linux_old1/drivers/gpu/drm/i915/intel_dp.c

1469 lines
38 KiB
C
Raw Normal View History

/*
* Copyright © 2008 Intel Corporation
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*
* Authors:
* Keith Packard <keithp@keithp.com>
*
*/
#include <linux/i2c.h>
#include "drmP.h"
#include "drm.h"
#include "drm_crtc.h"
#include "drm_crtc_helper.h"
#include "intel_drv.h"
#include "i915_drm.h"
#include "i915_drv.h"
#include "drm_dp_helper.h"
#define DP_LINK_STATUS_SIZE 6
#define DP_LINK_CHECK_TIMEOUT (10 * 1000)
#define DP_LINK_CONFIGURATION_SIZE 9
#define IS_eDP(i) ((i)->type == INTEL_OUTPUT_EDP)
struct intel_dp_priv {
uint32_t output_reg;
uint32_t DP;
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE];
bool has_audio;
int dpms_mode;
uint8_t link_bw;
uint8_t lane_count;
uint8_t dpcd[4];
struct intel_encoder *intel_encoder;
struct i2c_adapter adapter;
struct i2c_algo_dp_aux_data algo;
};
static void
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE]);
static void
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP);
void
intel_edp_link_config (struct intel_encoder *intel_encoder,
int *lane_num, int *link_bw)
{
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
*lane_num = dp_priv->lane_count;
if (dp_priv->link_bw == DP_LINK_BW_1_62)
*link_bw = 162000;
else if (dp_priv->link_bw == DP_LINK_BW_2_7)
*link_bw = 270000;
}
static int
intel_dp_max_lane_count(struct intel_encoder *intel_encoder)
{
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
int max_lane_count = 4;
if (dp_priv->dpcd[0] >= 0x11) {
max_lane_count = dp_priv->dpcd[2] & 0x1f;
switch (max_lane_count) {
case 1: case 2: case 4:
break;
default:
max_lane_count = 4;
}
}
return max_lane_count;
}
static int
intel_dp_max_link_bw(struct intel_encoder *intel_encoder)
{
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
int max_link_bw = dp_priv->dpcd[1];
switch (max_link_bw) {
case DP_LINK_BW_1_62:
case DP_LINK_BW_2_7:
break;
default:
max_link_bw = DP_LINK_BW_1_62;
break;
}
return max_link_bw;
}
static int
intel_dp_link_clock(uint8_t link_bw)
{
if (link_bw == DP_LINK_BW_2_7)
return 270000;
else
return 162000;
}
/* I think this is a fiction */
static int
intel_dp_link_required(struct drm_device *dev,
struct intel_encoder *intel_encoder, int pixel_clock)
{
struct drm_i915_private *dev_priv = dev->dev_private;
if (IS_eDP(intel_encoder))
return (pixel_clock * dev_priv->edp_bpp) / 8;
else
return pixel_clock * 3;
}
static int
intel_dp_mode_valid(struct drm_connector *connector,
struct drm_display_mode *mode)
{
struct intel_encoder *intel_encoder = to_intel_encoder(connector);
int max_link_clock = intel_dp_link_clock(intel_dp_max_link_bw(intel_encoder));
int max_lanes = intel_dp_max_lane_count(intel_encoder);
if (intel_dp_link_required(connector->dev, intel_encoder, mode->clock)
> max_link_clock * max_lanes)
return MODE_CLOCK_HIGH;
if (mode->clock < 10000)
return MODE_CLOCK_LOW;
return MODE_OK;
}
static uint32_t
pack_aux(uint8_t *src, int src_bytes)
{
int i;
uint32_t v = 0;
if (src_bytes > 4)
src_bytes = 4;
for (i = 0; i < src_bytes; i++)
v |= ((uint32_t) src[i]) << ((3-i) * 8);
return v;
}
static void
unpack_aux(uint32_t src, uint8_t *dst, int dst_bytes)
{
int i;
if (dst_bytes > 4)
dst_bytes = 4;
for (i = 0; i < dst_bytes; i++)
dst[i] = src >> ((3-i) * 8);
}
/* hrawclock is 1/4 the FSB frequency */
static int
intel_hrawclk(struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t clkcfg;
clkcfg = I915_READ(CLKCFG);
switch (clkcfg & CLKCFG_FSB_MASK) {
case CLKCFG_FSB_400:
return 100;
case CLKCFG_FSB_533:
return 133;
case CLKCFG_FSB_667:
return 166;
case CLKCFG_FSB_800:
return 200;
case CLKCFG_FSB_1067:
return 266;
case CLKCFG_FSB_1333:
return 333;
/* these two are just a guess; one of them might be right */
case CLKCFG_FSB_1600:
case CLKCFG_FSB_1600_ALT:
return 400;
default:
return 133;
}
}
static int
intel_dp_aux_ch(struct intel_encoder *intel_encoder,
uint8_t *send, int send_bytes,
uint8_t *recv, int recv_size)
{
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
uint32_t output_reg = dp_priv->output_reg;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t ch_ctl = output_reg + 0x10;
uint32_t ch_data = ch_ctl + 4;
int i;
int recv_bytes;
uint32_t ctl;
uint32_t status;
uint32_t aux_clock_divider;
int try, precharge;
/* The clock divider is based off the hrawclk,
* and would like to run at 2MHz. So, take the
* hrawclk value and divide by 2 and use that
*/
if (IS_eDP(intel_encoder)) {
if (IS_GEN6(dev))
aux_clock_divider = 200; /* SNB eDP input clock at 400Mhz */
else
aux_clock_divider = 225; /* eDP input clock at 450Mhz */
} else if (HAS_PCH_SPLIT(dev))
aux_clock_divider = 62; /* IRL input clock fixed at 125Mhz */
else
aux_clock_divider = intel_hrawclk(dev) / 2;
if (IS_GEN6(dev))
precharge = 3;
else
precharge = 5;
/* Must try at least 3 times according to DP spec */
for (try = 0; try < 5; try++) {
/* Load the send data into the aux channel data registers */
for (i = 0; i < send_bytes; i += 4) {
uint32_t d = pack_aux(send + i, send_bytes - i);
I915_WRITE(ch_data + i, d);
}
ctl = (DP_AUX_CH_CTL_SEND_BUSY |
DP_AUX_CH_CTL_TIME_OUT_400us |
(send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
(precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
(aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT) |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR);
/* Send the command and wait for it to complete */
I915_WRITE(ch_ctl, ctl);
(void) I915_READ(ch_ctl);
for (;;) {
udelay(100);
status = I915_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
break;
}
/* Clear done status and any errors */
I915_WRITE(ch_ctl, (status |
DP_AUX_CH_CTL_DONE |
DP_AUX_CH_CTL_TIME_OUT_ERROR |
DP_AUX_CH_CTL_RECEIVE_ERROR));
(void) I915_READ(ch_ctl);
if ((status & DP_AUX_CH_CTL_TIME_OUT_ERROR) == 0)
break;
}
if ((status & DP_AUX_CH_CTL_DONE) == 0) {
DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
return -EBUSY;
}
/* Check for timeout or receive error.
* Timeouts occur when the sink is not connected
*/
if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
return -EIO;
}
/* Timeouts occur when the device isn't connected, so they're
* "normal" -- don't fill the kernel log with these */
if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
return -ETIMEDOUT;
}
/* Unload any bytes sent back from the other side */
recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
if (recv_bytes > recv_size)
recv_bytes = recv_size;
for (i = 0; i < recv_bytes; i += 4) {
uint32_t d = I915_READ(ch_data + i);
unpack_aux(d, recv + i, recv_bytes - i);
}
return recv_bytes;
}
/* Write data to the aux channel in native mode */
static int
intel_dp_aux_native_write(struct intel_encoder *intel_encoder,
uint16_t address, uint8_t *send, int send_bytes)
{
int ret;
uint8_t msg[20];
int msg_bytes;
uint8_t ack;
if (send_bytes > 16)
return -1;
msg[0] = AUX_NATIVE_WRITE << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = send_bytes - 1;
memcpy(&msg[4], send, send_bytes);
msg_bytes = send_bytes + 4;
for (;;) {
ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes, &ack, 1);
if (ret < 0)
return ret;
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK)
break;
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
return send_bytes;
}
/* Write a single byte to the aux channel in native mode */
static int
intel_dp_aux_native_write_1(struct intel_encoder *intel_encoder,
uint16_t address, uint8_t byte)
{
return intel_dp_aux_native_write(intel_encoder, address, &byte, 1);
}
/* read bytes from a native aux channel */
static int
intel_dp_aux_native_read(struct intel_encoder *intel_encoder,
uint16_t address, uint8_t *recv, int recv_bytes)
{
uint8_t msg[4];
int msg_bytes;
uint8_t reply[20];
int reply_bytes;
uint8_t ack;
int ret;
msg[0] = AUX_NATIVE_READ << 4;
msg[1] = address >> 8;
msg[2] = address & 0xff;
msg[3] = recv_bytes - 1;
msg_bytes = 4;
reply_bytes = recv_bytes + 1;
for (;;) {
ret = intel_dp_aux_ch(intel_encoder, msg, msg_bytes,
reply, reply_bytes);
if (ret == 0)
return -EPROTO;
if (ret < 0)
return ret;
ack = reply[0];
if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_ACK) {
memcpy(recv, reply + 1, ret - 1);
return ret - 1;
}
else if ((ack & AUX_NATIVE_REPLY_MASK) == AUX_NATIVE_REPLY_DEFER)
udelay(100);
else
return -EIO;
}
}
static int
intel_dp_i2c_aux_ch(struct i2c_adapter *adapter, int mode,
uint8_t write_byte, uint8_t *read_byte)
{
struct i2c_algo_dp_aux_data *algo_data = adapter->algo_data;
struct intel_dp_priv *dp_priv = container_of(adapter,
struct intel_dp_priv,
adapter);
struct intel_encoder *intel_encoder = dp_priv->intel_encoder;
uint16_t address = algo_data->address;
uint8_t msg[5];
uint8_t reply[2];
int msg_bytes;
int reply_bytes;
int ret;
/* Set up the command byte */
if (mode & MODE_I2C_READ)
msg[0] = AUX_I2C_READ << 4;
else
msg[0] = AUX_I2C_WRITE << 4;
if (!(mode & MODE_I2C_STOP))
msg[0] |= AUX_I2C_MOT << 4;
msg[1] = address >> 8;
msg[2] = address;
switch (mode) {
case MODE_I2C_WRITE:
msg[3] = 0;
msg[4] = write_byte;
msg_bytes = 5;
reply_bytes = 1;
break;
case MODE_I2C_READ:
msg[3] = 0;
msg_bytes = 4;
reply_bytes = 2;
break;
default:
msg_bytes = 3;
reply_bytes = 1;
break;
}
for (;;) {
ret = intel_dp_aux_ch(intel_encoder,
msg, msg_bytes,
reply, reply_bytes);
if (ret < 0) {
DRM_DEBUG_KMS("aux_ch failed %d\n", ret);
return ret;
}
switch (reply[0] & AUX_I2C_REPLY_MASK) {
case AUX_I2C_REPLY_ACK:
if (mode == MODE_I2C_READ) {
*read_byte = reply[1];
}
return reply_bytes - 1;
case AUX_I2C_REPLY_NACK:
DRM_DEBUG_KMS("aux_ch nack\n");
return -EREMOTEIO;
case AUX_I2C_REPLY_DEFER:
DRM_DEBUG_KMS("aux_ch defer\n");
udelay(100);
break;
default:
DRM_ERROR("aux_ch invalid reply 0x%02x\n", reply[0]);
return -EREMOTEIO;
}
}
}
static int
intel_dp_i2c_init(struct intel_encoder *intel_encoder, const char *name)
{
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
DRM_DEBUG_KMS("i2c_init %s\n", name);
dp_priv->algo.running = false;
dp_priv->algo.address = 0;
dp_priv->algo.aux_ch = intel_dp_i2c_aux_ch;
memset(&dp_priv->adapter, '\0', sizeof (dp_priv->adapter));
dp_priv->adapter.owner = THIS_MODULE;
dp_priv->adapter.class = I2C_CLASS_DDC;
strncpy (dp_priv->adapter.name, name, sizeof(dp_priv->adapter.name) - 1);
dp_priv->adapter.name[sizeof(dp_priv->adapter.name) - 1] = '\0';
dp_priv->adapter.algo_data = &dp_priv->algo;
dp_priv->adapter.dev.parent = &intel_encoder->base.kdev;
return i2c_dp_aux_add_bus(&dp_priv->adapter);
}
static bool
intel_dp_mode_fixup(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
int lane_count, clock;
int max_lane_count = intel_dp_max_lane_count(intel_encoder);
int max_clock = intel_dp_max_link_bw(intel_encoder) == DP_LINK_BW_2_7 ? 1 : 0;
static int bws[2] = { DP_LINK_BW_1_62, DP_LINK_BW_2_7 };
for (lane_count = 1; lane_count <= max_lane_count; lane_count <<= 1) {
for (clock = 0; clock <= max_clock; clock++) {
int link_avail = intel_dp_link_clock(bws[clock]) * lane_count;
if (intel_dp_link_required(encoder->dev, intel_encoder, mode->clock)
<= link_avail) {
dp_priv->link_bw = bws[clock];
dp_priv->lane_count = lane_count;
adjusted_mode->clock = intel_dp_link_clock(dp_priv->link_bw);
DRM_DEBUG_KMS("Display port link bw %02x lane "
"count %d clock %d\n",
dp_priv->link_bw, dp_priv->lane_count,
adjusted_mode->clock);
return true;
}
}
}
return false;
}
struct intel_dp_m_n {
uint32_t tu;
uint32_t gmch_m;
uint32_t gmch_n;
uint32_t link_m;
uint32_t link_n;
};
static void
intel_reduce_ratio(uint32_t *num, uint32_t *den)
{
while (*num > 0xffffff || *den > 0xffffff) {
*num >>= 1;
*den >>= 1;
}
}
static void
intel_dp_compute_m_n(int bytes_per_pixel,
int nlanes,
int pixel_clock,
int link_clock,
struct intel_dp_m_n *m_n)
{
m_n->tu = 64;
m_n->gmch_m = pixel_clock * bytes_per_pixel;
m_n->gmch_n = link_clock * nlanes;
intel_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
m_n->link_m = pixel_clock;
m_n->link_n = link_clock;
intel_reduce_ratio(&m_n->link_m, &m_n->link_n);
}
void
intel_dp_set_m_n(struct drm_crtc *crtc, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_connector *connector;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
int lane_count = 4;
struct intel_dp_m_n m_n;
/*
* Find the lane count in the intel_encoder private
*/
list_for_each_entry(connector, &mode_config->connector_list, head) {
struct intel_encoder *intel_encoder = to_intel_encoder(connector);
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
if (!connector->encoder || connector->encoder->crtc != crtc)
continue;
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
lane_count = dp_priv->lane_count;
break;
}
}
/*
* Compute the GMCH and Link ratios. The '3' here is
* the number of bytes_per_pixel post-LUT, which we always
* set up for 8-bits of R/G/B, or 3 bytes total.
*/
intel_dp_compute_m_n(3, lane_count,
mode->clock, adjusted_mode->clock, &m_n);
if (HAS_PCH_SPLIT(dev)) {
if (intel_crtc->pipe == 0) {
I915_WRITE(TRANSA_DATA_M1,
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(TRANSA_DATA_N1, m_n.gmch_n);
I915_WRITE(TRANSA_DP_LINK_M1, m_n.link_m);
I915_WRITE(TRANSA_DP_LINK_N1, m_n.link_n);
} else {
I915_WRITE(TRANSB_DATA_M1,
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(TRANSB_DATA_N1, m_n.gmch_n);
I915_WRITE(TRANSB_DP_LINK_M1, m_n.link_m);
I915_WRITE(TRANSB_DP_LINK_N1, m_n.link_n);
}
} else {
if (intel_crtc->pipe == 0) {
I915_WRITE(PIPEA_GMCH_DATA_M,
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(PIPEA_GMCH_DATA_N,
m_n.gmch_n);
I915_WRITE(PIPEA_DP_LINK_M, m_n.link_m);
I915_WRITE(PIPEA_DP_LINK_N, m_n.link_n);
} else {
I915_WRITE(PIPEB_GMCH_DATA_M,
((m_n.tu - 1) << PIPE_GMCH_DATA_M_TU_SIZE_SHIFT) |
m_n.gmch_m);
I915_WRITE(PIPEB_GMCH_DATA_N,
m_n.gmch_n);
I915_WRITE(PIPEB_DP_LINK_M, m_n.link_m);
I915_WRITE(PIPEB_DP_LINK_N, m_n.link_n);
}
}
}
static void
intel_dp_mode_set(struct drm_encoder *encoder, struct drm_display_mode *mode,
struct drm_display_mode *adjusted_mode)
{
struct drm_device *dev = encoder->dev;
struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
struct drm_crtc *crtc = intel_encoder->enc.crtc;
struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
dp_priv->DP = (DP_VOLTAGE_0_4 |
DP_PRE_EMPHASIS_0 |
DP_SYNC_VS_HIGH |
DP_SYNC_HS_HIGH);
if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
dp_priv->DP |= DP_LINK_TRAIN_OFF_CPT;
else
dp_priv->DP |= DP_LINK_TRAIN_OFF;
switch (dp_priv->lane_count) {
case 1:
dp_priv->DP |= DP_PORT_WIDTH_1;
break;
case 2:
dp_priv->DP |= DP_PORT_WIDTH_2;
break;
case 4:
dp_priv->DP |= DP_PORT_WIDTH_4;
break;
}
if (dp_priv->has_audio)
dp_priv->DP |= DP_AUDIO_OUTPUT_ENABLE;
memset(dp_priv->link_configuration, 0, DP_LINK_CONFIGURATION_SIZE);
dp_priv->link_configuration[0] = dp_priv->link_bw;
dp_priv->link_configuration[1] = dp_priv->lane_count;
/*
* Check for DPCD version > 1.1,
* enable enahanced frame stuff in that case
*/
if (dp_priv->dpcd[0] >= 0x11) {
dp_priv->link_configuration[1] |= DP_LANE_COUNT_ENHANCED_FRAME_EN;
dp_priv->DP |= DP_ENHANCED_FRAMING;
}
/* CPT DP's pipe select is decided in TRANS_DP_CTL */
if (intel_crtc->pipe == 1 && !HAS_PCH_CPT(dev))
dp_priv->DP |= DP_PIPEB_SELECT;
if (IS_eDP(intel_encoder)) {
/* don't miss out required setting for eDP */
dp_priv->DP |= DP_PLL_ENABLE;
if (adjusted_mode->clock < 200000)
dp_priv->DP |= DP_PLL_FREQ_160MHZ;
else
dp_priv->DP |= DP_PLL_FREQ_270MHZ;
}
}
static void ironlake_edp_backlight_on (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
DRM_DEBUG_KMS("\n");
pp = I915_READ(PCH_PP_CONTROL);
pp |= EDP_BLC_ENABLE;
I915_WRITE(PCH_PP_CONTROL, pp);
}
static void ironlake_edp_backlight_off (struct drm_device *dev)
{
struct drm_i915_private *dev_priv = dev->dev_private;
u32 pp;
DRM_DEBUG_KMS("\n");
pp = I915_READ(PCH_PP_CONTROL);
pp &= ~EDP_BLC_ENABLE;
I915_WRITE(PCH_PP_CONTROL, pp);
}
static void
intel_dp_dpms(struct drm_encoder *encoder, int mode)
{
struct intel_encoder *intel_encoder = enc_to_intel_encoder(encoder);
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
uint32_t dp_reg = I915_READ(dp_priv->output_reg);
if (mode != DRM_MODE_DPMS_ON) {
if (dp_reg & DP_PORT_EN) {
intel_dp_link_down(intel_encoder, dp_priv->DP);
if (IS_eDP(intel_encoder))
ironlake_edp_backlight_off(dev);
}
} else {
if (!(dp_reg & DP_PORT_EN)) {
intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
if (IS_eDP(intel_encoder))
ironlake_edp_backlight_on(dev);
}
}
dp_priv->dpms_mode = mode;
}
/*
* Fetch AUX CH registers 0x202 - 0x207 which contain
* link status information
*/
static bool
intel_dp_get_link_status(struct intel_encoder *intel_encoder,
uint8_t link_status[DP_LINK_STATUS_SIZE])
{
int ret;
ret = intel_dp_aux_native_read(intel_encoder,
DP_LANE0_1_STATUS,
link_status, DP_LINK_STATUS_SIZE);
if (ret != DP_LINK_STATUS_SIZE)
return false;
return true;
}
static uint8_t
intel_dp_link_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int r)
{
return link_status[r - DP_LANE0_1_STATUS];
}
static uint8_t
intel_get_adjust_request_voltage(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_VOLTAGE_SWING_LANE1_SHIFT :
DP_ADJUST_VOLTAGE_SWING_LANE0_SHIFT);
uint8_t l = intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_VOLTAGE_SWING_SHIFT;
}
static uint8_t
intel_get_adjust_request_pre_emphasis(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_ADJUST_REQUEST_LANE0_1 + (lane >> 1);
int s = ((lane & 1) ?
DP_ADJUST_PRE_EMPHASIS_LANE1_SHIFT :
DP_ADJUST_PRE_EMPHASIS_LANE0_SHIFT);
uint8_t l = intel_dp_link_status(link_status, i);
return ((l >> s) & 3) << DP_TRAIN_PRE_EMPHASIS_SHIFT;
}
#if 0
static char *voltage_names[] = {
"0.4V", "0.6V", "0.8V", "1.2V"
};
static char *pre_emph_names[] = {
"0dB", "3.5dB", "6dB", "9.5dB"
};
static char *link_train_names[] = {
"pattern 1", "pattern 2", "idle", "off"
};
#endif
/*
* These are source-specific values; current Intel hardware supports
* a maximum voltage of 800mV and a maximum pre-emphasis of 6dB
*/
#define I830_DP_VOLTAGE_MAX DP_TRAIN_VOLTAGE_SWING_800
static uint8_t
intel_dp_pre_emphasis_max(uint8_t voltage_swing)
{
switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_600:
return DP_TRAIN_PRE_EMPHASIS_6;
case DP_TRAIN_VOLTAGE_SWING_800:
return DP_TRAIN_PRE_EMPHASIS_3_5;
case DP_TRAIN_VOLTAGE_SWING_1200:
default:
return DP_TRAIN_PRE_EMPHASIS_0;
}
}
static void
intel_get_adjust_train(struct intel_encoder *intel_encoder,
uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane_count,
uint8_t train_set[4])
{
uint8_t v = 0;
uint8_t p = 0;
int lane;
for (lane = 0; lane < lane_count; lane++) {
uint8_t this_v = intel_get_adjust_request_voltage(link_status, lane);
uint8_t this_p = intel_get_adjust_request_pre_emphasis(link_status, lane);
if (this_v > v)
v = this_v;
if (this_p > p)
p = this_p;
}
if (v >= I830_DP_VOLTAGE_MAX)
v = I830_DP_VOLTAGE_MAX | DP_TRAIN_MAX_SWING_REACHED;
if (p >= intel_dp_pre_emphasis_max(v))
p = intel_dp_pre_emphasis_max(v) | DP_TRAIN_MAX_PRE_EMPHASIS_REACHED;
for (lane = 0; lane < 4; lane++)
train_set[lane] = v | p;
}
static uint32_t
intel_dp_signal_levels(uint8_t train_set, int lane_count)
{
uint32_t signal_levels = 0;
switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
case DP_TRAIN_VOLTAGE_SWING_400:
default:
signal_levels |= DP_VOLTAGE_0_4;
break;
case DP_TRAIN_VOLTAGE_SWING_600:
signal_levels |= DP_VOLTAGE_0_6;
break;
case DP_TRAIN_VOLTAGE_SWING_800:
signal_levels |= DP_VOLTAGE_0_8;
break;
case DP_TRAIN_VOLTAGE_SWING_1200:
signal_levels |= DP_VOLTAGE_1_2;
break;
}
switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
case DP_TRAIN_PRE_EMPHASIS_0:
default:
signal_levels |= DP_PRE_EMPHASIS_0;
break;
case DP_TRAIN_PRE_EMPHASIS_3_5:
signal_levels |= DP_PRE_EMPHASIS_3_5;
break;
case DP_TRAIN_PRE_EMPHASIS_6:
signal_levels |= DP_PRE_EMPHASIS_6;
break;
case DP_TRAIN_PRE_EMPHASIS_9_5:
signal_levels |= DP_PRE_EMPHASIS_9_5;
break;
}
return signal_levels;
}
/* Gen6's DP voltage swing and pre-emphasis control */
static uint32_t
intel_gen6_edp_signal_levels(uint8_t train_set)
{
switch (train_set & (DP_TRAIN_VOLTAGE_SWING_MASK|DP_TRAIN_PRE_EMPHASIS_MASK)) {
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_400 | DP_TRAIN_PRE_EMPHASIS_6:
return EDP_LINK_TRAIN_400MV_6DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_600 | DP_TRAIN_PRE_EMPHASIS_3_5:
return EDP_LINK_TRAIN_600MV_3_5DB_SNB_B;
case DP_TRAIN_VOLTAGE_SWING_800 | DP_TRAIN_PRE_EMPHASIS_0:
return EDP_LINK_TRAIN_800MV_0DB_SNB_B;
default:
DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level\n");
return EDP_LINK_TRAIN_400MV_0DB_SNB_B;
}
}
static uint8_t
intel_get_lane_status(uint8_t link_status[DP_LINK_STATUS_SIZE],
int lane)
{
int i = DP_LANE0_1_STATUS + (lane >> 1);
int s = (lane & 1) * 4;
uint8_t l = intel_dp_link_status(link_status, i);
return (l >> s) & 0xf;
}
/* Check for clock recovery is done on all channels */
static bool
intel_clock_recovery_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
int lane;
uint8_t lane_status;
for (lane = 0; lane < lane_count; lane++) {
lane_status = intel_get_lane_status(link_status, lane);
if ((lane_status & DP_LANE_CR_DONE) == 0)
return false;
}
return true;
}
/* Check to see if channel eq is done on all channels */
#define CHANNEL_EQ_BITS (DP_LANE_CR_DONE|\
DP_LANE_CHANNEL_EQ_DONE|\
DP_LANE_SYMBOL_LOCKED)
static bool
intel_channel_eq_ok(uint8_t link_status[DP_LINK_STATUS_SIZE], int lane_count)
{
uint8_t lane_align;
uint8_t lane_status;
int lane;
lane_align = intel_dp_link_status(link_status,
DP_LANE_ALIGN_STATUS_UPDATED);
if ((lane_align & DP_INTERLANE_ALIGN_DONE) == 0)
return false;
for (lane = 0; lane < lane_count; lane++) {
lane_status = intel_get_lane_status(link_status, lane);
if ((lane_status & CHANNEL_EQ_BITS) != CHANNEL_EQ_BITS)
return false;
}
return true;
}
static bool
intel_dp_set_link_train(struct intel_encoder *intel_encoder,
uint32_t dp_reg_value,
uint8_t dp_train_pat,
uint8_t train_set[4],
bool first)
{
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
int ret;
I915_WRITE(dp_priv->output_reg, dp_reg_value);
POSTING_READ(dp_priv->output_reg);
if (first)
intel_wait_for_vblank(dev);
intel_dp_aux_native_write_1(intel_encoder,
DP_TRAINING_PATTERN_SET,
dp_train_pat);
ret = intel_dp_aux_native_write(intel_encoder,
DP_TRAINING_LANE0_SET, train_set, 4);
if (ret != 4)
return false;
return true;
}
static void
intel_dp_link_train(struct intel_encoder *intel_encoder, uint32_t DP,
uint8_t link_configuration[DP_LINK_CONFIGURATION_SIZE])
{
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
uint8_t train_set[4];
uint8_t link_status[DP_LINK_STATUS_SIZE];
int i;
uint8_t voltage;
bool clock_recovery = false;
bool channel_eq = false;
bool first = true;
int tries;
u32 reg;
/* Write the link configuration data */
intel_dp_aux_native_write(intel_encoder, 0x100,
link_configuration, DP_LINK_CONFIGURATION_SIZE);
DP |= DP_PORT_EN;
if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
DP &= ~DP_LINK_TRAIN_MASK_CPT;
else
DP &= ~DP_LINK_TRAIN_MASK;
memset(train_set, 0, 4);
voltage = 0xff;
tries = 0;
clock_recovery = false;
for (;;) {
/* Use train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels;
if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
reg = DP | DP_LINK_TRAIN_PAT_1_CPT;
else
reg = DP | DP_LINK_TRAIN_PAT_1;
if (!intel_dp_set_link_train(intel_encoder, reg,
DP_TRAINING_PATTERN_1, train_set, first))
break;
first = false;
/* Set training pattern 1 */
udelay(100);
if (!intel_dp_get_link_status(intel_encoder, link_status))
break;
if (intel_clock_recovery_ok(link_status, dp_priv->lane_count)) {
clock_recovery = true;
break;
}
/* Check to see if we've tried the max voltage */
for (i = 0; i < dp_priv->lane_count; i++)
if ((train_set[i] & DP_TRAIN_MAX_SWING_REACHED) == 0)
break;
if (i == dp_priv->lane_count)
break;
/* Check to see if we've tried the same voltage 5 times */
if ((train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK) == voltage) {
++tries;
if (tries == 5)
break;
} else
tries = 0;
voltage = train_set[0] & DP_TRAIN_VOLTAGE_SWING_MASK;
/* Compute new train_set as requested by target */
intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
}
/* channel equalization */
tries = 0;
channel_eq = false;
for (;;) {
/* Use train_set[0] to set the voltage and pre emphasis values */
uint32_t signal_levels;
if (IS_GEN6(dev) && IS_eDP(intel_encoder)) {
signal_levels = intel_gen6_edp_signal_levels(train_set[0]);
DP = (DP & ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB) | signal_levels;
} else {
signal_levels = intel_dp_signal_levels(train_set[0], dp_priv->lane_count);
DP = (DP & ~(DP_VOLTAGE_MASK|DP_PRE_EMPHASIS_MASK)) | signal_levels;
}
if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
reg = DP | DP_LINK_TRAIN_PAT_2_CPT;
else
reg = DP | DP_LINK_TRAIN_PAT_2;
/* channel eq pattern */
if (!intel_dp_set_link_train(intel_encoder, reg,
DP_TRAINING_PATTERN_2, train_set,
false))
break;
udelay(400);
if (!intel_dp_get_link_status(intel_encoder, link_status))
break;
if (intel_channel_eq_ok(link_status, dp_priv->lane_count)) {
channel_eq = true;
break;
}
/* Try 5 times */
if (tries > 5)
break;
/* Compute new train_set as requested by target */
intel_get_adjust_train(intel_encoder, link_status, dp_priv->lane_count, train_set);
++tries;
}
if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder))
reg = DP | DP_LINK_TRAIN_OFF_CPT;
else
reg = DP | DP_LINK_TRAIN_OFF;
I915_WRITE(dp_priv->output_reg, reg);
POSTING_READ(dp_priv->output_reg);
intel_dp_aux_native_write_1(intel_encoder,
DP_TRAINING_PATTERN_SET, DP_TRAINING_PATTERN_DISABLE);
}
static void
intel_dp_link_down(struct intel_encoder *intel_encoder, uint32_t DP)
{
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
DRM_DEBUG_KMS("\n");
if (IS_eDP(intel_encoder)) {
DP &= ~DP_PLL_ENABLE;
I915_WRITE(dp_priv->output_reg, DP);
POSTING_READ(dp_priv->output_reg);
udelay(100);
}
if (HAS_PCH_CPT(dev) && !IS_eDP(intel_encoder)) {
DP &= ~DP_LINK_TRAIN_MASK_CPT;
I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE_CPT);
POSTING_READ(dp_priv->output_reg);
} else {
DP &= ~DP_LINK_TRAIN_MASK;
I915_WRITE(dp_priv->output_reg, DP | DP_LINK_TRAIN_PAT_IDLE);
POSTING_READ(dp_priv->output_reg);
}
udelay(17000);
if (IS_eDP(intel_encoder))
DP |= DP_LINK_TRAIN_OFF;
I915_WRITE(dp_priv->output_reg, DP & ~DP_PORT_EN);
POSTING_READ(dp_priv->output_reg);
}
/*
* According to DP spec
* 5.1.2:
* 1. Read DPCD
* 2. Configure link according to Receiver Capabilities
* 3. Use Link Training from 2.5.3.3 and 3.5.1.3
* 4. Check link status on receipt of hot-plug interrupt
*/
static void
intel_dp_check_link_status(struct intel_encoder *intel_encoder)
{
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
uint8_t link_status[DP_LINK_STATUS_SIZE];
if (!intel_encoder->enc.crtc)
return;
if (!intel_dp_get_link_status(intel_encoder, link_status)) {
intel_dp_link_down(intel_encoder, dp_priv->DP);
return;
}
if (!intel_channel_eq_ok(link_status, dp_priv->lane_count))
intel_dp_link_train(intel_encoder, dp_priv->DP, dp_priv->link_configuration);
}
static enum drm_connector_status
ironlake_dp_detect(struct drm_connector *connector)
{
struct intel_encoder *intel_encoder = to_intel_encoder(connector);
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
enum drm_connector_status status;
status = connector_status_disconnected;
if (intel_dp_aux_native_read(intel_encoder,
0x000, dp_priv->dpcd,
sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
{
if (dp_priv->dpcd[0] != 0)
status = connector_status_connected;
}
return status;
}
/**
* Uses CRT_HOTPLUG_EN and CRT_HOTPLUG_STAT to detect DP connection.
*
* \return true if DP port is connected.
* \return false if DP port is disconnected.
*/
static enum drm_connector_status
intel_dp_detect(struct drm_connector *connector)
{
struct intel_encoder *intel_encoder = to_intel_encoder(connector);
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
uint32_t temp, bit;
enum drm_connector_status status;
dp_priv->has_audio = false;
if (HAS_PCH_SPLIT(dev))
return ironlake_dp_detect(connector);
temp = I915_READ(PORT_HOTPLUG_EN);
I915_WRITE(PORT_HOTPLUG_EN,
temp |
DPB_HOTPLUG_INT_EN |
DPC_HOTPLUG_INT_EN |
DPD_HOTPLUG_INT_EN);
POSTING_READ(PORT_HOTPLUG_EN);
switch (dp_priv->output_reg) {
case DP_B:
bit = DPB_HOTPLUG_INT_STATUS;
break;
case DP_C:
bit = DPC_HOTPLUG_INT_STATUS;
break;
case DP_D:
bit = DPD_HOTPLUG_INT_STATUS;
break;
default:
return connector_status_unknown;
}
temp = I915_READ(PORT_HOTPLUG_STAT);
if ((temp & bit) == 0)
return connector_status_disconnected;
status = connector_status_disconnected;
if (intel_dp_aux_native_read(intel_encoder,
0x000, dp_priv->dpcd,
sizeof (dp_priv->dpcd)) == sizeof (dp_priv->dpcd))
{
if (dp_priv->dpcd[0] != 0)
status = connector_status_connected;
}
return status;
}
static int intel_dp_get_modes(struct drm_connector *connector)
{
struct intel_encoder *intel_encoder = to_intel_encoder(connector);
struct drm_device *dev = intel_encoder->base.dev;
struct drm_i915_private *dev_priv = dev->dev_private;
int ret;
/* We should parse the EDID data and find out if it has an audio sink
*/
ret = intel_ddc_get_modes(connector, intel_encoder->ddc_bus);
if (ret)
return ret;
/* if eDP has no EDID, try to use fixed panel mode from VBT */
if (IS_eDP(intel_encoder)) {
if (dev_priv->panel_fixed_mode != NULL) {
struct drm_display_mode *mode;
mode = drm_mode_duplicate(dev, dev_priv->panel_fixed_mode);
drm_mode_probed_add(connector, mode);
return 1;
}
}
return 0;
}
static void
intel_dp_destroy (struct drm_connector *connector)
{
struct intel_encoder *intel_encoder = to_intel_encoder(connector);
if (intel_encoder->i2c_bus)
intel_i2c_destroy(intel_encoder->i2c_bus);
drm_sysfs_connector_remove(connector);
drm_connector_cleanup(connector);
kfree(intel_encoder);
}
static const struct drm_encoder_helper_funcs intel_dp_helper_funcs = {
.dpms = intel_dp_dpms,
.mode_fixup = intel_dp_mode_fixup,
.prepare = intel_encoder_prepare,
.mode_set = intel_dp_mode_set,
.commit = intel_encoder_commit,
};
static const struct drm_connector_funcs intel_dp_connector_funcs = {
.dpms = drm_helper_connector_dpms,
.detect = intel_dp_detect,
.fill_modes = drm_helper_probe_single_connector_modes,
.destroy = intel_dp_destroy,
};
static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
.get_modes = intel_dp_get_modes,
.mode_valid = intel_dp_mode_valid,
.best_encoder = intel_best_encoder,
};
static void intel_dp_enc_destroy(struct drm_encoder *encoder)
{
drm_encoder_cleanup(encoder);
}
static const struct drm_encoder_funcs intel_dp_enc_funcs = {
.destroy = intel_dp_enc_destroy,
};
void
intel_dp_hot_plug(struct intel_encoder *intel_encoder)
{
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
if (dp_priv->dpms_mode == DRM_MODE_DPMS_ON)
intel_dp_check_link_status(intel_encoder);
}
/* Return which DP Port should be selected for Transcoder DP control */
int
intel_trans_dp_port_sel (struct drm_crtc *crtc)
{
struct drm_device *dev = crtc->dev;
struct drm_mode_config *mode_config = &dev->mode_config;
struct drm_encoder *encoder;
struct intel_encoder *intel_encoder = NULL;
list_for_each_entry(encoder, &mode_config->encoder_list, head) {
if (!encoder || encoder->crtc != crtc)
continue;
intel_encoder = enc_to_intel_encoder(encoder);
if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT) {
struct intel_dp_priv *dp_priv = intel_encoder->dev_priv;
return dp_priv->output_reg;
}
}
return -1;
}
void
intel_dp_init(struct drm_device *dev, int output_reg)
{
struct drm_i915_private *dev_priv = dev->dev_private;
struct drm_connector *connector;
struct intel_encoder *intel_encoder;
struct intel_dp_priv *dp_priv;
const char *name = NULL;
intel_encoder = kcalloc(sizeof(struct intel_encoder) +
sizeof(struct intel_dp_priv), 1, GFP_KERNEL);
if (!intel_encoder)
return;
dp_priv = (struct intel_dp_priv *)(intel_encoder + 1);
connector = &intel_encoder->base;
drm_connector_init(dev, connector, &intel_dp_connector_funcs,
DRM_MODE_CONNECTOR_DisplayPort);
drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
if (output_reg == DP_A)
intel_encoder->type = INTEL_OUTPUT_EDP;
else
intel_encoder->type = INTEL_OUTPUT_DISPLAYPORT;
if (output_reg == DP_B || output_reg == PCH_DP_B)
intel_encoder->clone_mask = (1 << INTEL_DP_B_CLONE_BIT);
else if (output_reg == DP_C || output_reg == PCH_DP_C)
intel_encoder->clone_mask = (1 << INTEL_DP_C_CLONE_BIT);
else if (output_reg == DP_D || output_reg == PCH_DP_D)
intel_encoder->clone_mask = (1 << INTEL_DP_D_CLONE_BIT);
if (IS_eDP(intel_encoder))
intel_encoder->clone_mask = (1 << INTEL_EDP_CLONE_BIT);
intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
connector->interlace_allowed = true;
connector->doublescan_allowed = 0;
dp_priv->intel_encoder = intel_encoder;
dp_priv->output_reg = output_reg;
dp_priv->has_audio = false;
dp_priv->dpms_mode = DRM_MODE_DPMS_ON;
intel_encoder->dev_priv = dp_priv;
drm_encoder_init(dev, &intel_encoder->enc, &intel_dp_enc_funcs,
DRM_MODE_ENCODER_TMDS);
drm_encoder_helper_add(&intel_encoder->enc, &intel_dp_helper_funcs);
drm_mode_connector_attach_encoder(&intel_encoder->base,
&intel_encoder->enc);
drm_sysfs_connector_add(connector);
/* Set up the DDC bus. */
switch (output_reg) {
case DP_A:
name = "DPDDC-A";
break;
case DP_B:
case PCH_DP_B:
dev_priv->hotplug_supported_mask |=
HDMIB_HOTPLUG_INT_STATUS;
name = "DPDDC-B";
break;
case DP_C:
case PCH_DP_C:
dev_priv->hotplug_supported_mask |=
HDMIC_HOTPLUG_INT_STATUS;
name = "DPDDC-C";
break;
case DP_D:
case PCH_DP_D:
dev_priv->hotplug_supported_mask |=
HDMID_HOTPLUG_INT_STATUS;
name = "DPDDC-D";
break;
}
intel_dp_i2c_init(intel_encoder, name);
intel_encoder->ddc_bus = &dp_priv->adapter;
intel_encoder->hot_plug = intel_dp_hot_plug;
if (output_reg == DP_A) {
/* initialize panel mode from VBT if available for eDP */
if (dev_priv->lfp_lvds_vbt_mode) {
dev_priv->panel_fixed_mode =
drm_mode_duplicate(dev, dev_priv->lfp_lvds_vbt_mode);
if (dev_priv->panel_fixed_mode) {
dev_priv->panel_fixed_mode->type |=
DRM_MODE_TYPE_PREFERRED;
}
}
}
/* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
* 0xd. Failure to do so will result in spurious interrupts being
* generated on the port when a cable is not attached.
*/
if (IS_G4X(dev) && !IS_GM45(dev)) {
u32 temp = I915_READ(PEG_BAND_GAP_DATA);
I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
}
}