linux_old1/drivers/clocksource/timer-stm32.c

155 lines
3.9 KiB
C
Raw Normal View History

/*
* Copyright (C) Maxime Coquelin 2015
* Author: Maxime Coquelin <mcoquelin.stm32@gmail.com>
* License terms: GNU General Public License (GPL), version 2
*
* Inspired by time-efm32.c from Uwe Kleine-Koenig
*/
#include <linux/kernel.h>
#include <linux/clocksource.h>
#include <linux/clockchips.h>
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/clk.h>
#include <linux/reset.h>
#include <linux/slab.h>
#include "timer-of.h"
#define TIM_CR1 0x00
#define TIM_DIER 0x0c
#define TIM_SR 0x10
#define TIM_EGR 0x14
#define TIM_PSC 0x28
#define TIM_ARR 0x2c
#define TIM_CR1_CEN BIT(0)
#define TIM_CR1_OPM BIT(3)
#define TIM_CR1_ARPE BIT(7)
#define TIM_DIER_UIE BIT(0)
#define TIM_SR_UIF BIT(0)
#define TIM_EGR_UG BIT(0)
static int stm32_clock_event_shutdown(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
writel_relaxed(0, timer_of_base(to) + TIM_CR1);
return 0;
}
static int stm32_clock_event_set_periodic(struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
writel_relaxed(timer_of_period(to), timer_of_base(to) + TIM_ARR);
writel_relaxed(TIM_CR1_ARPE | TIM_CR1_CEN, timer_of_base(to) + TIM_CR1);
return 0;
}
static int stm32_clock_event_set_next_event(unsigned long evt,
struct clock_event_device *clkevt)
{
struct timer_of *to = to_timer_of(clkevt);
writel_relaxed(evt, timer_of_base(to) + TIM_ARR);
writel_relaxed(TIM_CR1_ARPE | TIM_CR1_OPM | TIM_CR1_CEN,
timer_of_base(to) + TIM_CR1);
return 0;
}
static irqreturn_t stm32_clock_event_handler(int irq, void *dev_id)
{
struct clock_event_device *clkevt = (struct clock_event_device *)dev_id;
struct timer_of *to = to_timer_of(clkevt);
writel_relaxed(0, timer_of_base(to) + TIM_SR);
clkevt->event_handler(clkevt);
return IRQ_HANDLED;
}
static void __init stm32_clockevent_init(struct timer_of *to)
{
unsigned long max_delta;
int prescaler;
to->clkevt.name = "stm32_clockevent";
to->clkevt.features = CLOCK_EVT_FEAT_PERIODIC;
to->clkevt.set_state_shutdown = stm32_clock_event_shutdown;
to->clkevt.set_state_periodic = stm32_clock_event_set_periodic;
to->clkevt.set_state_oneshot = stm32_clock_event_shutdown;
to->clkevt.tick_resume = stm32_clock_event_shutdown;
to->clkevt.set_next_event = stm32_clock_event_set_next_event;
/* Detect whether the timer is 16 or 32 bits */
writel_relaxed(~0U, timer_of_base(to) + TIM_ARR);
max_delta = readl_relaxed(timer_of_base(to) + TIM_ARR);
if (max_delta == ~0U) {
prescaler = 1;
to->clkevt.rating = 250;
} else {
prescaler = 1024;
to->clkevt.rating = 100;
}
writel_relaxed(0, timer_of_base(to) + TIM_ARR);
writel_relaxed(prescaler - 1, timer_of_base(to) + TIM_PSC);
writel_relaxed(TIM_EGR_UG, timer_of_base(to) + TIM_EGR);
writel_relaxed(0, timer_of_base(to) + TIM_SR);
writel_relaxed(TIM_DIER_UIE, timer_of_base(to) + TIM_DIER);
/* Adjust rate and period given the prescaler value */
to->of_clk.rate = DIV_ROUND_CLOSEST(to->of_clk.rate, prescaler);
to->of_clk.period = DIV_ROUND_UP(to->of_clk.rate, HZ);
clockevents_config_and_register(&to->clkevt,
timer_of_rate(to), 0x1, max_delta);
pr_info("%pOF: STM32 clockevent driver initialized (%d bits)\n",
to->np, max_delta == UINT_MAX ? 32 : 16);
}
static int __init stm32_timer_init(struct device_node *node)
{
struct reset_control *rstc;
struct timer_of *to;
int ret;
to = kzalloc(sizeof(*to), GFP_KERNEL);
if (!to)
return -ENOMEM;
to->flags = TIMER_OF_IRQ | TIMER_OF_CLOCK | TIMER_OF_BASE;
to->of_irq.handler = stm32_clock_event_handler;
ret = timer_of_init(node, to);
if (ret)
goto err;
rstc = of_reset_control_get(node, NULL);
if (!IS_ERR(rstc)) {
reset_control_assert(rstc);
reset_control_deassert(rstc);
}
stm32_clockevent_init(to);
return 0;
err:
kfree(to);
return ret;
}
TIMER_OF_DECLARE(stm32, "st,stm32-timer", stm32_timer_init);