linux_old1/drivers/perf/arm-cci.c

1736 lines
48 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0
// CCI Cache Coherent Interconnect PMU driver
// Copyright (C) 2013-2018 Arm Ltd.
// Author: Punit Agrawal <punit.agrawal@arm.com>, Suzuki Poulose <suzuki.poulose@arm.com>
#include <linux/arm-cci.h>
#include <linux/io.h>
#include <linux/interrupt.h>
#include <linux/module.h>
#include <linux/of_address.h>
#include <linux/of_device.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/perf_event.h>
#include <linux/platform_device.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#define DRIVER_NAME "ARM-CCI PMU"
#define CCI_PMCR 0x0100
#define CCI_PID2 0x0fe8
#define CCI_PMCR_CEN 0x00000001
#define CCI_PMCR_NCNT_MASK 0x0000f800
#define CCI_PMCR_NCNT_SHIFT 11
#define CCI_PID2_REV_MASK 0xf0
#define CCI_PID2_REV_SHIFT 4
#define CCI_PMU_EVT_SEL 0x000
#define CCI_PMU_CNTR 0x004
#define CCI_PMU_CNTR_CTRL 0x008
#define CCI_PMU_OVRFLW 0x00c
#define CCI_PMU_OVRFLW_FLAG 1
#define CCI_PMU_CNTR_SIZE(model) ((model)->cntr_size)
#define CCI_PMU_CNTR_BASE(model, idx) ((idx) * CCI_PMU_CNTR_SIZE(model))
#define CCI_PMU_CNTR_MASK ((1ULL << 32) -1)
#define CCI_PMU_CNTR_LAST(cci_pmu) (cci_pmu->num_cntrs - 1)
#define CCI_PMU_MAX_HW_CNTRS(model) \
((model)->num_hw_cntrs + (model)->fixed_hw_cntrs)
/* Types of interfaces that can generate events */
enum {
CCI_IF_SLAVE,
CCI_IF_MASTER,
#ifdef CONFIG_ARM_CCI5xx_PMU
CCI_IF_GLOBAL,
#endif
CCI_IF_MAX,
};
#define NUM_HW_CNTRS_CII_4XX 4
#define NUM_HW_CNTRS_CII_5XX 8
#define NUM_HW_CNTRS_MAX NUM_HW_CNTRS_CII_5XX
#define FIXED_HW_CNTRS_CII_4XX 1
#define FIXED_HW_CNTRS_CII_5XX 0
#define FIXED_HW_CNTRS_MAX FIXED_HW_CNTRS_CII_4XX
#define HW_CNTRS_MAX (NUM_HW_CNTRS_MAX + FIXED_HW_CNTRS_MAX)
struct event_range {
u32 min;
u32 max;
};
struct cci_pmu_hw_events {
struct perf_event **events;
unsigned long *used_mask;
raw_spinlock_t pmu_lock;
};
struct cci_pmu;
/*
* struct cci_pmu_model:
* @fixed_hw_cntrs - Number of fixed event counters
* @num_hw_cntrs - Maximum number of programmable event counters
* @cntr_size - Size of an event counter mapping
*/
struct cci_pmu_model {
char *name;
u32 fixed_hw_cntrs;
u32 num_hw_cntrs;
u32 cntr_size;
struct attribute **format_attrs;
struct attribute **event_attrs;
struct event_range event_ranges[CCI_IF_MAX];
int (*validate_hw_event)(struct cci_pmu *, unsigned long);
int (*get_event_idx)(struct cci_pmu *, struct cci_pmu_hw_events *, unsigned long);
void (*write_counters)(struct cci_pmu *, unsigned long *);
};
static struct cci_pmu_model cci_pmu_models[];
struct cci_pmu {
void __iomem *base;
void __iomem *ctrl_base;
struct pmu pmu;
int cpu;
int nr_irqs;
int *irqs;
unsigned long active_irqs;
const struct cci_pmu_model *model;
struct cci_pmu_hw_events hw_events;
struct platform_device *plat_device;
int num_cntrs;
atomic_t active_events;
struct mutex reserve_mutex;
};
#define to_cci_pmu(c) (container_of(c, struct cci_pmu, pmu))
static struct cci_pmu *g_cci_pmu;
enum cci_models {
#ifdef CONFIG_ARM_CCI400_PMU
CCI400_R0,
CCI400_R1,
#endif
#ifdef CONFIG_ARM_CCI5xx_PMU
CCI500_R0,
CCI550_R0,
#endif
CCI_MODEL_MAX
};
static void pmu_write_counters(struct cci_pmu *cci_pmu,
unsigned long *mask);
static ssize_t __maybe_unused cci_pmu_format_show(struct device *dev,
struct device_attribute *attr, char *buf);
static ssize_t __maybe_unused cci_pmu_event_show(struct device *dev,
struct device_attribute *attr, char *buf);
#define CCI_EXT_ATTR_ENTRY(_name, _func, _config) \
&((struct dev_ext_attribute[]) { \
{ __ATTR(_name, S_IRUGO, _func, NULL), (void *)_config } \
})[0].attr.attr
#define CCI_FORMAT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci_pmu_format_show, (char *)_config)
#define CCI_EVENT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci_pmu_event_show, (unsigned long)_config)
/* CCI400 PMU Specific definitions */
#ifdef CONFIG_ARM_CCI400_PMU
/* Port ids */
#define CCI400_PORT_S0 0
#define CCI400_PORT_S1 1
#define CCI400_PORT_S2 2
#define CCI400_PORT_S3 3
#define CCI400_PORT_S4 4
#define CCI400_PORT_M0 5
#define CCI400_PORT_M1 6
#define CCI400_PORT_M2 7
#define CCI400_R1_PX 5
/*
* Instead of an event id to monitor CCI cycles, a dedicated counter is
* provided. Use 0xff to represent CCI cycles and hope that no future revisions
* make use of this event in hardware.
*/
enum cci400_perf_events {
CCI400_PMU_CYCLES = 0xff
};
#define CCI400_PMU_CYCLE_CNTR_IDX 0
#define CCI400_PMU_CNTR0_IDX 1
/*
* CCI PMU event id is an 8-bit value made of two parts - bits 7:5 for one of 8
* ports and bits 4:0 are event codes. There are different event codes
* associated with each port type.
*
* Additionally, the range of events associated with the port types changed
* between Rev0 and Rev1.
*
* The constants below define the range of valid codes for each port type for
* the different revisions and are used to validate the event to be monitored.
*/
#define CCI400_PMU_EVENT_MASK 0xffUL
#define CCI400_PMU_EVENT_SOURCE_SHIFT 5
#define CCI400_PMU_EVENT_SOURCE_MASK 0x7
#define CCI400_PMU_EVENT_CODE_SHIFT 0
#define CCI400_PMU_EVENT_CODE_MASK 0x1f
#define CCI400_PMU_EVENT_SOURCE(event) \
((event >> CCI400_PMU_EVENT_SOURCE_SHIFT) & \
CCI400_PMU_EVENT_SOURCE_MASK)
#define CCI400_PMU_EVENT_CODE(event) \
((event >> CCI400_PMU_EVENT_CODE_SHIFT) & CCI400_PMU_EVENT_CODE_MASK)
#define CCI400_R0_SLAVE_PORT_MIN_EV 0x00
#define CCI400_R0_SLAVE_PORT_MAX_EV 0x13
#define CCI400_R0_MASTER_PORT_MIN_EV 0x14
#define CCI400_R0_MASTER_PORT_MAX_EV 0x1a
#define CCI400_R1_SLAVE_PORT_MIN_EV 0x00
#define CCI400_R1_SLAVE_PORT_MAX_EV 0x14
#define CCI400_R1_MASTER_PORT_MIN_EV 0x00
#define CCI400_R1_MASTER_PORT_MAX_EV 0x11
#define CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci400_pmu_cycle_event_show, \
(unsigned long)_config)
static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
struct device_attribute *attr, char *buf);
static struct attribute *cci400_pmu_format_attrs[] = {
CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-7"),
NULL
};
static struct attribute *cci400_r0_pmu_event_attrs[] = {
/* Slave events */
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
/* Master events */
CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x14),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_addr_hazard, 0x15),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_id_hazard, 0x16),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_tt_full, 0x17),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x18),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x19),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_tt_full, 0x1A),
/* Special event for cycles counter */
CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
NULL
};
static struct attribute *cci400_r1_pmu_event_attrs[] = {
/* Slave events */
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_any, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_device, 0x01),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_normal_or_nonshareable, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_inner_or_outershareable, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maintenance, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_mem_barrier, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_sync_barrier, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg_sync, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_tt_full, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_last_hs_snoop, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall_rvalids_h_rready_l, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_any, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_device, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_normal_or_nonshareable, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_inner_or_outershare_wback_wclean, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_unique, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_write_line_unique, 0x11),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_evict, 0x12),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall_tt_full, 0x13),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_slave_id_hazard, 0x14),
/* Master events */
CCI_EVENT_EXT_ATTR_ENTRY(mi_retry_speculative_fetch, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(mi_stall_cycle_addr_hazard, 0x1),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_master_id_hazard, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_hi_prio_rtq_full, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_barrier_hazard, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_barrier_hazard, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_wtq_full, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_low_prio_rtq_full, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_mid_prio_rtq_full, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn0, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn1, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn2, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall_qvn_vn3, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn0, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn1, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn2, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall_qvn_vn3, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_unique_or_line_unique_addr_hazard, 0x11),
/* Special event for cycles counter */
CCI400_CYCLE_EVENT_EXT_ATTR_ENTRY(cycles, 0xff),
NULL
};
static ssize_t cci400_pmu_cycle_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
return snprintf(buf, PAGE_SIZE, "config=0x%lx\n", (unsigned long)eattr->var);
}
static int cci400_get_event_idx(struct cci_pmu *cci_pmu,
struct cci_pmu_hw_events *hw,
unsigned long cci_event)
{
int idx;
/* cycles event idx is fixed */
if (cci_event == CCI400_PMU_CYCLES) {
if (test_and_set_bit(CCI400_PMU_CYCLE_CNTR_IDX, hw->used_mask))
return -EAGAIN;
return CCI400_PMU_CYCLE_CNTR_IDX;
}
for (idx = CCI400_PMU_CNTR0_IDX; idx <= CCI_PMU_CNTR_LAST(cci_pmu); ++idx)
if (!test_and_set_bit(idx, hw->used_mask))
return idx;
/* No counters available */
return -EAGAIN;
}
static int cci400_validate_hw_event(struct cci_pmu *cci_pmu, unsigned long hw_event)
{
u8 ev_source = CCI400_PMU_EVENT_SOURCE(hw_event);
u8 ev_code = CCI400_PMU_EVENT_CODE(hw_event);
int if_type;
if (hw_event & ~CCI400_PMU_EVENT_MASK)
return -ENOENT;
if (hw_event == CCI400_PMU_CYCLES)
return hw_event;
switch (ev_source) {
case CCI400_PORT_S0:
case CCI400_PORT_S1:
case CCI400_PORT_S2:
case CCI400_PORT_S3:
case CCI400_PORT_S4:
/* Slave Interface */
if_type = CCI_IF_SLAVE;
break;
case CCI400_PORT_M0:
case CCI400_PORT_M1:
case CCI400_PORT_M2:
/* Master Interface */
if_type = CCI_IF_MASTER;
break;
default:
return -ENOENT;
}
if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
ev_code <= cci_pmu->model->event_ranges[if_type].max)
return hw_event;
return -ENOENT;
}
static int probe_cci400_revision(struct cci_pmu *cci_pmu)
{
int rev;
rev = readl_relaxed(cci_pmu->ctrl_base + CCI_PID2) & CCI_PID2_REV_MASK;
rev >>= CCI_PID2_REV_SHIFT;
if (rev < CCI400_R1_PX)
return CCI400_R0;
else
return CCI400_R1;
}
static const struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
{
if (platform_has_secure_cci_access())
return &cci_pmu_models[probe_cci400_revision(cci_pmu)];
return NULL;
}
#else /* !CONFIG_ARM_CCI400_PMU */
static inline struct cci_pmu_model *probe_cci_model(struct cci_pmu *cci_pmu)
{
return NULL;
}
#endif /* CONFIG_ARM_CCI400_PMU */
#ifdef CONFIG_ARM_CCI5xx_PMU
/*
* CCI5xx PMU event id is an 9-bit value made of two parts.
* bits [8:5] - Source for the event
* bits [4:0] - Event code (specific to type of interface)
*
*
*/
/* Port ids */
#define CCI5xx_PORT_S0 0x0
#define CCI5xx_PORT_S1 0x1
#define CCI5xx_PORT_S2 0x2
#define CCI5xx_PORT_S3 0x3
#define CCI5xx_PORT_S4 0x4
#define CCI5xx_PORT_S5 0x5
#define CCI5xx_PORT_S6 0x6
#define CCI5xx_PORT_M0 0x8
#define CCI5xx_PORT_M1 0x9
#define CCI5xx_PORT_M2 0xa
#define CCI5xx_PORT_M3 0xb
#define CCI5xx_PORT_M4 0xc
#define CCI5xx_PORT_M5 0xd
#define CCI5xx_PORT_M6 0xe
#define CCI5xx_PORT_GLOBAL 0xf
#define CCI5xx_PMU_EVENT_MASK 0x1ffUL
#define CCI5xx_PMU_EVENT_SOURCE_SHIFT 0x5
#define CCI5xx_PMU_EVENT_SOURCE_MASK 0xf
#define CCI5xx_PMU_EVENT_CODE_SHIFT 0x0
#define CCI5xx_PMU_EVENT_CODE_MASK 0x1f
#define CCI5xx_PMU_EVENT_SOURCE(event) \
((event >> CCI5xx_PMU_EVENT_SOURCE_SHIFT) & CCI5xx_PMU_EVENT_SOURCE_MASK)
#define CCI5xx_PMU_EVENT_CODE(event) \
((event >> CCI5xx_PMU_EVENT_CODE_SHIFT) & CCI5xx_PMU_EVENT_CODE_MASK)
#define CCI5xx_SLAVE_PORT_MIN_EV 0x00
#define CCI5xx_SLAVE_PORT_MAX_EV 0x1f
#define CCI5xx_MASTER_PORT_MIN_EV 0x00
#define CCI5xx_MASTER_PORT_MAX_EV 0x06
#define CCI5xx_GLOBAL_PORT_MIN_EV 0x00
#define CCI5xx_GLOBAL_PORT_MAX_EV 0x0f
#define CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(_name, _config) \
CCI_EXT_ATTR_ENTRY(_name, cci5xx_pmu_global_event_show, \
(unsigned long) _config)
static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
struct device_attribute *attr, char *buf);
static struct attribute *cci5xx_pmu_format_attrs[] = {
CCI_FORMAT_EXT_ATTR_ENTRY(event, "config:0-4"),
CCI_FORMAT_EXT_ATTR_ENTRY(source, "config:5-8"),
NULL,
};
static struct attribute *cci5xx_pmu_event_attrs[] = {
/* Slave events */
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_arvalid, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_dev, 0x1),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_nonshareable, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_non_alloc, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_shareable_alloc, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_invalidate, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_cache_maint, 0x6),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_dvm_msg, 0x7),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rval, 0x8),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_hs_rlast_snoop, 0x9),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_hs_awalid, 0xA),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_dev, 0xB),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_non_shareable, 0xC),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wb, 0xD),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wlu, 0xE),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_share_wunique, 0xF),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_evict, 0x10),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_wrevict, 0x11),
CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_beat, 0x12),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_acvalid, 0x13),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_read, 0x14),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_clean, 0x15),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_data_transfer_low, 0x16),
CCI_EVENT_EXT_ATTR_ENTRY(si_rrq_stall_arvalid, 0x17),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_data_stall, 0x18),
CCI_EVENT_EXT_ATTR_ENTRY(si_wrq_stall, 0x19),
CCI_EVENT_EXT_ATTR_ENTRY(si_w_data_stall, 0x1A),
CCI_EVENT_EXT_ATTR_ENTRY(si_w_resp_stall, 0x1B),
CCI_EVENT_EXT_ATTR_ENTRY(si_srq_stall, 0x1C),
CCI_EVENT_EXT_ATTR_ENTRY(si_s_data_stall, 0x1D),
CCI_EVENT_EXT_ATTR_ENTRY(si_rq_stall_ot_limit, 0x1E),
CCI_EVENT_EXT_ATTR_ENTRY(si_r_stall_arbit, 0x1F),
/* Master events */
CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_beat_any, 0x0),
CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_beat_any, 0x1),
CCI_EVENT_EXT_ATTR_ENTRY(mi_rrq_stall, 0x2),
CCI_EVENT_EXT_ATTR_ENTRY(mi_r_data_stall, 0x3),
CCI_EVENT_EXT_ATTR_ENTRY(mi_wrq_stall, 0x4),
CCI_EVENT_EXT_ATTR_ENTRY(mi_w_data_stall, 0x5),
CCI_EVENT_EXT_ATTR_ENTRY(mi_w_resp_stall, 0x6),
/* Global events */
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_0_1, 0x0),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_2_3, 0x1),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_4_5, 0x2),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_filter_bank_6_7, 0x3),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_0_1, 0x4),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_2_3, 0x5),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_4_5, 0x6),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_access_miss_filter_bank_6_7, 0x7),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_back_invalidation, 0x8),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_alloc_busy, 0x9),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_stall_tt_full, 0xA),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_wrq, 0xB),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_cd_hs, 0xC),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_rq_stall_addr_hazard, 0xD),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_stall_tt_full, 0xE),
CCI5xx_GLOBAL_EVENT_EXT_ATTR_ENTRY(cci_snoop_rq_tzmp1_prot, 0xF),
NULL
};
static ssize_t cci5xx_pmu_global_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
/* Global events have single fixed source code */
return snprintf(buf, PAGE_SIZE, "event=0x%lx,source=0x%x\n",
(unsigned long)eattr->var, CCI5xx_PORT_GLOBAL);
}
/*
* CCI500 provides 8 independent event counters that can count
* any of the events available.
* CCI500 PMU event source ids
* 0x0-0x6 - Slave interfaces
* 0x8-0xD - Master interfaces
* 0xf - Global Events
* 0x7,0xe - Reserved
*/
static int cci500_validate_hw_event(struct cci_pmu *cci_pmu,
unsigned long hw_event)
{
u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
int if_type;
if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
return -ENOENT;
switch (ev_source) {
case CCI5xx_PORT_S0:
case CCI5xx_PORT_S1:
case CCI5xx_PORT_S2:
case CCI5xx_PORT_S3:
case CCI5xx_PORT_S4:
case CCI5xx_PORT_S5:
case CCI5xx_PORT_S6:
if_type = CCI_IF_SLAVE;
break;
case CCI5xx_PORT_M0:
case CCI5xx_PORT_M1:
case CCI5xx_PORT_M2:
case CCI5xx_PORT_M3:
case CCI5xx_PORT_M4:
case CCI5xx_PORT_M5:
if_type = CCI_IF_MASTER;
break;
case CCI5xx_PORT_GLOBAL:
if_type = CCI_IF_GLOBAL;
break;
default:
return -ENOENT;
}
if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
ev_code <= cci_pmu->model->event_ranges[if_type].max)
return hw_event;
return -ENOENT;
}
/*
* CCI550 provides 8 independent event counters that can count
* any of the events available.
* CCI550 PMU event source ids
* 0x0-0x6 - Slave interfaces
* 0x8-0xe - Master interfaces
* 0xf - Global Events
* 0x7 - Reserved
*/
static int cci550_validate_hw_event(struct cci_pmu *cci_pmu,
unsigned long hw_event)
{
u32 ev_source = CCI5xx_PMU_EVENT_SOURCE(hw_event);
u32 ev_code = CCI5xx_PMU_EVENT_CODE(hw_event);
int if_type;
if (hw_event & ~CCI5xx_PMU_EVENT_MASK)
return -ENOENT;
switch (ev_source) {
case CCI5xx_PORT_S0:
case CCI5xx_PORT_S1:
case CCI5xx_PORT_S2:
case CCI5xx_PORT_S3:
case CCI5xx_PORT_S4:
case CCI5xx_PORT_S5:
case CCI5xx_PORT_S6:
if_type = CCI_IF_SLAVE;
break;
case CCI5xx_PORT_M0:
case CCI5xx_PORT_M1:
case CCI5xx_PORT_M2:
case CCI5xx_PORT_M3:
case CCI5xx_PORT_M4:
case CCI5xx_PORT_M5:
case CCI5xx_PORT_M6:
if_type = CCI_IF_MASTER;
break;
case CCI5xx_PORT_GLOBAL:
if_type = CCI_IF_GLOBAL;
break;
default:
return -ENOENT;
}
if (ev_code >= cci_pmu->model->event_ranges[if_type].min &&
ev_code <= cci_pmu->model->event_ranges[if_type].max)
return hw_event;
return -ENOENT;
}
#endif /* CONFIG_ARM_CCI5xx_PMU */
/*
* Program the CCI PMU counters which have PERF_HES_ARCH set
* with the event period and mark them ready before we enable
* PMU.
*/
static void cci_pmu_sync_counters(struct cci_pmu *cci_pmu)
{
int i;
struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
DECLARE_BITMAP(mask, HW_CNTRS_MAX);
bitmap_zero(mask, cci_pmu->num_cntrs);
for_each_set_bit(i, cci_pmu->hw_events.used_mask, cci_pmu->num_cntrs) {
struct perf_event *event = cci_hw->events[i];
if (WARN_ON(!event))
continue;
/* Leave the events which are not counting */
if (event->hw.state & PERF_HES_STOPPED)
continue;
if (event->hw.state & PERF_HES_ARCH) {
set_bit(i, mask);
event->hw.state &= ~PERF_HES_ARCH;
}
}
pmu_write_counters(cci_pmu, mask);
}
/* Should be called with cci_pmu->hw_events->pmu_lock held */
static void __cci_pmu_enable_nosync(struct cci_pmu *cci_pmu)
{
u32 val;
/* Enable all the PMU counters. */
val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) | CCI_PMCR_CEN;
writel(val, cci_pmu->ctrl_base + CCI_PMCR);
}
/* Should be called with cci_pmu->hw_events->pmu_lock held */
static void __cci_pmu_enable_sync(struct cci_pmu *cci_pmu)
{
cci_pmu_sync_counters(cci_pmu);
__cci_pmu_enable_nosync(cci_pmu);
}
/* Should be called with cci_pmu->hw_events->pmu_lock held */
static void __cci_pmu_disable(struct cci_pmu *cci_pmu)
{
u32 val;
/* Disable all the PMU counters. */
val = readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) & ~CCI_PMCR_CEN;
writel(val, cci_pmu->ctrl_base + CCI_PMCR);
}
static ssize_t cci_pmu_format_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
return snprintf(buf, PAGE_SIZE, "%s\n", (char *)eattr->var);
}
static ssize_t cci_pmu_event_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct dev_ext_attribute *eattr = container_of(attr,
struct dev_ext_attribute, attr);
/* source parameter is mandatory for normal PMU events */
return snprintf(buf, PAGE_SIZE, "source=?,event=0x%lx\n",
(unsigned long)eattr->var);
}
static int pmu_is_valid_counter(struct cci_pmu *cci_pmu, int idx)
{
return 0 <= idx && idx <= CCI_PMU_CNTR_LAST(cci_pmu);
}
static u32 pmu_read_register(struct cci_pmu *cci_pmu, int idx, unsigned int offset)
{
return readl_relaxed(cci_pmu->base +
CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
}
static void pmu_write_register(struct cci_pmu *cci_pmu, u32 value,
int idx, unsigned int offset)
{
writel_relaxed(value, cci_pmu->base +
CCI_PMU_CNTR_BASE(cci_pmu->model, idx) + offset);
}
static void pmu_disable_counter(struct cci_pmu *cci_pmu, int idx)
{
pmu_write_register(cci_pmu, 0, idx, CCI_PMU_CNTR_CTRL);
}
static void pmu_enable_counter(struct cci_pmu *cci_pmu, int idx)
{
pmu_write_register(cci_pmu, 1, idx, CCI_PMU_CNTR_CTRL);
}
static bool __maybe_unused
pmu_counter_is_enabled(struct cci_pmu *cci_pmu, int idx)
{
return (pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR_CTRL) & 0x1) != 0;
}
static void pmu_set_event(struct cci_pmu *cci_pmu, int idx, unsigned long event)
{
pmu_write_register(cci_pmu, event, idx, CCI_PMU_EVT_SEL);
}
/*
* For all counters on the CCI-PMU, disable any 'enabled' counters,
* saving the changed counters in the mask, so that we can restore
* it later using pmu_restore_counters. The mask is private to the
* caller. We cannot rely on the used_mask maintained by the CCI_PMU
* as it only tells us if the counter is assigned to perf_event or not.
* The state of the perf_event cannot be locked by the PMU layer, hence
* we check the individual counter status (which can be locked by
* cci_pm->hw_events->pmu_lock).
*
* @mask should be initialised to empty by the caller.
*/
static void __maybe_unused
pmu_save_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
{
int i;
for (i = 0; i < cci_pmu->num_cntrs; i++) {
if (pmu_counter_is_enabled(cci_pmu, i)) {
set_bit(i, mask);
pmu_disable_counter(cci_pmu, i);
}
}
}
/*
* Restore the status of the counters. Reversal of the pmu_save_counters().
* For each counter set in the mask, enable the counter back.
*/
static void __maybe_unused
pmu_restore_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
{
int i;
for_each_set_bit(i, mask, cci_pmu->num_cntrs)
pmu_enable_counter(cci_pmu, i);
}
/*
* Returns the number of programmable counters actually implemented
* by the cci
*/
static u32 pmu_get_max_counters(struct cci_pmu *cci_pmu)
{
return (readl_relaxed(cci_pmu->ctrl_base + CCI_PMCR) &
CCI_PMCR_NCNT_MASK) >> CCI_PMCR_NCNT_SHIFT;
}
static int pmu_get_event_idx(struct cci_pmu_hw_events *hw, struct perf_event *event)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
unsigned long cci_event = event->hw.config_base;
int idx;
if (cci_pmu->model->get_event_idx)
return cci_pmu->model->get_event_idx(cci_pmu, hw, cci_event);
/* Generic code to find an unused idx from the mask */
for(idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++)
if (!test_and_set_bit(idx, hw->used_mask))
return idx;
/* No counters available */
return -EAGAIN;
}
static int pmu_map_event(struct perf_event *event)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
if (event->attr.type < PERF_TYPE_MAX ||
!cci_pmu->model->validate_hw_event)
return -ENOENT;
return cci_pmu->model->validate_hw_event(cci_pmu, event->attr.config);
}
static int pmu_request_irq(struct cci_pmu *cci_pmu, irq_handler_t handler)
{
int i;
struct platform_device *pmu_device = cci_pmu->plat_device;
if (unlikely(!pmu_device))
return -ENODEV;
if (cci_pmu->nr_irqs < 1) {
dev_err(&pmu_device->dev, "no irqs for CCI PMUs defined\n");
return -ENODEV;
}
/*
* Register all available CCI PMU interrupts. In the interrupt handler
* we iterate over the counters checking for interrupt source (the
* overflowing counter) and clear it.
*
* This should allow handling of non-unique interrupt for the counters.
*/
for (i = 0; i < cci_pmu->nr_irqs; i++) {
int err = request_irq(cci_pmu->irqs[i], handler, IRQF_SHARED,
"arm-cci-pmu", cci_pmu);
if (err) {
dev_err(&pmu_device->dev, "unable to request IRQ%d for ARM CCI PMU counters\n",
cci_pmu->irqs[i]);
return err;
}
set_bit(i, &cci_pmu->active_irqs);
}
return 0;
}
static void pmu_free_irq(struct cci_pmu *cci_pmu)
{
int i;
for (i = 0; i < cci_pmu->nr_irqs; i++) {
if (!test_and_clear_bit(i, &cci_pmu->active_irqs))
continue;
free_irq(cci_pmu->irqs[i], cci_pmu);
}
}
static u32 pmu_read_counter(struct perf_event *event)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
struct hw_perf_event *hw_counter = &event->hw;
int idx = hw_counter->idx;
u32 value;
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
return 0;
}
value = pmu_read_register(cci_pmu, idx, CCI_PMU_CNTR);
return value;
}
static void pmu_write_counter(struct cci_pmu *cci_pmu, u32 value, int idx)
{
pmu_write_register(cci_pmu, value, idx, CCI_PMU_CNTR);
}
static void __pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
{
int i;
struct cci_pmu_hw_events *cci_hw = &cci_pmu->hw_events;
for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
struct perf_event *event = cci_hw->events[i];
if (WARN_ON(!event))
continue;
pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
}
}
static void pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
{
if (cci_pmu->model->write_counters)
cci_pmu->model->write_counters(cci_pmu, mask);
else
__pmu_write_counters(cci_pmu, mask);
}
#ifdef CONFIG_ARM_CCI5xx_PMU
/*
* CCI-500/CCI-550 has advanced power saving policies, which could gate the
* clocks to the PMU counters, which makes the writes to them ineffective.
* The only way to write to those counters is when the global counters
* are enabled and the particular counter is enabled.
*
* So we do the following :
*
* 1) Disable all the PMU counters, saving their current state
* 2) Enable the global PMU profiling, now that all counters are
* disabled.
*
* For each counter to be programmed, repeat steps 3-7:
*
* 3) Write an invalid event code to the event control register for the
counter, so that the counters are not modified.
* 4) Enable the counter control for the counter.
* 5) Set the counter value
* 6) Disable the counter
* 7) Restore the event in the target counter
*
* 8) Disable the global PMU.
* 9) Restore the status of the rest of the counters.
*
* We choose an event which for CCI-5xx is guaranteed not to count.
* We use the highest possible event code (0x1f) for the master interface 0.
*/
#define CCI5xx_INVALID_EVENT ((CCI5xx_PORT_M0 << CCI5xx_PMU_EVENT_SOURCE_SHIFT) | \
(CCI5xx_PMU_EVENT_CODE_MASK << CCI5xx_PMU_EVENT_CODE_SHIFT))
static void cci5xx_pmu_write_counters(struct cci_pmu *cci_pmu, unsigned long *mask)
{
int i;
DECLARE_BITMAP(saved_mask, HW_CNTRS_MAX);
bitmap_zero(saved_mask, cci_pmu->num_cntrs);
pmu_save_counters(cci_pmu, saved_mask);
/*
* Now that all the counters are disabled, we can safely turn the PMU on,
* without syncing the status of the counters
*/
__cci_pmu_enable_nosync(cci_pmu);
for_each_set_bit(i, mask, cci_pmu->num_cntrs) {
struct perf_event *event = cci_pmu->hw_events.events[i];
if (WARN_ON(!event))
continue;
pmu_set_event(cci_pmu, i, CCI5xx_INVALID_EVENT);
pmu_enable_counter(cci_pmu, i);
pmu_write_counter(cci_pmu, local64_read(&event->hw.prev_count), i);
pmu_disable_counter(cci_pmu, i);
pmu_set_event(cci_pmu, i, event->hw.config_base);
}
__cci_pmu_disable(cci_pmu);
pmu_restore_counters(cci_pmu, saved_mask);
}
#endif /* CONFIG_ARM_CCI5xx_PMU */
static u64 pmu_event_update(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
u64 delta, prev_raw_count, new_raw_count;
do {
prev_raw_count = local64_read(&hwc->prev_count);
new_raw_count = pmu_read_counter(event);
} while (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
new_raw_count) != prev_raw_count);
delta = (new_raw_count - prev_raw_count) & CCI_PMU_CNTR_MASK;
local64_add(delta, &event->count);
return new_raw_count;
}
static void pmu_read(struct perf_event *event)
{
pmu_event_update(event);
}
static void pmu_event_set_period(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
/*
* The CCI PMU counters have a period of 2^32. To account for the
* possiblity of extreme interrupt latency we program for a period of
* half that. Hopefully we can handle the interrupt before another 2^31
* events occur and the counter overtakes its previous value.
*/
u64 val = 1ULL << 31;
local64_set(&hwc->prev_count, val);
/*
* CCI PMU uses PERF_HES_ARCH to keep track of the counters, whose
* values needs to be sync-ed with the s/w state before the PMU is
* enabled.
* Mark this counter for sync.
*/
hwc->state |= PERF_HES_ARCH;
}
static irqreturn_t pmu_handle_irq(int irq_num, void *dev)
{
unsigned long flags;
struct cci_pmu *cci_pmu = dev;
struct cci_pmu_hw_events *events = &cci_pmu->hw_events;
int idx, handled = IRQ_NONE;
raw_spin_lock_irqsave(&events->pmu_lock, flags);
/* Disable the PMU while we walk through the counters */
__cci_pmu_disable(cci_pmu);
/*
* Iterate over counters and update the corresponding perf events.
* This should work regardless of whether we have per-counter overflow
* interrupt or a combined overflow interrupt.
*/
for (idx = 0; idx <= CCI_PMU_CNTR_LAST(cci_pmu); idx++) {
struct perf_event *event = events->events[idx];
if (!event)
continue;
/* Did this counter overflow? */
if (!(pmu_read_register(cci_pmu, idx, CCI_PMU_OVRFLW) &
CCI_PMU_OVRFLW_FLAG))
continue;
pmu_write_register(cci_pmu, CCI_PMU_OVRFLW_FLAG, idx,
CCI_PMU_OVRFLW);
pmu_event_update(event);
pmu_event_set_period(event);
handled = IRQ_HANDLED;
}
/* Enable the PMU and sync possibly overflowed counters */
__cci_pmu_enable_sync(cci_pmu);
raw_spin_unlock_irqrestore(&events->pmu_lock, flags);
return IRQ_RETVAL(handled);
}
static int cci_pmu_get_hw(struct cci_pmu *cci_pmu)
{
int ret = pmu_request_irq(cci_pmu, pmu_handle_irq);
if (ret) {
pmu_free_irq(cci_pmu);
return ret;
}
return 0;
}
static void cci_pmu_put_hw(struct cci_pmu *cci_pmu)
{
pmu_free_irq(cci_pmu);
}
static void hw_perf_event_destroy(struct perf_event *event)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
atomic_t *active_events = &cci_pmu->active_events;
struct mutex *reserve_mutex = &cci_pmu->reserve_mutex;
if (atomic_dec_and_mutex_lock(active_events, reserve_mutex)) {
cci_pmu_put_hw(cci_pmu);
mutex_unlock(reserve_mutex);
}
}
static void cci_pmu_enable(struct pmu *pmu)
{
struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
int enabled = bitmap_weight(hw_events->used_mask, cci_pmu->num_cntrs);
unsigned long flags;
if (!enabled)
return;
raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
__cci_pmu_enable_sync(cci_pmu);
raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
}
static void cci_pmu_disable(struct pmu *pmu)
{
struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
unsigned long flags;
raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
__cci_pmu_disable(cci_pmu);
raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
}
/*
* Check if the idx represents a non-programmable counter.
* All the fixed event counters are mapped before the programmable
* counters.
*/
static bool pmu_fixed_hw_idx(struct cci_pmu *cci_pmu, int idx)
{
return (idx >= 0) && (idx < cci_pmu->model->fixed_hw_cntrs);
}
static void cci_pmu_start(struct perf_event *event, int pmu_flags)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
unsigned long flags;
/*
* To handle interrupt latency, we always reprogram the period
* regardlesss of PERF_EF_RELOAD.
*/
if (pmu_flags & PERF_EF_RELOAD)
WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
hwc->state = 0;
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
return;
}
raw_spin_lock_irqsave(&hw_events->pmu_lock, flags);
/* Configure the counter unless you are counting a fixed event */
if (!pmu_fixed_hw_idx(cci_pmu, idx))
pmu_set_event(cci_pmu, idx, hwc->config_base);
pmu_event_set_period(event);
pmu_enable_counter(cci_pmu, idx);
raw_spin_unlock_irqrestore(&hw_events->pmu_lock, flags);
}
static void cci_pmu_stop(struct perf_event *event, int pmu_flags)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
if (hwc->state & PERF_HES_STOPPED)
return;
if (unlikely(!pmu_is_valid_counter(cci_pmu, idx))) {
dev_err(&cci_pmu->plat_device->dev, "Invalid CCI PMU counter %d\n", idx);
return;
}
/*
* We always reprogram the counter, so ignore PERF_EF_UPDATE. See
* cci_pmu_start()
*/
pmu_disable_counter(cci_pmu, idx);
pmu_event_update(event);
hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
}
static int cci_pmu_add(struct perf_event *event, int flags)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
struct hw_perf_event *hwc = &event->hw;
int idx;
/* If we don't have a space for the counter then finish early. */
idx = pmu_get_event_idx(hw_events, event);
if (idx < 0)
return idx;
event->hw.idx = idx;
hw_events->events[idx] = event;
hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
if (flags & PERF_EF_START)
cci_pmu_start(event, PERF_EF_RELOAD);
/* Propagate our changes to the userspace mapping. */
perf_event_update_userpage(event);
return 0;
}
static void cci_pmu_del(struct perf_event *event, int flags)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
struct cci_pmu_hw_events *hw_events = &cci_pmu->hw_events;
struct hw_perf_event *hwc = &event->hw;
int idx = hwc->idx;
cci_pmu_stop(event, PERF_EF_UPDATE);
hw_events->events[idx] = NULL;
clear_bit(idx, hw_events->used_mask);
perf_event_update_userpage(event);
}
static int validate_event(struct pmu *cci_pmu,
struct cci_pmu_hw_events *hw_events,
struct perf_event *event)
{
if (is_software_event(event))
return 1;
/*
* Reject groups spanning multiple HW PMUs (e.g. CPU + CCI). The
* core perf code won't check that the pmu->ctx == leader->ctx
* until after pmu->event_init(event).
*/
if (event->pmu != cci_pmu)
return 0;
if (event->state < PERF_EVENT_STATE_OFF)
return 1;
if (event->state == PERF_EVENT_STATE_OFF && !event->attr.enable_on_exec)
return 1;
return pmu_get_event_idx(hw_events, event) >= 0;
}
static int validate_group(struct perf_event *event)
{
struct perf_event *sibling, *leader = event->group_leader;
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
unsigned long mask[BITS_TO_LONGS(HW_CNTRS_MAX)];
struct cci_pmu_hw_events fake_pmu = {
/*
* Initialise the fake PMU. We only need to populate the
* used_mask for the purposes of validation.
*/
.used_mask = mask,
};
memset(mask, 0, BITS_TO_LONGS(cci_pmu->num_cntrs) * sizeof(unsigned long));
if (!validate_event(event->pmu, &fake_pmu, leader))
return -EINVAL;
ARM: SoC driver updates for 4.17 The main addition this time around is the new ARM "SCMI" framework, which is the latest in a series of standards coming from ARM to do power management in a platform independent way. This has been through many review cycles, and it relies on a rather interesting way of using the mailbox subsystem, but in the end I agreed that Sudeep's version was the best we could do after all. Other changes include: - the ARM CCN driver is moved out of drivers/bus into drivers/perf, which makes more sense. Similarly, the performance monitoring portion of the CCI driver are moved the same way and cleaned up a little more. - a series of updates to the SCPI framework - support for the Mediatek mt7623a SoC in drivers/soc - support for additional NVIDIA Tegra hardware in drivers/soc - a new reset driver for Socionext Uniphier - lesser bug fixes in drivers/soc, drivers/tee, drivers/memory, and drivers/firmware and drivers/reset across platforms -----BEGIN PGP SIGNATURE----- Version: GnuPG v1 iQIcBAABAgAGBQJaxiNzAAoJEGCrR//JCVInYhYP/2kPhc5t/kszA1bcklcbO9dY eX37Ra/RR4yQ5yeQZVIZ4UkUovxk9PmG2tM4K5oJaTDsz5pPEgavVOOr3sbfj6vb 4O9auTeysEQlHcbVdNFum0YS2gUY2YD7D12DTRorotLxCqod184ccWXq0XGfIWaY l3YRrcL/lPlqmyS3z/GNx9oNygOMUzEfXfIQYICyzHuYiLBUGnkKC1vIb+Hx1TDq Cxk++AUqH13Mss24O2A2QQh+oBHj2BybDLLqwcC5PSpsUbFrVCfzG54l43mig32T NOxV0Qnml2wAtU4H0QcgtSgwRimHD0YOiX8ssquvDDiqTqM5G+llSTGkEbYe+AUW 4GIZYoBOwGkfEXS+tyymHe9yfc5h1OLYAeFU1jRm723c7phanuu67rPn35YC8UMK zSql10JpkAGNzMikrxxb6wnis951w2UFlzhgZQ6ItA/nRq3l+oEQA0Qiljv965nz DVLsD5+gdhK6GBctkzlsD5HFn6GjM8JilnsOVPHD765nKnVBSxKiXRLV228XVug2 rChF1FhQqLnM54jCMqHZX5fS9SbSgtYswHqIXpVw6GmJkqq/Ly10yGR0vuWD+uyn BV7q5AKpGrwm6wZkMM2uZ1VdUtWzn856AbkqrvX/QhmJcX4McuqaLUrC8bSOj1ty KeVil0akq3nU+xHl5Ojs =Pmsx -----END PGP SIGNATURE----- Merge tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc Pull ARM SoC driver updates from Arnd Bergmann: "The main addition this time around is the new ARM "SCMI" framework, which is the latest in a series of standards coming from ARM to do power management in a platform independent way. This has been through many review cycles, and it relies on a rather interesting way of using the mailbox subsystem, but in the end I agreed that Sudeep's version was the best we could do after all. Other changes include: - the ARM CCN driver is moved out of drivers/bus into drivers/perf, which makes more sense. Similarly, the performance monitoring portion of the CCI driver are moved the same way and cleaned up a little more. - a series of updates to the SCPI framework - support for the Mediatek mt7623a SoC in drivers/soc - support for additional NVIDIA Tegra hardware in drivers/soc - a new reset driver for Socionext Uniphier - lesser bug fixes in drivers/soc, drivers/tee, drivers/memory, and drivers/firmware and drivers/reset across platforms" * tag 'armsoc-drivers' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc: (87 commits) reset: uniphier: add ethernet reset control support for PXs3 reset: stm32mp1: Enable stm32mp1 reset driver dt-bindings: reset: add STM32MP1 resets reset: uniphier: add Pro4/Pro5/PXs2 audio systems reset control reset: imx7: add 'depends on HAS_IOMEM' to fix unmet dependency reset: modify the way reset lookup works for board files reset: add support for non-DT systems clk: scmi: use devm_of_clk_add_hw_provider() API and drop scmi_clocks_remove firmware: arm_scmi: prevent accessing rate_discrete uninitialized hwmon: (scmi) return -EINVAL when sensor information is unavailable amlogic: meson-gx-socinfo: Update soc ids soc/tegra: pmc: Use the new reset APIs to manage reset controllers soc: mediatek: update power domain data of MT2712 dt-bindings: soc: update MT2712 power dt-bindings cpufreq: scmi: add thermal dependency soc: mediatek: fix the mistaken pointer accessed when subdomains are added soc: mediatek: add SCPSYS power domain driver for MediaTek MT7623A SoC soc: mediatek: avoid hardcoded value with bus_prot_mask dt-bindings: soc: add header files required for MT7623A SCPSYS dt-binding dt-bindings: soc: add SCPSYS binding for MT7623 and MT7623A SoC ...
2018-04-06 12:29:35 +08:00
for_each_sibling_event(sibling, leader) {
if (!validate_event(event->pmu, &fake_pmu, sibling))
return -EINVAL;
}
if (!validate_event(event->pmu, &fake_pmu, event))
return -EINVAL;
return 0;
}
static int __hw_perf_event_init(struct perf_event *event)
{
struct hw_perf_event *hwc = &event->hw;
int mapping;
mapping = pmu_map_event(event);
if (mapping < 0) {
pr_debug("event %x:%llx not supported\n", event->attr.type,
event->attr.config);
return mapping;
}
/*
* We don't assign an index until we actually place the event onto
* hardware. Use -1 to signify that we haven't decided where to put it
* yet.
*/
hwc->idx = -1;
hwc->config_base = 0;
hwc->config = 0;
hwc->event_base = 0;
/*
* Store the event encoding into the config_base field.
*/
hwc->config_base |= (unsigned long)mapping;
if (event->group_leader != event) {
if (validate_group(event) != 0)
return -EINVAL;
}
return 0;
}
static int cci_pmu_event_init(struct perf_event *event)
{
struct cci_pmu *cci_pmu = to_cci_pmu(event->pmu);
atomic_t *active_events = &cci_pmu->active_events;
int err = 0;
if (event->attr.type != event->pmu->type)
return -ENOENT;
/* Shared by all CPUs, no meaningful state to sample */
if (is_sampling_event(event) || event->attach_state & PERF_ATTACH_TASK)
return -EOPNOTSUPP;
/* We have no filtering of any kind */
if (event->attr.exclude_user ||
event->attr.exclude_kernel ||
event->attr.exclude_hv ||
event->attr.exclude_idle ||
event->attr.exclude_host ||
event->attr.exclude_guest)
return -EINVAL;
/*
* Following the example set by other "uncore" PMUs, we accept any CPU
* and rewrite its affinity dynamically rather than having perf core
* handle cpu == -1 and pid == -1 for this case.
*
* The perf core will pin online CPUs for the duration of this call and
* the event being installed into its context, so the PMU's CPU can't
* change under our feet.
*/
if (event->cpu < 0)
return -EINVAL;
event->cpu = cci_pmu->cpu;
event->destroy = hw_perf_event_destroy;
if (!atomic_inc_not_zero(active_events)) {
mutex_lock(&cci_pmu->reserve_mutex);
if (atomic_read(active_events) == 0)
err = cci_pmu_get_hw(cci_pmu);
if (!err)
atomic_inc(active_events);
mutex_unlock(&cci_pmu->reserve_mutex);
}
if (err)
return err;
err = __hw_perf_event_init(event);
if (err)
hw_perf_event_destroy(event);
return err;
}
static ssize_t pmu_cpumask_attr_show(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct pmu *pmu = dev_get_drvdata(dev);
struct cci_pmu *cci_pmu = to_cci_pmu(pmu);
return cpumap_print_to_pagebuf(true, buf, cpumask_of(cci_pmu->cpu));
}
static struct device_attribute pmu_cpumask_attr =
__ATTR(cpumask, S_IRUGO, pmu_cpumask_attr_show, NULL);
static struct attribute *pmu_attrs[] = {
&pmu_cpumask_attr.attr,
NULL,
};
static struct attribute_group pmu_attr_group = {
.attrs = pmu_attrs,
};
static struct attribute_group pmu_format_attr_group = {
.name = "format",
.attrs = NULL, /* Filled in cci_pmu_init_attrs */
};
static struct attribute_group pmu_event_attr_group = {
.name = "events",
.attrs = NULL, /* Filled in cci_pmu_init_attrs */
};
static const struct attribute_group *pmu_attr_groups[] = {
&pmu_attr_group,
&pmu_format_attr_group,
&pmu_event_attr_group,
NULL
};
static int cci_pmu_init(struct cci_pmu *cci_pmu, struct platform_device *pdev)
{
const struct cci_pmu_model *model = cci_pmu->model;
char *name = model->name;
u32 num_cntrs;
if (WARN_ON(model->num_hw_cntrs > NUM_HW_CNTRS_MAX))
return -EINVAL;
if (WARN_ON(model->fixed_hw_cntrs > FIXED_HW_CNTRS_MAX))
return -EINVAL;
pmu_event_attr_group.attrs = model->event_attrs;
pmu_format_attr_group.attrs = model->format_attrs;
cci_pmu->pmu = (struct pmu) {
.module = THIS_MODULE,
.name = cci_pmu->model->name,
.task_ctx_nr = perf_invalid_context,
.pmu_enable = cci_pmu_enable,
.pmu_disable = cci_pmu_disable,
.event_init = cci_pmu_event_init,
.add = cci_pmu_add,
.del = cci_pmu_del,
.start = cci_pmu_start,
.stop = cci_pmu_stop,
.read = pmu_read,
.attr_groups = pmu_attr_groups,
};
cci_pmu->plat_device = pdev;
num_cntrs = pmu_get_max_counters(cci_pmu);
if (num_cntrs > cci_pmu->model->num_hw_cntrs) {
dev_warn(&pdev->dev,
"PMU implements more counters(%d) than supported by"
" the model(%d), truncated.",
num_cntrs, cci_pmu->model->num_hw_cntrs);
num_cntrs = cci_pmu->model->num_hw_cntrs;
}
cci_pmu->num_cntrs = num_cntrs + cci_pmu->model->fixed_hw_cntrs;
return perf_pmu_register(&cci_pmu->pmu, name, -1);
}
static int cci_pmu_offline_cpu(unsigned int cpu)
{
int target;
if (!g_cci_pmu || cpu != g_cci_pmu->cpu)
return 0;
target = cpumask_any_but(cpu_online_mask, cpu);
if (target >= nr_cpu_ids)
return 0;
perf_pmu_migrate_context(&g_cci_pmu->pmu, cpu, target);
g_cci_pmu->cpu = target;
return 0;
}
static __maybe_unused struct cci_pmu_model cci_pmu_models[] = {
#ifdef CONFIG_ARM_CCI400_PMU
[CCI400_R0] = {
.name = "CCI_400",
.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
.cntr_size = SZ_4K,
.format_attrs = cci400_pmu_format_attrs,
.event_attrs = cci400_r0_pmu_event_attrs,
.event_ranges = {
[CCI_IF_SLAVE] = {
CCI400_R0_SLAVE_PORT_MIN_EV,
CCI400_R0_SLAVE_PORT_MAX_EV,
},
[CCI_IF_MASTER] = {
CCI400_R0_MASTER_PORT_MIN_EV,
CCI400_R0_MASTER_PORT_MAX_EV,
},
},
.validate_hw_event = cci400_validate_hw_event,
.get_event_idx = cci400_get_event_idx,
},
[CCI400_R1] = {
.name = "CCI_400_r1",
.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_4XX, /* Cycle counter */
.num_hw_cntrs = NUM_HW_CNTRS_CII_4XX,
.cntr_size = SZ_4K,
.format_attrs = cci400_pmu_format_attrs,
.event_attrs = cci400_r1_pmu_event_attrs,
.event_ranges = {
[CCI_IF_SLAVE] = {
CCI400_R1_SLAVE_PORT_MIN_EV,
CCI400_R1_SLAVE_PORT_MAX_EV,
},
[CCI_IF_MASTER] = {
CCI400_R1_MASTER_PORT_MIN_EV,
CCI400_R1_MASTER_PORT_MAX_EV,
},
},
.validate_hw_event = cci400_validate_hw_event,
.get_event_idx = cci400_get_event_idx,
},
#endif
#ifdef CONFIG_ARM_CCI5xx_PMU
[CCI500_R0] = {
.name = "CCI_500",
.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
.cntr_size = SZ_64K,
.format_attrs = cci5xx_pmu_format_attrs,
.event_attrs = cci5xx_pmu_event_attrs,
.event_ranges = {
[CCI_IF_SLAVE] = {
CCI5xx_SLAVE_PORT_MIN_EV,
CCI5xx_SLAVE_PORT_MAX_EV,
},
[CCI_IF_MASTER] = {
CCI5xx_MASTER_PORT_MIN_EV,
CCI5xx_MASTER_PORT_MAX_EV,
},
[CCI_IF_GLOBAL] = {
CCI5xx_GLOBAL_PORT_MIN_EV,
CCI5xx_GLOBAL_PORT_MAX_EV,
},
},
.validate_hw_event = cci500_validate_hw_event,
.write_counters = cci5xx_pmu_write_counters,
},
[CCI550_R0] = {
.name = "CCI_550",
.fixed_hw_cntrs = FIXED_HW_CNTRS_CII_5XX,
.num_hw_cntrs = NUM_HW_CNTRS_CII_5XX,
.cntr_size = SZ_64K,
.format_attrs = cci5xx_pmu_format_attrs,
.event_attrs = cci5xx_pmu_event_attrs,
.event_ranges = {
[CCI_IF_SLAVE] = {
CCI5xx_SLAVE_PORT_MIN_EV,
CCI5xx_SLAVE_PORT_MAX_EV,
},
[CCI_IF_MASTER] = {
CCI5xx_MASTER_PORT_MIN_EV,
CCI5xx_MASTER_PORT_MAX_EV,
},
[CCI_IF_GLOBAL] = {
CCI5xx_GLOBAL_PORT_MIN_EV,
CCI5xx_GLOBAL_PORT_MAX_EV,
},
},
.validate_hw_event = cci550_validate_hw_event,
.write_counters = cci5xx_pmu_write_counters,
},
#endif
};
static const struct of_device_id arm_cci_pmu_matches[] = {
#ifdef CONFIG_ARM_CCI400_PMU
{
.compatible = "arm,cci-400-pmu",
.data = NULL,
},
{
.compatible = "arm,cci-400-pmu,r0",
.data = &cci_pmu_models[CCI400_R0],
},
{
.compatible = "arm,cci-400-pmu,r1",
.data = &cci_pmu_models[CCI400_R1],
},
#endif
#ifdef CONFIG_ARM_CCI5xx_PMU
{
.compatible = "arm,cci-500-pmu,r0",
.data = &cci_pmu_models[CCI500_R0],
},
{
.compatible = "arm,cci-550-pmu,r0",
.data = &cci_pmu_models[CCI550_R0],
},
#endif
{},
};
MODULE_DEVICE_TABLE(of, arm_cci_pmu_matches);
static bool is_duplicate_irq(int irq, int *irqs, int nr_irqs)
{
int i;
for (i = 0; i < nr_irqs; i++)
if (irq == irqs[i])
return true;
return false;
}
static struct cci_pmu *cci_pmu_alloc(struct device *dev)
{
struct cci_pmu *cci_pmu;
const struct cci_pmu_model *model;
/*
* All allocations are devm_* hence we don't have to free
* them explicitly on an error, as it would end up in driver
* detach.
*/
cci_pmu = devm_kzalloc(dev, sizeof(*cci_pmu), GFP_KERNEL);
if (!cci_pmu)
return ERR_PTR(-ENOMEM);
cci_pmu->ctrl_base = *(void __iomem **)dev->platform_data;
model = of_device_get_match_data(dev);
if (!model) {
dev_warn(dev,
"DEPRECATED compatible property, requires secure access to CCI registers");
model = probe_cci_model(cci_pmu);
}
if (!model) {
dev_warn(dev, "CCI PMU version not supported\n");
return ERR_PTR(-ENODEV);
}
cci_pmu->model = model;
cci_pmu->irqs = devm_kcalloc(dev, CCI_PMU_MAX_HW_CNTRS(model),
sizeof(*cci_pmu->irqs), GFP_KERNEL);
if (!cci_pmu->irqs)
return ERR_PTR(-ENOMEM);
cci_pmu->hw_events.events = devm_kcalloc(dev,
CCI_PMU_MAX_HW_CNTRS(model),
sizeof(*cci_pmu->hw_events.events),
GFP_KERNEL);
if (!cci_pmu->hw_events.events)
return ERR_PTR(-ENOMEM);
cci_pmu->hw_events.used_mask = devm_kcalloc(dev,
BITS_TO_LONGS(CCI_PMU_MAX_HW_CNTRS(model)),
sizeof(*cci_pmu->hw_events.used_mask),
GFP_KERNEL);
if (!cci_pmu->hw_events.used_mask)
return ERR_PTR(-ENOMEM);
return cci_pmu;
}
static int cci_pmu_probe(struct platform_device *pdev)
{
struct resource *res;
struct cci_pmu *cci_pmu;
int i, ret, irq;
cci_pmu = cci_pmu_alloc(&pdev->dev);
if (IS_ERR(cci_pmu))
return PTR_ERR(cci_pmu);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
cci_pmu->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(cci_pmu->base))
return -ENOMEM;
/*
* CCI PMU has one overflow interrupt per counter; but some may be tied
* together to a common interrupt.
*/
cci_pmu->nr_irqs = 0;
for (i = 0; i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model); i++) {
irq = platform_get_irq(pdev, i);
if (irq < 0)
break;
if (is_duplicate_irq(irq, cci_pmu->irqs, cci_pmu->nr_irqs))
continue;
cci_pmu->irqs[cci_pmu->nr_irqs++] = irq;
}
/*
* Ensure that the device tree has as many interrupts as the number
* of counters.
*/
if (i < CCI_PMU_MAX_HW_CNTRS(cci_pmu->model)) {
dev_warn(&pdev->dev, "In-correct number of interrupts: %d, should be %d\n",
i, CCI_PMU_MAX_HW_CNTRS(cci_pmu->model));
return -EINVAL;
}
raw_spin_lock_init(&cci_pmu->hw_events.pmu_lock);
mutex_init(&cci_pmu->reserve_mutex);
atomic_set(&cci_pmu->active_events, 0);
cci_pmu->cpu = get_cpu();
ret = cci_pmu_init(cci_pmu, pdev);
if (ret) {
put_cpu();
return ret;
}
cpuhp_setup_state_nocalls(CPUHP_AP_PERF_ARM_CCI_ONLINE,
"perf/arm/cci:online", NULL,
cci_pmu_offline_cpu);
put_cpu();
g_cci_pmu = cci_pmu;
pr_info("ARM %s PMU driver probed", cci_pmu->model->name);
return 0;
}
static int cci_pmu_remove(struct platform_device *pdev)
{
if (!g_cci_pmu)
return 0;
cpuhp_remove_state(CPUHP_AP_PERF_ARM_CCI_ONLINE);
perf_pmu_unregister(&g_cci_pmu->pmu);
g_cci_pmu = NULL;
return 0;
}
static struct platform_driver cci_pmu_driver = {
.driver = {
.name = DRIVER_NAME,
.of_match_table = arm_cci_pmu_matches,
},
.probe = cci_pmu_probe,
.remove = cci_pmu_remove,
};
module_platform_driver(cci_pmu_driver);
MODULE_LICENSE("GPL v2");
MODULE_DESCRIPTION("ARM CCI PMU support");