linux_old1/arch/powerpc/boot/mv64x60.c

582 lines
17 KiB
C
Raw Normal View History

/*
* Marvell hostbridge routines
*
* Author: Mark A. Greer <source@mvista.com>
*
* 2004, 2005, 2007 (c) MontaVista Software, Inc. This file is licensed under
* the terms of the GNU General Public License version 2. This program
* is licensed "as is" without any warranty of any kind, whether express
* or implied.
*/
#include <stdarg.h>
#include <stddef.h>
#include "types.h"
#include "elf.h"
#include "page.h"
#include "string.h"
#include "stdio.h"
#include "io.h"
#include "ops.h"
#include "mv64x60.h"
#define PCI_DEVFN(slot,func) ((((slot) & 0x1f) << 3) | ((func) & 0x07))
#define MV64x60_CPU2MEM_WINDOWS 4
#define MV64x60_CPU2MEM_0_BASE 0x0008
#define MV64x60_CPU2MEM_0_SIZE 0x0010
#define MV64x60_CPU2MEM_1_BASE 0x0208
#define MV64x60_CPU2MEM_1_SIZE 0x0210
#define MV64x60_CPU2MEM_2_BASE 0x0018
#define MV64x60_CPU2MEM_2_SIZE 0x0020
#define MV64x60_CPU2MEM_3_BASE 0x0218
#define MV64x60_CPU2MEM_3_SIZE 0x0220
#define MV64x60_ENET2MEM_BAR_ENABLE 0x2290
#define MV64x60_ENET2MEM_0_BASE 0x2200
#define MV64x60_ENET2MEM_0_SIZE 0x2204
#define MV64x60_ENET2MEM_1_BASE 0x2208
#define MV64x60_ENET2MEM_1_SIZE 0x220c
#define MV64x60_ENET2MEM_2_BASE 0x2210
#define MV64x60_ENET2MEM_2_SIZE 0x2214
#define MV64x60_ENET2MEM_3_BASE 0x2218
#define MV64x60_ENET2MEM_3_SIZE 0x221c
#define MV64x60_ENET2MEM_4_BASE 0x2220
#define MV64x60_ENET2MEM_4_SIZE 0x2224
#define MV64x60_ENET2MEM_5_BASE 0x2228
#define MV64x60_ENET2MEM_5_SIZE 0x222c
#define MV64x60_ENET2MEM_ACC_PROT_0 0x2294
#define MV64x60_ENET2MEM_ACC_PROT_1 0x2298
#define MV64x60_ENET2MEM_ACC_PROT_2 0x229c
#define MV64x60_MPSC2MEM_BAR_ENABLE 0xf250
#define MV64x60_MPSC2MEM_0_BASE 0xf200
#define MV64x60_MPSC2MEM_0_SIZE 0xf204
#define MV64x60_MPSC2MEM_1_BASE 0xf208
#define MV64x60_MPSC2MEM_1_SIZE 0xf20c
#define MV64x60_MPSC2MEM_2_BASE 0xf210
#define MV64x60_MPSC2MEM_2_SIZE 0xf214
#define MV64x60_MPSC2MEM_3_BASE 0xf218
#define MV64x60_MPSC2MEM_3_SIZE 0xf21c
#define MV64x60_MPSC_0_REMAP 0xf240
#define MV64x60_MPSC_1_REMAP 0xf244
#define MV64x60_MPSC2MEM_ACC_PROT_0 0xf254
#define MV64x60_MPSC2MEM_ACC_PROT_1 0xf258
#define MV64x60_MPSC2REGS_BASE 0xf25c
#define MV64x60_IDMA2MEM_BAR_ENABLE 0x0a80
#define MV64x60_IDMA2MEM_0_BASE 0x0a00
#define MV64x60_IDMA2MEM_0_SIZE 0x0a04
#define MV64x60_IDMA2MEM_1_BASE 0x0a08
#define MV64x60_IDMA2MEM_1_SIZE 0x0a0c
#define MV64x60_IDMA2MEM_2_BASE 0x0a10
#define MV64x60_IDMA2MEM_2_SIZE 0x0a14
#define MV64x60_IDMA2MEM_3_BASE 0x0a18
#define MV64x60_IDMA2MEM_3_SIZE 0x0a1c
#define MV64x60_IDMA2MEM_4_BASE 0x0a20
#define MV64x60_IDMA2MEM_4_SIZE 0x0a24
#define MV64x60_IDMA2MEM_5_BASE 0x0a28
#define MV64x60_IDMA2MEM_5_SIZE 0x0a2c
#define MV64x60_IDMA2MEM_6_BASE 0x0a30
#define MV64x60_IDMA2MEM_6_SIZE 0x0a34
#define MV64x60_IDMA2MEM_7_BASE 0x0a38
#define MV64x60_IDMA2MEM_7_SIZE 0x0a3c
#define MV64x60_IDMA2MEM_ACC_PROT_0 0x0a70
#define MV64x60_IDMA2MEM_ACC_PROT_1 0x0a74
#define MV64x60_IDMA2MEM_ACC_PROT_2 0x0a78
#define MV64x60_IDMA2MEM_ACC_PROT_3 0x0a7c
#define MV64x60_PCI_ACC_CNTL_WINDOWS 6
#define MV64x60_PCI0_PCI_DECODE_CNTL 0x0d3c
#define MV64x60_PCI1_PCI_DECODE_CNTL 0x0dbc
#define MV64x60_PCI0_BAR_ENABLE 0x0c3c
#define MV64x60_PCI02MEM_0_SIZE 0x0c08
#define MV64x60_PCI0_ACC_CNTL_0_BASE_LO 0x1e00
#define MV64x60_PCI0_ACC_CNTL_0_BASE_HI 0x1e04
#define MV64x60_PCI0_ACC_CNTL_0_SIZE 0x1e08
#define MV64x60_PCI0_ACC_CNTL_1_BASE_LO 0x1e10
#define MV64x60_PCI0_ACC_CNTL_1_BASE_HI 0x1e14
#define MV64x60_PCI0_ACC_CNTL_1_SIZE 0x1e18
#define MV64x60_PCI0_ACC_CNTL_2_BASE_LO 0x1e20
#define MV64x60_PCI0_ACC_CNTL_2_BASE_HI 0x1e24
#define MV64x60_PCI0_ACC_CNTL_2_SIZE 0x1e28
#define MV64x60_PCI0_ACC_CNTL_3_BASE_LO 0x1e30
#define MV64x60_PCI0_ACC_CNTL_3_BASE_HI 0x1e34
#define MV64x60_PCI0_ACC_CNTL_3_SIZE 0x1e38
#define MV64x60_PCI0_ACC_CNTL_4_BASE_LO 0x1e40
#define MV64x60_PCI0_ACC_CNTL_4_BASE_HI 0x1e44
#define MV64x60_PCI0_ACC_CNTL_4_SIZE 0x1e48
#define MV64x60_PCI0_ACC_CNTL_5_BASE_LO 0x1e50
#define MV64x60_PCI0_ACC_CNTL_5_BASE_HI 0x1e54
#define MV64x60_PCI0_ACC_CNTL_5_SIZE 0x1e58
#define MV64x60_PCI1_BAR_ENABLE 0x0cbc
#define MV64x60_PCI12MEM_0_SIZE 0x0c88
#define MV64x60_PCI1_ACC_CNTL_0_BASE_LO 0x1e80
#define MV64x60_PCI1_ACC_CNTL_0_BASE_HI 0x1e84
#define MV64x60_PCI1_ACC_CNTL_0_SIZE 0x1e88
#define MV64x60_PCI1_ACC_CNTL_1_BASE_LO 0x1e90
#define MV64x60_PCI1_ACC_CNTL_1_BASE_HI 0x1e94
#define MV64x60_PCI1_ACC_CNTL_1_SIZE 0x1e98
#define MV64x60_PCI1_ACC_CNTL_2_BASE_LO 0x1ea0
#define MV64x60_PCI1_ACC_CNTL_2_BASE_HI 0x1ea4
#define MV64x60_PCI1_ACC_CNTL_2_SIZE 0x1ea8
#define MV64x60_PCI1_ACC_CNTL_3_BASE_LO 0x1eb0
#define MV64x60_PCI1_ACC_CNTL_3_BASE_HI 0x1eb4
#define MV64x60_PCI1_ACC_CNTL_3_SIZE 0x1eb8
#define MV64x60_PCI1_ACC_CNTL_4_BASE_LO 0x1ec0
#define MV64x60_PCI1_ACC_CNTL_4_BASE_HI 0x1ec4
#define MV64x60_PCI1_ACC_CNTL_4_SIZE 0x1ec8
#define MV64x60_PCI1_ACC_CNTL_5_BASE_LO 0x1ed0
#define MV64x60_PCI1_ACC_CNTL_5_BASE_HI 0x1ed4
#define MV64x60_PCI1_ACC_CNTL_5_SIZE 0x1ed8
#define MV64x60_CPU2PCI_SWAP_NONE 0x01000000
#define MV64x60_CPU2PCI0_IO_BASE 0x0048
#define MV64x60_CPU2PCI0_IO_SIZE 0x0050
#define MV64x60_CPU2PCI0_IO_REMAP 0x00f0
#define MV64x60_CPU2PCI0_MEM_0_BASE 0x0058
#define MV64x60_CPU2PCI0_MEM_0_SIZE 0x0060
#define MV64x60_CPU2PCI0_MEM_0_REMAP_LO 0x00f8
#define MV64x60_CPU2PCI0_MEM_0_REMAP_HI 0x0320
#define MV64x60_CPU2PCI1_IO_BASE 0x0090
#define MV64x60_CPU2PCI1_IO_SIZE 0x0098
#define MV64x60_CPU2PCI1_IO_REMAP 0x0108
#define MV64x60_CPU2PCI1_MEM_0_BASE 0x00a0
#define MV64x60_CPU2PCI1_MEM_0_SIZE 0x00a8
#define MV64x60_CPU2PCI1_MEM_0_REMAP_LO 0x0110
#define MV64x60_CPU2PCI1_MEM_0_REMAP_HI 0x0340
struct mv64x60_mem_win {
u32 hi;
u32 lo;
u32 size;
};
struct mv64x60_pci_win {
u32 fcn;
u32 hi;
u32 lo;
u32 size;
};
/* PCI config access routines */
struct {
u32 addr;
u32 data;
} static mv64x60_pci_cfgio[2] = {
{ /* hose 0 */
.addr = 0xcf8,
.data = 0xcfc,
},
{ /* hose 1 */
.addr = 0xc78,
.data = 0xc7c,
}
};
u32 mv64x60_cfg_read(u8 *bridge_base, u8 hose, u8 bus, u8 devfn, u8 offset)
{
out_le32((u32 *)(bridge_base + mv64x60_pci_cfgio[hose].addr),
(1 << 31) | (bus << 16) | (devfn << 8) | offset);
return in_le32((u32 *)(bridge_base + mv64x60_pci_cfgio[hose].data));
}
void mv64x60_cfg_write(u8 *bridge_base, u8 hose, u8 bus, u8 devfn, u8 offset,
u32 val)
{
out_le32((u32 *)(bridge_base + mv64x60_pci_cfgio[hose].addr),
(1 << 31) | (bus << 16) | (devfn << 8) | offset);
out_le32((u32 *)(bridge_base + mv64x60_pci_cfgio[hose].data), val);
}
/* I/O ctlr -> system memory setup */
static struct mv64x60_mem_win mv64x60_cpu2mem[MV64x60_CPU2MEM_WINDOWS] = {
{
.lo = MV64x60_CPU2MEM_0_BASE,
.size = MV64x60_CPU2MEM_0_SIZE,
},
{
.lo = MV64x60_CPU2MEM_1_BASE,
.size = MV64x60_CPU2MEM_1_SIZE,
},
{
.lo = MV64x60_CPU2MEM_2_BASE,
.size = MV64x60_CPU2MEM_2_SIZE,
},
{
.lo = MV64x60_CPU2MEM_3_BASE,
.size = MV64x60_CPU2MEM_3_SIZE,
},
};
static struct mv64x60_mem_win mv64x60_enet2mem[MV64x60_CPU2MEM_WINDOWS] = {
{
.lo = MV64x60_ENET2MEM_0_BASE,
.size = MV64x60_ENET2MEM_0_SIZE,
},
{
.lo = MV64x60_ENET2MEM_1_BASE,
.size = MV64x60_ENET2MEM_1_SIZE,
},
{
.lo = MV64x60_ENET2MEM_2_BASE,
.size = MV64x60_ENET2MEM_2_SIZE,
},
{
.lo = MV64x60_ENET2MEM_3_BASE,
.size = MV64x60_ENET2MEM_3_SIZE,
},
};
static struct mv64x60_mem_win mv64x60_mpsc2mem[MV64x60_CPU2MEM_WINDOWS] = {
{
.lo = MV64x60_MPSC2MEM_0_BASE,
.size = MV64x60_MPSC2MEM_0_SIZE,
},
{
.lo = MV64x60_MPSC2MEM_1_BASE,
.size = MV64x60_MPSC2MEM_1_SIZE,
},
{
.lo = MV64x60_MPSC2MEM_2_BASE,
.size = MV64x60_MPSC2MEM_2_SIZE,
},
{
.lo = MV64x60_MPSC2MEM_3_BASE,
.size = MV64x60_MPSC2MEM_3_SIZE,
},
};
static struct mv64x60_mem_win mv64x60_idma2mem[MV64x60_CPU2MEM_WINDOWS] = {
{
.lo = MV64x60_IDMA2MEM_0_BASE,
.size = MV64x60_IDMA2MEM_0_SIZE,
},
{
.lo = MV64x60_IDMA2MEM_1_BASE,
.size = MV64x60_IDMA2MEM_1_SIZE,
},
{
.lo = MV64x60_IDMA2MEM_2_BASE,
.size = MV64x60_IDMA2MEM_2_SIZE,
},
{
.lo = MV64x60_IDMA2MEM_3_BASE,
.size = MV64x60_IDMA2MEM_3_SIZE,
},
};
static u32 mv64x60_dram_selects[MV64x60_CPU2MEM_WINDOWS] = {0xe,0xd,0xb,0x7};
/*
* ENET, MPSC, and IDMA ctlrs on the MV64x60 have separate windows that
* must be set up so that the respective ctlr can access system memory.
* Configure them to be same as cpu->memory windows.
*/
void mv64x60_config_ctlr_windows(u8 *bridge_base, u8 *bridge_pbase,
u8 is_coherent)
{
u32 i, base, size, enables, prot = 0, snoop_bits = 0;
/* Disable ctlr->mem windows */
out_le32((u32 *)(bridge_base + MV64x60_ENET2MEM_BAR_ENABLE), 0x3f);
out_le32((u32 *)(bridge_base + MV64x60_MPSC2MEM_BAR_ENABLE), 0xf);
out_le32((u32 *)(bridge_base + MV64x60_ENET2MEM_BAR_ENABLE), 0xff);
if (is_coherent)
snoop_bits = 0x2 << 12; /* Writeback */
enables = in_le32((u32 *)(bridge_base + MV64x60_CPU_BAR_ENABLE)) & 0xf;
for (i=0; i<MV64x60_CPU2MEM_WINDOWS; i++) {
if (enables & (1 << i)) /* Set means disabled */
continue;
base = in_le32((u32 *)(bridge_base + mv64x60_cpu2mem[i].lo))
<< 16;
base |= snoop_bits | (mv64x60_dram_selects[i] << 8);
size = in_le32((u32 *)(bridge_base + mv64x60_cpu2mem[i].size))
<< 16;
prot |= (0x3 << (i << 1)); /* RW access */
out_le32((u32 *)(bridge_base + mv64x60_enet2mem[i].lo), base);
out_le32((u32 *)(bridge_base + mv64x60_enet2mem[i].size), size);
out_le32((u32 *)(bridge_base + mv64x60_mpsc2mem[i].lo), base);
out_le32((u32 *)(bridge_base + mv64x60_mpsc2mem[i].size), size);
out_le32((u32 *)(bridge_base + mv64x60_idma2mem[i].lo), base);
out_le32((u32 *)(bridge_base + mv64x60_idma2mem[i].size), size);
}
out_le32((u32 *)(bridge_base + MV64x60_ENET2MEM_ACC_PROT_0), prot);
out_le32((u32 *)(bridge_base + MV64x60_ENET2MEM_ACC_PROT_1), prot);
out_le32((u32 *)(bridge_base + MV64x60_ENET2MEM_ACC_PROT_2), prot);
out_le32((u32 *)(bridge_base + MV64x60_MPSC2MEM_ACC_PROT_0), prot);
out_le32((u32 *)(bridge_base + MV64x60_MPSC2MEM_ACC_PROT_1), prot);
out_le32((u32 *)(bridge_base + MV64x60_IDMA2MEM_ACC_PROT_0), prot);
out_le32((u32 *)(bridge_base + MV64x60_IDMA2MEM_ACC_PROT_1), prot);
out_le32((u32 *)(bridge_base + MV64x60_IDMA2MEM_ACC_PROT_2), prot);
out_le32((u32 *)(bridge_base + MV64x60_IDMA2MEM_ACC_PROT_3), prot);
/* Set mpsc->bridge's reg window to the bridge's internal registers. */
out_le32((u32 *)(bridge_base + MV64x60_MPSC2REGS_BASE),
(u32)bridge_pbase);
out_le32((u32 *)(bridge_base + MV64x60_ENET2MEM_BAR_ENABLE), enables);
out_le32((u32 *)(bridge_base + MV64x60_MPSC2MEM_BAR_ENABLE), enables);
out_le32((u32 *)(bridge_base + MV64x60_IDMA2MEM_BAR_ENABLE), enables);
}
/* PCI MEM -> system memory, et. al. setup */
static struct mv64x60_pci_win mv64x60_pci2mem[2] = {
{ /* hose 0 */
.fcn = 0,
.hi = 0x14,
.lo = 0x10,
.size = MV64x60_PCI02MEM_0_SIZE,
},
{ /* hose 1 */
.fcn = 0,
.hi = 0x94,
.lo = 0x90,
.size = MV64x60_PCI12MEM_0_SIZE,
},
};
static struct
mv64x60_mem_win mv64x60_pci_acc[2][MV64x60_PCI_ACC_CNTL_WINDOWS] = {
{ /* hose 0 */
{
.hi = MV64x60_PCI0_ACC_CNTL_0_BASE_HI,
.lo = MV64x60_PCI0_ACC_CNTL_0_BASE_LO,
.size = MV64x60_PCI0_ACC_CNTL_0_SIZE,
},
{
.hi = MV64x60_PCI0_ACC_CNTL_1_BASE_HI,
.lo = MV64x60_PCI0_ACC_CNTL_1_BASE_LO,
.size = MV64x60_PCI0_ACC_CNTL_1_SIZE,
},
{
.hi = MV64x60_PCI0_ACC_CNTL_2_BASE_HI,
.lo = MV64x60_PCI0_ACC_CNTL_2_BASE_LO,
.size = MV64x60_PCI0_ACC_CNTL_2_SIZE,
},
{
.hi = MV64x60_PCI0_ACC_CNTL_3_BASE_HI,
.lo = MV64x60_PCI0_ACC_CNTL_3_BASE_LO,
.size = MV64x60_PCI0_ACC_CNTL_3_SIZE,
},
},
{ /* hose 1 */
{
.hi = MV64x60_PCI1_ACC_CNTL_0_BASE_HI,
.lo = MV64x60_PCI1_ACC_CNTL_0_BASE_LO,
.size = MV64x60_PCI1_ACC_CNTL_0_SIZE,
},
{
.hi = MV64x60_PCI1_ACC_CNTL_1_BASE_HI,
.lo = MV64x60_PCI1_ACC_CNTL_1_BASE_LO,
.size = MV64x60_PCI1_ACC_CNTL_1_SIZE,
},
{
.hi = MV64x60_PCI1_ACC_CNTL_2_BASE_HI,
.lo = MV64x60_PCI1_ACC_CNTL_2_BASE_LO,
.size = MV64x60_PCI1_ACC_CNTL_2_SIZE,
},
{
.hi = MV64x60_PCI1_ACC_CNTL_3_BASE_HI,
.lo = MV64x60_PCI1_ACC_CNTL_3_BASE_LO,
.size = MV64x60_PCI1_ACC_CNTL_3_SIZE,
},
},
};
static struct mv64x60_mem_win mv64x60_pci2reg[2] = {
{
.hi = 0x24,
.lo = 0x20,
.size = 0,
},
{
.hi = 0xa4,
.lo = 0xa0,
.size = 0,
},
};
/* Only need to use 1 window (per hose) to get access to all of system memory */
void mv64x60_config_pci_windows(u8 *bridge_base, u8 *bridge_pbase, u8 hose,
u8 bus, u32 mem_size, u32 acc_bits)
{
u32 i, offset, bar_enable, enables;
/* Disable all windows but PCI MEM -> Bridge's regs window */
enables = ~(1 << 9);
bar_enable = hose ? MV64x60_PCI1_BAR_ENABLE : MV64x60_PCI0_BAR_ENABLE;
out_le32((u32 *)(bridge_base + bar_enable), enables);
for (i=0; i<MV64x60_PCI_ACC_CNTL_WINDOWS; i++)
out_le32((u32 *)(bridge_base + mv64x60_pci_acc[hose][i].lo), 0);
/* If mem_size is 0, leave windows disabled */
if (mem_size == 0)
return;
/* Cause automatic updates of PCI remap regs */
offset = hose ?
MV64x60_PCI1_PCI_DECODE_CNTL : MV64x60_PCI0_PCI_DECODE_CNTL;
i = in_le32((u32 *)(bridge_base + offset));
out_le32((u32 *)(bridge_base + offset), i & ~0x1);
mem_size = (mem_size - 1) & 0xfffff000;
/* Map PCI MEM addr 0 -> System Mem addr 0 */
mv64x60_cfg_write(bridge_base, hose, bus,
PCI_DEVFN(0, mv64x60_pci2mem[hose].fcn),
mv64x60_pci2mem[hose].hi, 0);
mv64x60_cfg_write(bridge_base, hose, bus,
PCI_DEVFN(0, mv64x60_pci2mem[hose].fcn),
mv64x60_pci2mem[hose].lo, 0);
out_le32((u32 *)(bridge_base + mv64x60_pci2mem[hose].size),mem_size);
acc_bits |= MV64x60_PCI_ACC_CNTL_ENABLE;
out_le32((u32 *)(bridge_base + mv64x60_pci_acc[hose][0].hi), 0);
out_le32((u32 *)(bridge_base + mv64x60_pci_acc[hose][0].lo), acc_bits);
out_le32((u32 *)(bridge_base + mv64x60_pci_acc[hose][0].size),mem_size);
/* Set PCI MEM->bridge's reg window to where they are in CPU mem map */
i = (u32)bridge_base;
i &= 0xffff0000;
i |= (0x2 << 1);
mv64x60_cfg_write(bridge_base, hose, bus, PCI_DEVFN(0,0),
mv64x60_pci2reg[hose].hi, 0);
mv64x60_cfg_write(bridge_base, hose, bus, PCI_DEVFN(0,0),
mv64x60_pci2reg[hose].lo, i);
enables &= ~0x1; /* Enable PCI MEM -> System Mem window 0 */
out_le32((u32 *)(bridge_base + bar_enable), enables);
}
/* CPU -> PCI I/O & MEM setup */
struct mv64x60_cpu2pci_win mv64x60_cpu2pci_io[2] = {
{ /* hose 0 */
.lo = MV64x60_CPU2PCI0_IO_BASE,
.size = MV64x60_CPU2PCI0_IO_SIZE,
.remap_hi = 0,
.remap_lo = MV64x60_CPU2PCI0_IO_REMAP,
},
{ /* hose 1 */
.lo = MV64x60_CPU2PCI1_IO_BASE,
.size = MV64x60_CPU2PCI1_IO_SIZE,
.remap_hi = 0,
.remap_lo = MV64x60_CPU2PCI1_IO_REMAP,
},
};
struct mv64x60_cpu2pci_win mv64x60_cpu2pci_mem[2] = {
{ /* hose 0 */
.lo = MV64x60_CPU2PCI0_MEM_0_BASE,
.size = MV64x60_CPU2PCI0_MEM_0_SIZE,
.remap_hi = MV64x60_CPU2PCI0_MEM_0_REMAP_HI,
.remap_lo = MV64x60_CPU2PCI0_MEM_0_REMAP_LO,
},
{ /* hose 1 */
.lo = MV64x60_CPU2PCI1_MEM_0_BASE,
.size = MV64x60_CPU2PCI1_MEM_0_SIZE,
.remap_hi = MV64x60_CPU2PCI1_MEM_0_REMAP_HI,
.remap_lo = MV64x60_CPU2PCI1_MEM_0_REMAP_LO,
},
};
/* Only need to set up 1 window to pci mem space */
void mv64x60_config_cpu2pci_window(u8 *bridge_base, u8 hose, u32 pci_base_hi,
u32 pci_base_lo, u32 cpu_base, u32 size,
struct mv64x60_cpu2pci_win *offset_tbl)
{
cpu_base >>= 16;
cpu_base |= MV64x60_CPU2PCI_SWAP_NONE;
out_le32((u32 *)(bridge_base + offset_tbl[hose].lo), cpu_base);
if (offset_tbl[hose].remap_hi != 0)
out_le32((u32 *)(bridge_base + offset_tbl[hose].remap_hi),
pci_base_hi);
out_le32((u32 *)(bridge_base + offset_tbl[hose].remap_lo),
pci_base_lo >> 16);
size = (size - 1) >> 16;
out_le32((u32 *)(bridge_base + offset_tbl[hose].size), size);
}
/* Read mem ctlr to get the amount of mem in system */
u32 mv64x60_get_mem_size(u8 *bridge_base)
{
u32 enables, i, v;
u32 mem = 0;
enables = in_le32((u32 *)(bridge_base + MV64x60_CPU_BAR_ENABLE)) & 0xf;
for (i=0; i<MV64x60_CPU2MEM_WINDOWS; i++)
if (!(enables & (1<<i))) {
v = in_le32((u32*)(bridge_base
+ mv64x60_cpu2mem[i].size));
v = ((v & 0xffff) + 1) << 16;
mem += v;
}
return mem;
}
/* Get physical address of bridge's registers */
u8 *mv64x60_get_bridge_pbase(void)
{
u32 v[2];
void *devp;
devp = finddevice("/mv64x60");
if (devp == NULL)
goto err_out;
if (getprop(devp, "reg", v, sizeof(v)) != sizeof(v))
goto err_out;
return (u8 *)v[0];
err_out:
return 0;
}
/* Get virtual address of bridge's registers */
u8 *mv64x60_get_bridge_base(void)
{
u32 v;
void *devp;
devp = finddevice("/mv64x60");
if (devp == NULL)
goto err_out;
if (getprop(devp, "virtual-reg", &v, sizeof(v)) != sizeof(v))
goto err_out;
return (u8 *)v;
err_out:
return 0;
}
u8 mv64x60_is_coherent(void)
{
u32 v;
void *devp;
devp = finddevice("/");
if (devp == NULL)
return 1; /* Assume coherency on */
if (getprop(devp, "coherency-off", &v, sizeof(v)) < 0)
return 1; /* Coherency on */
else
return 0;
}