linux_old1/drivers/auxdisplay/cfag12864b.c

381 lines
7.5 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
/*
* Filename: cfag12864b.c
* Version: 0.1.0
* Description: cfag12864b LCD driver
* Depends: ks0108
*
* Author: Copyright (C) Miguel Ojeda Sandonis
* Date: 2006-10-31
*/
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/fs.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/cdev.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/jiffies.h>
#include <linux/mutex.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/workqueue.h>
#include <linux/ks0108.h>
#include <linux/cfag12864b.h>
#define CFAG12864B_NAME "cfag12864b"
/*
* Module Parameters
*/
static unsigned int cfag12864b_rate = CONFIG_CFAG12864B_RATE;
module_param(cfag12864b_rate, uint, S_IRUGO);
MODULE_PARM_DESC(cfag12864b_rate,
"Refresh rate (hertz)");
unsigned int cfag12864b_getrate(void)
{
return cfag12864b_rate;
}
/*
* cfag12864b Commands
*
* E = Enable signal
* Every time E switch from low to high,
* cfag12864b/ks0108 reads the command/data.
*
* CS1 = First ks0108controller.
* If high, the first ks0108 controller receives commands/data.
*
* CS2 = Second ks0108 controller
* If high, the second ks0108 controller receives commands/data.
*
* DI = Data/Instruction
* If low, cfag12864b will expect commands.
* If high, cfag12864b will expect data.
*
*/
#define bit(n) (((unsigned char)1)<<(n))
#define CFAG12864B_BIT_E (0)
#define CFAG12864B_BIT_CS1 (2)
#define CFAG12864B_BIT_CS2 (1)
#define CFAG12864B_BIT_DI (3)
static unsigned char cfag12864b_state;
static void cfag12864b_set(void)
{
ks0108_writecontrol(cfag12864b_state);
}
static void cfag12864b_setbit(unsigned char state, unsigned char n)
{
if (state)
cfag12864b_state |= bit(n);
else
cfag12864b_state &= ~bit(n);
}
static void cfag12864b_e(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_E);
cfag12864b_set();
}
static void cfag12864b_cs1(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_CS1);
}
static void cfag12864b_cs2(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_CS2);
}
static void cfag12864b_di(unsigned char state)
{
cfag12864b_setbit(state, CFAG12864B_BIT_DI);
}
static void cfag12864b_setcontrollers(unsigned char first,
unsigned char second)
{
if (first)
cfag12864b_cs1(0);
else
cfag12864b_cs1(1);
if (second)
cfag12864b_cs2(0);
else
cfag12864b_cs2(1);
}
static void cfag12864b_controller(unsigned char which)
{
if (which == 0)
cfag12864b_setcontrollers(1, 0);
else if (which == 1)
cfag12864b_setcontrollers(0, 1);
}
static void cfag12864b_displaystate(unsigned char state)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_displaystate(state);
cfag12864b_e(0);
}
static void cfag12864b_address(unsigned char address)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_address(address);
cfag12864b_e(0);
}
static void cfag12864b_page(unsigned char page)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_page(page);
cfag12864b_e(0);
}
static void cfag12864b_startline(unsigned char startline)
{
cfag12864b_di(0);
cfag12864b_e(1);
ks0108_startline(startline);
cfag12864b_e(0);
}
static void cfag12864b_writebyte(unsigned char byte)
{
cfag12864b_di(1);
cfag12864b_e(1);
ks0108_writedata(byte);
cfag12864b_e(0);
}
static void cfag12864b_nop(void)
{
cfag12864b_startline(0);
}
/*
* cfag12864b Internal Commands
*/
static void cfag12864b_on(void)
{
cfag12864b_setcontrollers(1, 1);
cfag12864b_displaystate(1);
}
static void cfag12864b_off(void)
{
cfag12864b_setcontrollers(1, 1);
cfag12864b_displaystate(0);
}
static void cfag12864b_clear(void)
{
unsigned char i, j;
cfag12864b_setcontrollers(1, 1);
for (i = 0; i < CFAG12864B_PAGES; i++) {
cfag12864b_page(i);
cfag12864b_address(0);
for (j = 0; j < CFAG12864B_ADDRESSES; j++)
cfag12864b_writebyte(0);
}
}
/*
* Update work
*/
unsigned char *cfag12864b_buffer;
static unsigned char *cfag12864b_cache;
static DEFINE_MUTEX(cfag12864b_mutex);
static unsigned char cfag12864b_updating;
static void cfag12864b_update(struct work_struct *delayed_work);
static struct workqueue_struct *cfag12864b_workqueue;
static DECLARE_DELAYED_WORK(cfag12864b_work, cfag12864b_update);
static void cfag12864b_queue(void)
{
queue_delayed_work(cfag12864b_workqueue, &cfag12864b_work,
HZ / cfag12864b_rate);
}
unsigned char cfag12864b_enable(void)
{
unsigned char ret;
mutex_lock(&cfag12864b_mutex);
if (!cfag12864b_updating) {
cfag12864b_updating = 1;
cfag12864b_queue();
ret = 0;
} else
ret = 1;
mutex_unlock(&cfag12864b_mutex);
return ret;
}
void cfag12864b_disable(void)
{
mutex_lock(&cfag12864b_mutex);
if (cfag12864b_updating) {
cfag12864b_updating = 0;
cancel_delayed_work(&cfag12864b_work);
flush_workqueue(cfag12864b_workqueue);
}
mutex_unlock(&cfag12864b_mutex);
}
unsigned char cfag12864b_isenabled(void)
{
return cfag12864b_updating;
}
static void cfag12864b_update(struct work_struct *work)
{
unsigned char c;
unsigned short i, j, k, b;
if (memcmp(cfag12864b_cache, cfag12864b_buffer, CFAG12864B_SIZE)) {
for (i = 0; i < CFAG12864B_CONTROLLERS; i++) {
cfag12864b_controller(i);
cfag12864b_nop();
for (j = 0; j < CFAG12864B_PAGES; j++) {
cfag12864b_page(j);
cfag12864b_nop();
cfag12864b_address(0);
cfag12864b_nop();
for (k = 0; k < CFAG12864B_ADDRESSES; k++) {
for (c = 0, b = 0; b < 8; b++)
if (cfag12864b_buffer
[i * CFAG12864B_ADDRESSES / 8
+ k / 8 + (j * 8 + b) *
CFAG12864B_WIDTH / 8]
& bit(k % 8))
c |= bit(b);
cfag12864b_writebyte(c);
}
}
}
memcpy(cfag12864b_cache, cfag12864b_buffer, CFAG12864B_SIZE);
}
if (cfag12864b_updating)
cfag12864b_queue();
}
/*
* cfag12864b Exported Symbols
*/
EXPORT_SYMBOL_GPL(cfag12864b_buffer);
EXPORT_SYMBOL_GPL(cfag12864b_getrate);
EXPORT_SYMBOL_GPL(cfag12864b_enable);
EXPORT_SYMBOL_GPL(cfag12864b_disable);
EXPORT_SYMBOL_GPL(cfag12864b_isenabled);
/*
* Is the module inited?
*/
static unsigned char cfag12864b_inited;
unsigned char cfag12864b_isinited(void)
{
return cfag12864b_inited;
}
EXPORT_SYMBOL_GPL(cfag12864b_isinited);
/*
* Module Init & Exit
*/
static int __init cfag12864b_init(void)
{
int ret = -EINVAL;
/* ks0108_init() must be called first */
if (!ks0108_isinited()) {
printk(KERN_ERR CFAG12864B_NAME ": ERROR: "
"ks0108 is not initialized\n");
goto none;
}
BUILD_BUG_ON(PAGE_SIZE < CFAG12864B_SIZE);
cfag12864b_buffer = (unsigned char *) get_zeroed_page(GFP_KERNEL);
if (cfag12864b_buffer == NULL) {
printk(KERN_ERR CFAG12864B_NAME ": ERROR: "
"can't get a free page\n");
ret = -ENOMEM;
goto none;
}
treewide: kmalloc() -> kmalloc_array() The kmalloc() function has a 2-factor argument form, kmalloc_array(). This patch replaces cases of: kmalloc(a * b, gfp) with: kmalloc_array(a * b, gfp) as well as handling cases of: kmalloc(a * b * c, gfp) with: kmalloc(array3_size(a, b, c), gfp) as it's slightly less ugly than: kmalloc_array(array_size(a, b), c, gfp) This does, however, attempt to ignore constant size factors like: kmalloc(4 * 1024, gfp) though any constants defined via macros get caught up in the conversion. Any factors with a sizeof() of "unsigned char", "char", and "u8" were dropped, since they're redundant. The tools/ directory was manually excluded, since it has its own implementation of kmalloc(). The Coccinelle script used for this was: // Fix redundant parens around sizeof(). @@ type TYPE; expression THING, E; @@ ( kmalloc( - (sizeof(TYPE)) * E + sizeof(TYPE) * E , ...) | kmalloc( - (sizeof(THING)) * E + sizeof(THING) * E , ...) ) // Drop single-byte sizes and redundant parens. @@ expression COUNT; typedef u8; typedef __u8; @@ ( kmalloc( - sizeof(u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(__u8) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(unsigned char) * (COUNT) + COUNT , ...) | kmalloc( - sizeof(u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(__u8) * COUNT + COUNT , ...) | kmalloc( - sizeof(char) * COUNT + COUNT , ...) | kmalloc( - sizeof(unsigned char) * COUNT + COUNT , ...) ) // 2-factor product with sizeof(type/expression) and identifier or constant. @@ type TYPE; expression THING; identifier COUNT_ID; constant COUNT_CONST; @@ ( - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_ID) + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_ID + COUNT_ID, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (COUNT_CONST) + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * COUNT_CONST + COUNT_CONST, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_ID) + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_ID + COUNT_ID, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (COUNT_CONST) + COUNT_CONST, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * COUNT_CONST + COUNT_CONST, sizeof(THING) , ...) ) // 2-factor product, only identifiers. @@ identifier SIZE, COUNT; @@ - kmalloc + kmalloc_array ( - SIZE * COUNT + COUNT, SIZE , ...) // 3-factor product with 1 sizeof(type) or sizeof(expression), with // redundant parens removed. @@ expression THING; identifier STRIDE, COUNT; type TYPE; @@ ( kmalloc( - sizeof(TYPE) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(TYPE) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(TYPE)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * (COUNT) * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * (STRIDE) + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) | kmalloc( - sizeof(THING) * COUNT * STRIDE + array3_size(COUNT, STRIDE, sizeof(THING)) , ...) ) // 3-factor product with 2 sizeof(variable), with redundant parens removed. @@ expression THING1, THING2; identifier COUNT; type TYPE1, TYPE2; @@ ( kmalloc( - sizeof(TYPE1) * sizeof(TYPE2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(TYPE2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(THING1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(THING1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * COUNT + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) | kmalloc( - sizeof(TYPE1) * sizeof(THING2) * (COUNT) + array3_size(COUNT, sizeof(TYPE1), sizeof(THING2)) , ...) ) // 3-factor product, only identifiers, with redundant parens removed. @@ identifier STRIDE, SIZE, COUNT; @@ ( kmalloc( - (COUNT) * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * STRIDE * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - (COUNT) * (STRIDE) * (SIZE) + array3_size(COUNT, STRIDE, SIZE) , ...) | kmalloc( - COUNT * STRIDE * SIZE + array3_size(COUNT, STRIDE, SIZE) , ...) ) // Any remaining multi-factor products, first at least 3-factor products, // when they're not all constants... @@ expression E1, E2, E3; constant C1, C2, C3; @@ ( kmalloc(C1 * C2 * C3, ...) | kmalloc( - (E1) * E2 * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * E3 + array3_size(E1, E2, E3) , ...) | kmalloc( - (E1) * (E2) * (E3) + array3_size(E1, E2, E3) , ...) | kmalloc( - E1 * E2 * E3 + array3_size(E1, E2, E3) , ...) ) // And then all remaining 2 factors products when they're not all constants, // keeping sizeof() as the second factor argument. @@ expression THING, E1, E2; type TYPE; constant C1, C2, C3; @@ ( kmalloc(sizeof(THING) * C2, ...) | kmalloc(sizeof(TYPE) * C2, ...) | kmalloc(C1 * C2 * C3, ...) | kmalloc(C1 * C2, ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * (E2) + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(TYPE) * E2 + E2, sizeof(TYPE) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * (E2) + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - sizeof(THING) * E2 + E2, sizeof(THING) , ...) | - kmalloc + kmalloc_array ( - (E1) * E2 + E1, E2 , ...) | - kmalloc + kmalloc_array ( - (E1) * (E2) + E1, E2 , ...) | - kmalloc + kmalloc_array ( - E1 * E2 + E1, E2 , ...) ) Signed-off-by: Kees Cook <keescook@chromium.org>
2018-06-13 04:55:00 +08:00
cfag12864b_cache = kmalloc(CFAG12864B_SIZE,
GFP_KERNEL);
if (cfag12864b_cache == NULL) {
printk(KERN_ERR CFAG12864B_NAME ": ERROR: "
"can't alloc cache buffer (%i bytes)\n",
CFAG12864B_SIZE);
ret = -ENOMEM;
goto bufferalloced;
}
cfag12864b_workqueue = create_singlethread_workqueue(CFAG12864B_NAME);
if (cfag12864b_workqueue == NULL)
goto cachealloced;
cfag12864b_clear();
cfag12864b_on();
cfag12864b_inited = 1;
return 0;
cachealloced:
kfree(cfag12864b_cache);
bufferalloced:
free_page((unsigned long) cfag12864b_buffer);
none:
return ret;
}
static void __exit cfag12864b_exit(void)
{
cfag12864b_disable();
cfag12864b_off();
destroy_workqueue(cfag12864b_workqueue);
kfree(cfag12864b_cache);
free_page((unsigned long) cfag12864b_buffer);
}
module_init(cfag12864b_init);
module_exit(cfag12864b_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Miguel Ojeda Sandonis <miguel.ojeda.sandonis@gmail.com>");
MODULE_DESCRIPTION("cfag12864b LCD driver");