linux_old1/drivers/infiniband/ulp/iser/iser_verbs.c

837 lines
22 KiB
C
Raw Normal View History

/*
* Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved.
* Copyright (c) 2005, 2006 Cisco Systems. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include <linux/kernel.h>
#include <linux/module.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/delay.h>
#include "iscsi_iser.h"
#define ISCSI_ISER_MAX_CONN 8
#define ISER_MAX_RX_CQ_LEN (ISER_QP_MAX_RECV_DTOS * ISCSI_ISER_MAX_CONN)
#define ISER_MAX_TX_CQ_LEN (ISER_QP_MAX_REQ_DTOS * ISCSI_ISER_MAX_CONN)
static void iser_cq_tasklet_fn(unsigned long data);
static void iser_cq_callback(struct ib_cq *cq, void *cq_context);
static void iser_cq_event_callback(struct ib_event *cause, void *context)
{
iser_err("got cq event %d \n", cause->event);
}
static void iser_qp_event_callback(struct ib_event *cause, void *context)
{
iser_err("got qp event %d\n",cause->event);
}
static void iser_event_handler(struct ib_event_handler *handler,
struct ib_event *event)
{
iser_err("async event %d on device %s port %d\n", event->event,
event->device->name, event->element.port_num);
}
/**
* iser_create_device_ib_res - creates Protection Domain (PD), Completion
* Queue (CQ), DMA Memory Region (DMA MR) with the device associated with
* the adapator.
*
* returns 0 on success, -1 on failure
*/
static int iser_create_device_ib_res(struct iser_device *device)
{
device->pd = ib_alloc_pd(device->ib_device);
if (IS_ERR(device->pd))
goto pd_err;
device->rx_cq = ib_create_cq(device->ib_device,
iser_cq_callback,
iser_cq_event_callback,
(void *)device,
ISER_MAX_RX_CQ_LEN, 0);
if (IS_ERR(device->rx_cq))
goto rx_cq_err;
device->tx_cq = ib_create_cq(device->ib_device,
NULL, iser_cq_event_callback,
(void *)device,
ISER_MAX_TX_CQ_LEN, 0);
if (IS_ERR(device->tx_cq))
goto tx_cq_err;
if (ib_req_notify_cq(device->rx_cq, IB_CQ_NEXT_COMP))
goto cq_arm_err;
tasklet_init(&device->cq_tasklet,
iser_cq_tasklet_fn,
(unsigned long)device);
device->mr = ib_get_dma_mr(device->pd, IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
if (IS_ERR(device->mr))
goto dma_mr_err;
INIT_IB_EVENT_HANDLER(&device->event_handler, device->ib_device,
iser_event_handler);
if (ib_register_event_handler(&device->event_handler))
goto handler_err;
return 0;
handler_err:
ib_dereg_mr(device->mr);
dma_mr_err:
tasklet_kill(&device->cq_tasklet);
cq_arm_err:
ib_destroy_cq(device->tx_cq);
tx_cq_err:
ib_destroy_cq(device->rx_cq);
rx_cq_err:
ib_dealloc_pd(device->pd);
pd_err:
iser_err("failed to allocate an IB resource\n");
return -1;
}
/**
* iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR,
* CQ and PD created with the device associated with the adapator.
*/
static void iser_free_device_ib_res(struct iser_device *device)
{
BUG_ON(device->mr == NULL);
tasklet_kill(&device->cq_tasklet);
(void)ib_unregister_event_handler(&device->event_handler);
(void)ib_dereg_mr(device->mr);
(void)ib_destroy_cq(device->tx_cq);
(void)ib_destroy_cq(device->rx_cq);
(void)ib_dealloc_pd(device->pd);
device->mr = NULL;
device->tx_cq = NULL;
device->rx_cq = NULL;
device->pd = NULL;
}
/**
* iser_create_ib_conn_res - Creates FMR pool and Queue-Pair (QP)
*
* returns 0 on success, -1 on failure
*/
static int iser_create_ib_conn_res(struct iser_conn *ib_conn)
{
struct iser_device *device;
struct ib_qp_init_attr init_attr;
int ret = -ENOMEM;
struct ib_fmr_pool_param params;
BUG_ON(ib_conn->device == NULL);
device = ib_conn->device;
ib_conn->login_buf = kmalloc(ISER_RX_LOGIN_SIZE, GFP_KERNEL);
if (!ib_conn->login_buf) {
goto alloc_err;
ret = -ENOMEM;
}
ib_conn->login_dma = ib_dma_map_single(ib_conn->device->ib_device,
(void *)ib_conn->login_buf, ISER_RX_LOGIN_SIZE,
DMA_FROM_DEVICE);
ib_conn->page_vec = kmalloc(sizeof(struct iser_page_vec) +
(sizeof(u64) * (ISCSI_ISER_SG_TABLESIZE +1)),
GFP_KERNEL);
if (!ib_conn->page_vec) {
ret = -ENOMEM;
goto alloc_err;
}
ib_conn->page_vec->pages = (u64 *) (ib_conn->page_vec + 1);
params.page_shift = SHIFT_4K;
/* when the first/last SG element are not start/end *
* page aligned, the map whould be of N+1 pages */
params.max_pages_per_fmr = ISCSI_ISER_SG_TABLESIZE + 1;
/* make the pool size twice the max number of SCSI commands *
* the ML is expected to queue, watermark for unmap at 50% */
params.pool_size = ISCSI_DEF_XMIT_CMDS_MAX * 2;
params.dirty_watermark = ISCSI_DEF_XMIT_CMDS_MAX;
params.cache = 0;
params.flush_function = NULL;
params.access = (IB_ACCESS_LOCAL_WRITE |
IB_ACCESS_REMOTE_WRITE |
IB_ACCESS_REMOTE_READ);
ib_conn->fmr_pool = ib_create_fmr_pool(device->pd, &params);
if (IS_ERR(ib_conn->fmr_pool)) {
ret = PTR_ERR(ib_conn->fmr_pool);
goto fmr_pool_err;
}
memset(&init_attr, 0, sizeof init_attr);
init_attr.event_handler = iser_qp_event_callback;
init_attr.qp_context = (void *)ib_conn;
init_attr.send_cq = device->tx_cq;
init_attr.recv_cq = device->rx_cq;
init_attr.cap.max_send_wr = ISER_QP_MAX_REQ_DTOS;
init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS;
init_attr.cap.max_send_sge = 2;
init_attr.cap.max_recv_sge = 1;
init_attr.sq_sig_type = IB_SIGNAL_REQ_WR;
init_attr.qp_type = IB_QPT_RC;
ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr);
if (ret)
goto qp_err;
ib_conn->qp = ib_conn->cma_id->qp;
iser_err("setting conn %p cma_id %p: fmr_pool %p qp %p\n",
ib_conn, ib_conn->cma_id,
ib_conn->fmr_pool, ib_conn->cma_id->qp);
return ret;
qp_err:
(void)ib_destroy_fmr_pool(ib_conn->fmr_pool);
fmr_pool_err:
kfree(ib_conn->page_vec);
kfree(ib_conn->login_buf);
alloc_err:
iser_err("unable to alloc mem or create resource, err %d\n", ret);
return ret;
}
/**
* releases the FMR pool, QP and CMA ID objects, returns 0 on success,
* -1 on failure
*/
static int iser_free_ib_conn_res(struct iser_conn *ib_conn)
{
BUG_ON(ib_conn == NULL);
iser_err("freeing conn %p cma_id %p fmr pool %p qp %p\n",
ib_conn, ib_conn->cma_id,
ib_conn->fmr_pool, ib_conn->qp);
/* qp is created only once both addr & route are resolved */
if (ib_conn->fmr_pool != NULL)
ib_destroy_fmr_pool(ib_conn->fmr_pool);
if (ib_conn->qp != NULL)
rdma_destroy_qp(ib_conn->cma_id);
if (ib_conn->cma_id != NULL)
rdma_destroy_id(ib_conn->cma_id);
ib_conn->fmr_pool = NULL;
ib_conn->qp = NULL;
ib_conn->cma_id = NULL;
kfree(ib_conn->page_vec);
return 0;
}
/**
* based on the resolved device node GUID see if there already allocated
* device for this device. If there's no such, create one.
*/
static
struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
mutex_lock(&ig.device_list_mutex);
list_for_each_entry(device, &ig.device_list, ig_list)
/* find if there's a match using the node GUID */
if (device->ib_device->node_guid == cma_id->device->node_guid)
goto inc_refcnt;
device = kzalloc(sizeof *device, GFP_KERNEL);
if (device == NULL)
goto out;
/* assign this device to the device */
device->ib_device = cma_id->device;
/* init the device and link it into ig device list */
if (iser_create_device_ib_res(device)) {
kfree(device);
device = NULL;
goto out;
}
list_add(&device->ig_list, &ig.device_list);
inc_refcnt:
device->refcount++;
out:
mutex_unlock(&ig.device_list_mutex);
return device;
}
/* if there's no demand for this device, release it */
static void iser_device_try_release(struct iser_device *device)
{
mutex_lock(&ig.device_list_mutex);
device->refcount--;
iser_err("device %p refcount %d\n",device,device->refcount);
if (!device->refcount) {
iser_free_device_ib_res(device);
list_del(&device->ig_list);
kfree(device);
}
mutex_unlock(&ig.device_list_mutex);
}
static int iser_conn_state_comp_exch(struct iser_conn *ib_conn,
enum iser_ib_conn_state comp,
enum iser_ib_conn_state exch)
{
int ret;
spin_lock_bh(&ib_conn->lock);
if ((ret = (ib_conn->state == comp)))
ib_conn->state = exch;
spin_unlock_bh(&ib_conn->lock);
return ret;
}
/**
* Frees all conn objects and deallocs conn descriptor
*/
static void iser_conn_release(struct iser_conn *ib_conn)
{
struct iser_device *device = ib_conn->device;
BUG_ON(ib_conn->state != ISER_CONN_DOWN);
mutex_lock(&ig.connlist_mutex);
list_del(&ib_conn->conn_list);
mutex_unlock(&ig.connlist_mutex);
iser_free_rx_descriptors(ib_conn);
iser_free_ib_conn_res(ib_conn);
ib_conn->device = NULL;
/* on EVENT_ADDR_ERROR there's no device yet for this conn */
if (device != NULL)
iser_device_try_release(device);
iscsi_destroy_endpoint(ib_conn->ep);
}
void iser_conn_get(struct iser_conn *ib_conn)
{
atomic_inc(&ib_conn->refcount);
}
void iser_conn_put(struct iser_conn *ib_conn)
{
if (atomic_dec_and_test(&ib_conn->refcount))
iser_conn_release(ib_conn);
}
/**
* triggers start of the disconnect procedures and wait for them to be done
*/
void iser_conn_terminate(struct iser_conn *ib_conn)
{
int err = 0;
/* change the ib conn state only if the conn is UP, however always call
* rdma_disconnect since this is the only way to cause the CMA to change
* the QP state to ERROR
*/
iser_conn_state_comp_exch(ib_conn, ISER_CONN_UP, ISER_CONN_TERMINATING);
err = rdma_disconnect(ib_conn->cma_id);
if (err)
iser_err("Failed to disconnect, conn: 0x%p err %d\n",
ib_conn,err);
wait_event_interruptible(ib_conn->wait,
ib_conn->state == ISER_CONN_DOWN);
iser_conn_put(ib_conn);
}
static void iser_connect_error(struct rdma_cm_id *cma_id)
{
struct iser_conn *ib_conn;
ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait);
}
static void iser_addr_handler(struct rdma_cm_id *cma_id)
{
struct iser_device *device;
struct iser_conn *ib_conn;
int ret;
device = iser_device_find_by_ib_device(cma_id);
if (!device) {
iser_err("device lookup/creation failed\n");
iser_connect_error(cma_id);
return;
}
ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->device = device;
ret = rdma_resolve_route(cma_id, 1000);
if (ret) {
iser_err("resolve route failed: %d\n", ret);
iser_connect_error(cma_id);
}
}
static void iser_route_handler(struct rdma_cm_id *cma_id)
{
struct rdma_conn_param conn_param;
int ret;
ret = iser_create_ib_conn_res((struct iser_conn *)cma_id->context);
if (ret)
goto failure;
memset(&conn_param, 0, sizeof conn_param);
conn_param.responder_resources = 4;
conn_param.initiator_depth = 1;
conn_param.retry_count = 7;
conn_param.rnr_retry_count = 6;
ret = rdma_connect(cma_id, &conn_param);
if (ret) {
iser_err("failure connecting: %d\n", ret);
goto failure;
}
return;
failure:
iser_connect_error(cma_id);
}
static void iser_connected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *ib_conn;
ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->state = ISER_CONN_UP;
wake_up_interruptible(&ib_conn->wait);
}
static void iser_disconnected_handler(struct rdma_cm_id *cma_id)
{
struct iser_conn *ib_conn;
ib_conn = (struct iser_conn *)cma_id->context;
ib_conn->disc_evt_flag = 1;
/* getting here when the state is UP means that the conn is being *
* terminated asynchronously from the iSCSI layer's perspective. */
if (iser_conn_state_comp_exch(ib_conn, ISER_CONN_UP,
ISER_CONN_TERMINATING))
iscsi_conn_failure(ib_conn->iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
/* Complete the termination process if no posts are pending */
if (ib_conn->post_recv_buf_count == 0 &&
(atomic_read(&ib_conn->post_send_buf_count) == 0)) {
ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait);
}
}
static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event)
{
int ret = 0;
iser_err("event %d conn %p id %p\n",event->event,cma_id->context,cma_id);
switch (event->event) {
case RDMA_CM_EVENT_ADDR_RESOLVED:
iser_addr_handler(cma_id);
break;
case RDMA_CM_EVENT_ROUTE_RESOLVED:
iser_route_handler(cma_id);
break;
case RDMA_CM_EVENT_ESTABLISHED:
iser_connected_handler(cma_id);
break;
case RDMA_CM_EVENT_ADDR_ERROR:
case RDMA_CM_EVENT_ROUTE_ERROR:
case RDMA_CM_EVENT_CONNECT_ERROR:
case RDMA_CM_EVENT_UNREACHABLE:
case RDMA_CM_EVENT_REJECTED:
iser_err("event: %d, error: %d\n", event->event, event->status);
iser_connect_error(cma_id);
break;
case RDMA_CM_EVENT_DISCONNECTED:
case RDMA_CM_EVENT_DEVICE_REMOVAL:
case RDMA_CM_EVENT_ADDR_CHANGE:
iser_disconnected_handler(cma_id);
break;
default:
iser_err("Unexpected RDMA CM event (%d)\n", event->event);
break;
}
return ret;
}
void iser_conn_init(struct iser_conn *ib_conn)
{
ib_conn->state = ISER_CONN_INIT;
init_waitqueue_head(&ib_conn->wait);
ib_conn->post_recv_buf_count = 0;
atomic_set(&ib_conn->post_send_buf_count, 0);
atomic_set(&ib_conn->refcount, 1);
INIT_LIST_HEAD(&ib_conn->conn_list);
spin_lock_init(&ib_conn->lock);
}
/**
* starts the process of connecting to the target
* sleeps until the connection is established or rejected
*/
int iser_connect(struct iser_conn *ib_conn,
struct sockaddr_in *src_addr,
struct sockaddr_in *dst_addr,
int non_blocking)
{
struct sockaddr *src, *dst;
int err = 0;
sprintf(ib_conn->name, "%pI4:%d",
&dst_addr->sin_addr.s_addr, dst_addr->sin_port);
/* the device is known only --after-- address resolution */
ib_conn->device = NULL;
iser_err("connecting to: %pI4, port 0x%x\n",
&dst_addr->sin_addr, dst_addr->sin_port);
ib_conn->state = ISER_CONN_PENDING;
ib_conn->cma_id = rdma_create_id(iser_cma_handler,
(void *)ib_conn,
RDMA_PS_TCP);
if (IS_ERR(ib_conn->cma_id)) {
err = PTR_ERR(ib_conn->cma_id);
iser_err("rdma_create_id failed: %d\n", err);
goto id_failure;
}
src = (struct sockaddr *)src_addr;
dst = (struct sockaddr *)dst_addr;
err = rdma_resolve_addr(ib_conn->cma_id, src, dst, 1000);
if (err) {
iser_err("rdma_resolve_addr failed: %d\n", err);
goto addr_failure;
}
if (!non_blocking) {
wait_event_interruptible(ib_conn->wait,
(ib_conn->state != ISER_CONN_PENDING));
if (ib_conn->state != ISER_CONN_UP) {
err = -EIO;
goto connect_failure;
}
}
mutex_lock(&ig.connlist_mutex);
list_add(&ib_conn->conn_list, &ig.connlist);
mutex_unlock(&ig.connlist_mutex);
return 0;
id_failure:
ib_conn->cma_id = NULL;
addr_failure:
ib_conn->state = ISER_CONN_DOWN;
connect_failure:
iser_conn_release(ib_conn);
return err;
}
/**
* iser_reg_page_vec - Register physical memory
*
* returns: 0 on success, errno code on failure
*/
int iser_reg_page_vec(struct iser_conn *ib_conn,
struct iser_page_vec *page_vec,
struct iser_mem_reg *mem_reg)
{
struct ib_pool_fmr *mem;
u64 io_addr;
u64 *page_list;
int status;
page_list = page_vec->pages;
io_addr = page_list[0];
mem = ib_fmr_pool_map_phys(ib_conn->fmr_pool,
page_list,
page_vec->length,
io_addr);
if (IS_ERR(mem)) {
status = (int)PTR_ERR(mem);
iser_err("ib_fmr_pool_map_phys failed: %d\n", status);
return status;
}
mem_reg->lkey = mem->fmr->lkey;
mem_reg->rkey = mem->fmr->rkey;
mem_reg->len = page_vec->length * SIZE_4K;
mem_reg->va = io_addr;
mem_reg->is_fmr = 1;
mem_reg->mem_h = (void *)mem;
mem_reg->va += page_vec->offset;
mem_reg->len = page_vec->data_size;
iser_dbg("PHYSICAL Mem.register, [PHYS p_array: 0x%p, sz: %d, "
"entry[0]: (0x%08lx,%ld)] -> "
"[lkey: 0x%08X mem_h: 0x%p va: 0x%08lX sz: %ld]\n",
page_vec, page_vec->length,
(unsigned long)page_vec->pages[0],
(unsigned long)page_vec->data_size,
(unsigned int)mem_reg->lkey, mem_reg->mem_h,
(unsigned long)mem_reg->va, (unsigned long)mem_reg->len);
return 0;
}
/**
* Unregister (previosuly registered) memory.
*/
void iser_unreg_mem(struct iser_mem_reg *reg)
{
int ret;
iser_dbg("PHYSICAL Mem.Unregister mem_h %p\n",reg->mem_h);
ret = ib_fmr_pool_unmap((struct ib_pool_fmr *)reg->mem_h);
if (ret)
iser_err("ib_fmr_pool_unmap failed %d\n", ret);
reg->mem_h = NULL;
}
int iser_post_recvl(struct iser_conn *ib_conn)
{
struct ib_recv_wr rx_wr, *rx_wr_failed;
struct ib_sge sge;
int ib_ret;
sge.addr = ib_conn->login_dma;
sge.length = ISER_RX_LOGIN_SIZE;
sge.lkey = ib_conn->device->mr->lkey;
rx_wr.wr_id = (unsigned long)ib_conn->login_buf;
rx_wr.sg_list = &sge;
rx_wr.num_sge = 1;
rx_wr.next = NULL;
ib_conn->post_recv_buf_count++;
ib_ret = ib_post_recv(ib_conn->qp, &rx_wr, &rx_wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count--;
}
return ib_ret;
}
int iser_post_recvm(struct iser_conn *ib_conn, int count)
{
struct ib_recv_wr *rx_wr, *rx_wr_failed;
int i, ib_ret;
unsigned int my_rx_head = ib_conn->rx_desc_head;
struct iser_rx_desc *rx_desc;
for (rx_wr = ib_conn->rx_wr, i = 0; i < count; i++, rx_wr++) {
rx_desc = &ib_conn->rx_descs[my_rx_head];
rx_wr->wr_id = (unsigned long)rx_desc;
rx_wr->sg_list = &rx_desc->rx_sg;
rx_wr->num_sge = 1;
rx_wr->next = rx_wr + 1;
my_rx_head = (my_rx_head + 1) & (ISER_QP_MAX_RECV_DTOS - 1);
}
rx_wr--;
rx_wr->next = NULL; /* mark end of work requests list */
ib_conn->post_recv_buf_count += count;
ib_ret = ib_post_recv(ib_conn->qp, ib_conn->rx_wr, &rx_wr_failed);
if (ib_ret) {
iser_err("ib_post_recv failed ret=%d\n", ib_ret);
ib_conn->post_recv_buf_count -= count;
} else
ib_conn->rx_desc_head = my_rx_head;
return ib_ret;
}
/**
* iser_start_send - Initiate a Send DTO operation
*
* returns 0 on success, -1 on failure
*/
int iser_post_send(struct iser_conn *ib_conn, struct iser_tx_desc *tx_desc)
{
int ib_ret;
struct ib_send_wr send_wr, *send_wr_failed;
ib_dma_sync_single_for_device(ib_conn->device->ib_device,
tx_desc->dma_addr, ISER_HEADERS_LEN, DMA_TO_DEVICE);
send_wr.next = NULL;
send_wr.wr_id = (unsigned long)tx_desc;
send_wr.sg_list = tx_desc->tx_sg;
send_wr.num_sge = tx_desc->num_sge;
send_wr.opcode = IB_WR_SEND;
send_wr.send_flags = IB_SEND_SIGNALED;
atomic_inc(&ib_conn->post_send_buf_count);
ib_ret = ib_post_send(ib_conn->qp, &send_wr, &send_wr_failed);
if (ib_ret) {
iser_err("ib_post_send failed, ret:%d\n", ib_ret);
atomic_dec(&ib_conn->post_send_buf_count);
}
return ib_ret;
}
static void iser_handle_comp_error(struct iser_tx_desc *desc,
struct iser_conn *ib_conn)
{
if (desc && desc->type == ISCSI_TX_DATAOUT)
kmem_cache_free(ig.desc_cache, desc);
if (ib_conn->post_recv_buf_count == 0 &&
atomic_read(&ib_conn->post_send_buf_count) == 0) {
/* getting here when the state is UP means that the conn is *
* being terminated asynchronously from the iSCSI layer's *
* perspective. */
if (iser_conn_state_comp_exch(ib_conn, ISER_CONN_UP,
ISER_CONN_TERMINATING))
iscsi_conn_failure(ib_conn->iser_conn->iscsi_conn,
ISCSI_ERR_CONN_FAILED);
/* complete the termination process if disconnect event was delivered *
* note there are no more non completed posts to the QP */
if (ib_conn->disc_evt_flag) {
ib_conn->state = ISER_CONN_DOWN;
wake_up_interruptible(&ib_conn->wait);
}
}
}
static int iser_drain_tx_cq(struct iser_device *device)
{
struct ib_cq *cq = device->tx_cq;
struct ib_wc wc;
struct iser_tx_desc *tx_desc;
struct iser_conn *ib_conn;
int completed_tx = 0;
while (ib_poll_cq(cq, 1, &wc) == 1) {
tx_desc = (struct iser_tx_desc *) (unsigned long) wc.wr_id;
ib_conn = wc.qp->qp_context;
if (wc.status == IB_WC_SUCCESS) {
if (wc.opcode == IB_WC_SEND)
iser_snd_completion(tx_desc, ib_conn);
else
iser_err("expected opcode %d got %d\n",
IB_WC_SEND, wc.opcode);
} else {
iser_err("tx id %llx status %d vend_err %x\n",
wc.wr_id, wc.status, wc.vendor_err);
atomic_dec(&ib_conn->post_send_buf_count);
iser_handle_comp_error(tx_desc, ib_conn);
}
completed_tx++;
}
return completed_tx;
}
static void iser_cq_tasklet_fn(unsigned long data)
{
struct iser_device *device = (struct iser_device *)data;
struct ib_cq *cq = device->rx_cq;
struct ib_wc wc;
struct iser_rx_desc *desc;
unsigned long xfer_len;
struct iser_conn *ib_conn;
int completed_tx, completed_rx;
completed_tx = completed_rx = 0;
while (ib_poll_cq(cq, 1, &wc) == 1) {
desc = (struct iser_rx_desc *) (unsigned long) wc.wr_id;
BUG_ON(desc == NULL);
ib_conn = wc.qp->qp_context;
if (wc.status == IB_WC_SUCCESS) {
if (wc.opcode == IB_WC_RECV) {
xfer_len = (unsigned long)wc.byte_len;
iser_rcv_completion(desc, xfer_len, ib_conn);
} else
iser_err("expected opcode %d got %d\n",
IB_WC_RECV, wc.opcode);
} else {
if (wc.status != IB_WC_WR_FLUSH_ERR)
iser_err("rx id %llx status %d vend_err %x\n",
wc.wr_id, wc.status, wc.vendor_err);
ib_conn->post_recv_buf_count--;
iser_handle_comp_error(NULL, ib_conn);
}
completed_rx++;
if (!(completed_rx & 63))
completed_tx += iser_drain_tx_cq(device);
}
/* #warning "it is assumed here that arming CQ only once its empty" *
* " would not cause interrupts to be missed" */
ib_req_notify_cq(cq, IB_CQ_NEXT_COMP);
completed_tx += iser_drain_tx_cq(device);
iser_dbg("got %d rx %d tx completions\n", completed_rx, completed_tx);
}
static void iser_cq_callback(struct ib_cq *cq, void *cq_context)
{
struct iser_device *device = (struct iser_device *)cq_context;
tasklet_schedule(&device->cq_tasklet);
}