hdata->irq = gpio_to_irq(hdata->hpd_gpio);
|
|
|
|
if (hdata->irq < 0) {
|
|
|
|
DRM_ERROR("failed to get GPIO irq\n");
|
|
|
|
ret = hdata->irq;
|
2012-04-23 18:35:50 +08:00
|
|
|
goto err_hdmiphy;
|
|
|
|
}
|
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
INIT_DELAYED_WORK(&hdata->hotplug_work, hdmi_hotplug_work_func);
|
|
|
|
|
2013-05-22 20:14:17 +08:00
|
|
|
ret = devm_request_threaded_irq(dev, hdata->irq, NULL,
|
2013-01-16 23:17:20 +08:00
|
|
|
hdmi_irq_thread, IRQF_TRIGGER_RISING |
|
2012-04-23 18:35:50 +08:00
|
|
|
IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
|
2014-01-31 05:19:15 +08:00
|
|
|
"hdmi", hdata);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
if (ret) {
|
2013-01-16 23:17:20 +08:00
|
|
|
DRM_ERROR("failed to register hdmi interrupt\n");
|
2012-04-23 18:35:49 +08:00
|
|
|
goto err_hdmiphy;
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
}
|
|
|
|
|
2014-05-20 13:06:05 +08:00
|
|
|
hdata->pmureg = syscon_regmap_lookup_by_phandle(dev->of_node,
|
|
|
|
"samsung,syscon-phandle");
|
|
|
|
if (IS_ERR(hdata->pmureg)) {
|
|
|
|
DRM_ERROR("syscon regmap lookup failed.\n");
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = -EPROBE_DEFER;
|
2014-05-20 13:06:05 +08:00
|
|
|
goto err_hdmiphy;
|
|
|
|
}
|
|
|
|
|
2014-01-31 05:19:27 +08:00
|
|
|
pm_runtime_enable(dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-29 17:28:02 +08:00
|
|
|
ret = component_add(&pdev->dev, &hdmi_component_ops);
|
|
|
|
if (ret)
|
|
|
|
goto err_disable_pm_runtime;
|
|
|
|
|
|
|
|
return ret;
|
|
|
|
|
|
|
|
err_disable_pm_runtime:
|
|
|
|
pm_runtime_disable(dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
err_hdmiphy:
|
2014-05-09 14:06:28 +08:00
|
|
|
if (hdata->hdmiphy_port)
|
|
|
|
put_device(&hdata->hdmiphy_port->dev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
err_ddc:
|
2014-03-13 15:38:31 +08:00
|
|
|
put_device(&hdata->ddc_adpt->dev);
|
2014-05-29 17:28:02 +08:00
|
|
|
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
return ret;
|
|
|
|
}
|
|
|
|
|
2012-12-22 07:09:25 +08:00
|
|
|
static int hdmi_remove(struct platform_device *pdev)
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
{
|
2014-11-17 16:54:20 +08:00
|
|
|
struct hdmi_context *hdata = platform_get_drvdata(pdev);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
2014-05-09 14:05:10 +08:00
|
|
|
cancel_delayed_work_sync(&hdata->hotplug_work);
|
|
|
|
|
2014-07-01 16:10:06 +08:00
|
|
|
if (hdata->res.reg_hdmi_en)
|
|
|
|
regulator_disable(hdata->res.reg_hdmi_en);
|
|
|
|
|
2014-07-28 16:15:22 +08:00
|
|
|
if (hdata->hdmiphy_port)
|
|
|
|
put_device(&hdata->hdmiphy_port->dev);
|
2014-03-13 15:38:31 +08:00
|
|
|
put_device(&hdata->ddc_adpt->dev);
|
2014-05-09 13:25:20 +08:00
|
|
|
|
2014-01-31 05:19:27 +08:00
|
|
|
pm_runtime_disable(&pdev->dev);
|
2014-05-29 17:28:02 +08:00
|
|
|
component_del(&pdev->dev, &hdmi_component_ops);
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
|
|
|
|
return 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
struct platform_driver hdmi_driver = {
|
|
|
|
.probe = hdmi_probe,
|
2012-12-22 07:09:25 +08:00
|
|
|
.remove = hdmi_remove,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.driver = {
|
2012-10-04 23:18:55 +08:00
|
|
|
.name = "exynos-hdmi",
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
.owner = THIS_MODULE,
|
2013-08-28 13:17:57 +08:00
|
|
|
.of_match_table = hdmi_match_types,
|
drm/exynos: added hdmi display support
This patch is hdmi display support for exynos drm driver.
There is already v4l2 based exynos hdmi driver in drivers/media/video/s5p-tv
and some low level code is already in s5p-tv and even headers for register
define are almost same. but in this patch, we decide not to consider separated
common code with s5p-tv.
Exynos HDMI is composed of 5 blocks, mixer, vp, hdmi, hdmiphy and ddc.
1. mixer. The piece of hardware responsible for mixing and blending multiple
data inputs before passing it to an output device. The mixer is capable of
handling up to three image layers. One is the output of VP. Other two are
images in RGB format. The blending factor, and layers' priority are controlled
by mixer's registers. The output is passed to HDMI.
2. vp (video processor). It is used for processing of NV12/NV21 data. An image
stored in RAM is accessed by DMA. The output in YCbCr444 format is send to
mixer.
3. hdmi. The piece of HW responsible for generation of HDMI packets. It takes
pixel data from mixer and transforms it into data frames. The output is send
to HDMIPHY interface.
4. hdmiphy. Physical interface for HDMI. Its duties are sending HDMI packets to
HDMI connector. Basically, it contains a PLL that produces source clock for
mixer, vp and hdmi.
5. ddc (display data channel). It is dedicated i2c channel to exchange display
information as edid with display monitor.
With plane support, exynos hdmi driver fully supports two mixer layes and vp
layer. Also vp layer supports multi buffer plane pixel formats having non
contigus memory spaces.
In exynos drm driver, common drm_hdmi driver to interface with drm framework
has opertion pointers for mixer and hdmi. this drm_hdmi driver is registered as
sub driver of exynos_drm. hdmi has hdmiphy and ddc i2c clients and controls
them. mixer controls all overlay layers in both mixer and vp.
Vblank interrupts for hdmi are handled by mixer internally because drm
framework cannot support multiple irq id. And pipe number is used to check
which display device irq happens.
History
v2: this version
- drm plane feature support to handle overlay layers.
- multi buffer plane pixel format support for vp layer.
- vp layer support
RFCv1: original
- at https://lkml.org/lkml/2011/11/4/164
Signed-off-by: Seung-Woo Kim <sw0312.kim@samsung.com>
Signed-off-by: Inki Dae <inki.dae@samsung.com>
Signed-off-by: Joonyoung Shim <jy0922.shim@samsung.com>
Signed-off-by: Kyungmin Park <kyungmin.park@samsung.com>
2011-12-21 16:39:39 +08:00
|
|
|
},
|
|
|
|
};
|