linux_old1/drivers/usb/gadget/s3c-hsotg.c

3407 lines
89 KiB
C
Raw Normal View History

/* linux/drivers/usb/gadget/s3c-hsotg.c
*
* Copyright 2008 Openmoko, Inc.
* Copyright 2008 Simtec Electronics
* Ben Dooks <ben@simtec.co.uk>
* http://armlinux.simtec.co.uk/
*
* S3C USB2.0 High-speed / OtG driver
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#define DEBUG
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/spinlock.h>
#include <linux/interrupt.h>
#include <linux/platform_device.h>
#include <linux/dma-mapping.h>
#include <linux/debugfs.h>
#include <linux/seq_file.h>
#include <linux/delay.h>
#include <linux/io.h>
include cleanup: Update gfp.h and slab.h includes to prepare for breaking implicit slab.h inclusion from percpu.h percpu.h is included by sched.h and module.h and thus ends up being included when building most .c files. percpu.h includes slab.h which in turn includes gfp.h making everything defined by the two files universally available and complicating inclusion dependencies. percpu.h -> slab.h dependency is about to be removed. Prepare for this change by updating users of gfp and slab facilities include those headers directly instead of assuming availability. As this conversion needs to touch large number of source files, the following script is used as the basis of conversion. http://userweb.kernel.org/~tj/misc/slabh-sweep.py The script does the followings. * Scan files for gfp and slab usages and update includes such that only the necessary includes are there. ie. if only gfp is used, gfp.h, if slab is used, slab.h. * When the script inserts a new include, it looks at the include blocks and try to put the new include such that its order conforms to its surrounding. It's put in the include block which contains core kernel includes, in the same order that the rest are ordered - alphabetical, Christmas tree, rev-Xmas-tree or at the end if there doesn't seem to be any matching order. * If the script can't find a place to put a new include (mostly because the file doesn't have fitting include block), it prints out an error message indicating which .h file needs to be added to the file. The conversion was done in the following steps. 1. The initial automatic conversion of all .c files updated slightly over 4000 files, deleting around 700 includes and adding ~480 gfp.h and ~3000 slab.h inclusions. The script emitted errors for ~400 files. 2. Each error was manually checked. Some didn't need the inclusion, some needed manual addition while adding it to implementation .h or embedding .c file was more appropriate for others. This step added inclusions to around 150 files. 3. The script was run again and the output was compared to the edits from #2 to make sure no file was left behind. 4. Several build tests were done and a couple of problems were fixed. e.g. lib/decompress_*.c used malloc/free() wrappers around slab APIs requiring slab.h to be added manually. 5. The script was run on all .h files but without automatically editing them as sprinkling gfp.h and slab.h inclusions around .h files could easily lead to inclusion dependency hell. Most gfp.h inclusion directives were ignored as stuff from gfp.h was usually wildly available and often used in preprocessor macros. Each slab.h inclusion directive was examined and added manually as necessary. 6. percpu.h was updated not to include slab.h. 7. Build test were done on the following configurations and failures were fixed. CONFIG_GCOV_KERNEL was turned off for all tests (as my distributed build env didn't work with gcov compiles) and a few more options had to be turned off depending on archs to make things build (like ipr on powerpc/64 which failed due to missing writeq). * x86 and x86_64 UP and SMP allmodconfig and a custom test config. * powerpc and powerpc64 SMP allmodconfig * sparc and sparc64 SMP allmodconfig * ia64 SMP allmodconfig * s390 SMP allmodconfig * alpha SMP allmodconfig * um on x86_64 SMP allmodconfig 8. percpu.h modifications were reverted so that it could be applied as a separate patch and serve as bisection point. Given the fact that I had only a couple of failures from tests on step 6, I'm fairly confident about the coverage of this conversion patch. If there is a breakage, it's likely to be something in one of the arch headers which should be easily discoverable easily on most builds of the specific arch. Signed-off-by: Tejun Heo <tj@kernel.org> Guess-its-ok-by: Christoph Lameter <cl@linux-foundation.org> Cc: Ingo Molnar <mingo@redhat.com> Cc: Lee Schermerhorn <Lee.Schermerhorn@hp.com>
2010-03-24 16:04:11 +08:00
#include <linux/slab.h>
#include <linux/clk.h>
#include <linux/usb/ch9.h>
#include <linux/usb/gadget.h>
#include <mach/map.h>
#include <plat/regs-usb-hsotg-phy.h>
#include <plat/regs-usb-hsotg.h>
#include <mach/regs-sys.h>
#include <plat/udc-hs.h>
#define DMA_ADDR_INVALID (~((dma_addr_t)0))
/* EP0_MPS_LIMIT
*
* Unfortunately there seems to be a limit of the amount of data that can
* be transfered by IN transactions on EP0. This is either 127 bytes or 3
* packets (which practially means 1 packet and 63 bytes of data) when the
* MPS is set to 64.
*
* This means if we are wanting to move >127 bytes of data, we need to
* split the transactions up, but just doing one packet at a time does
* not work (this may be an implicit DATA0 PID on first packet of the
* transaction) and doing 2 packets is outside the controller's limits.
*
* If we try to lower the MPS size for EP0, then no transfers work properly
* for EP0, and the system will fail basic enumeration. As no cause for this
* has currently been found, we cannot support any large IN transfers for
* EP0.
*/
#define EP0_MPS_LIMIT 64
struct s3c_hsotg;
struct s3c_hsotg_req;
/**
* struct s3c_hsotg_ep - driver endpoint definition.
* @ep: The gadget layer representation of the endpoint.
* @name: The driver generated name for the endpoint.
* @queue: Queue of requests for this endpoint.
* @parent: Reference back to the parent device structure.
* @req: The current request that the endpoint is processing. This is
* used to indicate an request has been loaded onto the endpoint
* and has yet to be completed (maybe due to data move, or simply
* awaiting an ack from the core all the data has been completed).
* @debugfs: File entry for debugfs file for this endpoint.
* @lock: State lock to protect contents of endpoint.
* @dir_in: Set to true if this endpoint is of the IN direction, which
* means that it is sending data to the Host.
* @index: The index for the endpoint registers.
* @name: The name array passed to the USB core.
* @halted: Set if the endpoint has been halted.
* @periodic: Set if this is a periodic ep, such as Interrupt
* @sent_zlp: Set if we've sent a zero-length packet.
* @total_data: The total number of data bytes done.
* @fifo_size: The size of the FIFO (for periodic IN endpoints)
* @fifo_load: The amount of data loaded into the FIFO (periodic IN)
* @last_load: The offset of data for the last start of request.
* @size_loaded: The last loaded size for DxEPTSIZE for periodic IN
*
* This is the driver's state for each registered enpoint, allowing it
* to keep track of transactions that need doing. Each endpoint has a
* lock to protect the state, to try and avoid using an overall lock
* for the host controller as much as possible.
*
* For periodic IN endpoints, we have fifo_size and fifo_load to try
* and keep track of the amount of data in the periodic FIFO for each
* of these as we don't have a status register that tells us how much
* is in each of them. (note, this may actually be useless information
* as in shared-fifo mode periodic in acts like a single-frame packet
* buffer than a fifo)
*/
struct s3c_hsotg_ep {
struct usb_ep ep;
struct list_head queue;
struct s3c_hsotg *parent;
struct s3c_hsotg_req *req;
struct dentry *debugfs;
spinlock_t lock;
unsigned long total_data;
unsigned int size_loaded;
unsigned int last_load;
unsigned int fifo_load;
unsigned short fifo_size;
unsigned char dir_in;
unsigned char index;
unsigned int halted:1;
unsigned int periodic:1;
unsigned int sent_zlp:1;
char name[10];
};
#define S3C_HSOTG_EPS (8+1) /* limit to 9 for the moment */
/**
* struct s3c_hsotg - driver state.
* @dev: The parent device supplied to the probe function
* @driver: USB gadget driver
* @plat: The platform specific configuration data.
* @regs: The memory area mapped for accessing registers.
* @regs_res: The resource that was allocated when claiming register space.
* @irq: The IRQ number we are using
* @dedicated_fifos: Set if the hardware has dedicated IN-EP fifos.
* @debug_root: root directrory for debugfs.
* @debug_file: main status file for debugfs.
* @debug_fifo: FIFO status file for debugfs.
* @ep0_reply: Request used for ep0 reply.
* @ep0_buff: Buffer for EP0 reply data, if needed.
* @ctrl_buff: Buffer for EP0 control requests.
* @ctrl_req: Request for EP0 control packets.
* @eps: The endpoints being supplied to the gadget framework
*/
struct s3c_hsotg {
struct device *dev;
struct usb_gadget_driver *driver;
struct s3c_hsotg_plat *plat;
void __iomem *regs;
struct resource *regs_res;
int irq;
unsigned int dedicated_fifos:1;
struct dentry *debug_root;
struct dentry *debug_file;
struct dentry *debug_fifo;
struct usb_request *ep0_reply;
struct usb_request *ctrl_req;
u8 ep0_buff[8];
u8 ctrl_buff[8];
struct usb_gadget gadget;
struct s3c_hsotg_ep eps[];
};
/**
* struct s3c_hsotg_req - data transfer request
* @req: The USB gadget request
* @queue: The list of requests for the endpoint this is queued for.
* @in_progress: Has already had size/packets written to core
* @mapped: DMA buffer for this request has been mapped via dma_map_single().
*/
struct s3c_hsotg_req {
struct usb_request req;
struct list_head queue;
unsigned char in_progress;
unsigned char mapped;
};
/* conversion functions */
static inline struct s3c_hsotg_req *our_req(struct usb_request *req)
{
return container_of(req, struct s3c_hsotg_req, req);
}
static inline struct s3c_hsotg_ep *our_ep(struct usb_ep *ep)
{
return container_of(ep, struct s3c_hsotg_ep, ep);
}
static inline struct s3c_hsotg *to_hsotg(struct usb_gadget *gadget)
{
return container_of(gadget, struct s3c_hsotg, gadget);
}
static inline void __orr32(void __iomem *ptr, u32 val)
{
writel(readl(ptr) | val, ptr);
}
static inline void __bic32(void __iomem *ptr, u32 val)
{
writel(readl(ptr) & ~val, ptr);
}
/* forward decleration of functions */
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg);
/**
* using_dma - return the DMA status of the driver.
* @hsotg: The driver state.
*
* Return true if we're using DMA.
*
* Currently, we have the DMA support code worked into everywhere
* that needs it, but the AMBA DMA implementation in the hardware can
* only DMA from 32bit aligned addresses. This means that gadgets such
* as the CDC Ethernet cannot work as they often pass packets which are
* not 32bit aligned.
*
* Unfortunately the choice to use DMA or not is global to the controller
* and seems to be only settable when the controller is being put through
* a core reset. This means we either need to fix the gadgets to take
* account of DMA alignment, or add bounce buffers (yuerk).
*
* Until this issue is sorted out, we always return 'false'.
*/
static inline bool using_dma(struct s3c_hsotg *hsotg)
{
return false; /* support is not complete */
}
/**
* s3c_hsotg_en_gsint - enable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void s3c_hsotg_en_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk | ints;
if (new_gsintmsk != gsintmsk) {
dev_dbg(hsotg->dev, "gsintmsk now 0x%08x\n", new_gsintmsk);
writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
}
}
/**
* s3c_hsotg_disable_gsint - disable one or more of the general interrupt
* @hsotg: The device state
* @ints: A bitmask of the interrupts to enable
*/
static void s3c_hsotg_disable_gsint(struct s3c_hsotg *hsotg, u32 ints)
{
u32 gsintmsk = readl(hsotg->regs + S3C_GINTMSK);
u32 new_gsintmsk;
new_gsintmsk = gsintmsk & ~ints;
if (new_gsintmsk != gsintmsk)
writel(new_gsintmsk, hsotg->regs + S3C_GINTMSK);
}
/**
* s3c_hsotg_ctrl_epint - enable/disable an endpoint irq
* @hsotg: The device state
* @ep: The endpoint index
* @dir_in: True if direction is in.
* @en: The enable value, true to enable
*
* Set or clear the mask for an individual endpoint's interrupt
* request.
*/
static void s3c_hsotg_ctrl_epint(struct s3c_hsotg *hsotg,
unsigned int ep, unsigned int dir_in,
unsigned int en)
{
unsigned long flags;
u32 bit = 1 << ep;
u32 daint;
if (!dir_in)
bit <<= 16;
local_irq_save(flags);
daint = readl(hsotg->regs + S3C_DAINTMSK);
if (en)
daint |= bit;
else
daint &= ~bit;
writel(daint, hsotg->regs + S3C_DAINTMSK);
local_irq_restore(flags);
}
/**
* s3c_hsotg_init_fifo - initialise non-periodic FIFOs
* @hsotg: The device instance.
*/
static void s3c_hsotg_init_fifo(struct s3c_hsotg *hsotg)
{
unsigned int ep;
unsigned int addr;
unsigned int size;
int timeout;
u32 val;
/* the ryu 2.6.24 release ahs
writel(0x1C0, hsotg->regs + S3C_GRXFSIZ);
writel(S3C_GNPTXFSIZ_NPTxFStAddr(0x200) |
S3C_GNPTXFSIZ_NPTxFDep(0x1C0),
hsotg->regs + S3C_GNPTXFSIZ);
*/
/* set FIFO sizes to 2048/1024 */
writel(2048, hsotg->regs + S3C_GRXFSIZ);
writel(S3C_GNPTXFSIZ_NPTxFStAddr(2048) |
S3C_GNPTXFSIZ_NPTxFDep(1024),
hsotg->regs + S3C_GNPTXFSIZ);
/* arange all the rest of the TX FIFOs, as some versions of this
* block have overlapping default addresses. This also ensures
* that if the settings have been changed, then they are set to
* known values. */
/* start at the end of the GNPTXFSIZ, rounded up */
addr = 2048 + 1024;
size = 768;
/* currently we allocate TX FIFOs for all possible endpoints,
* and assume that they are all the same size. */
for (ep = 0; ep <= 15; ep++) {
val = addr;
val |= size << S3C_DPTXFSIZn_DPTxFSize_SHIFT;
addr += size;
writel(val, hsotg->regs + S3C_DPTXFSIZn(ep));
}
/* according to p428 of the design guide, we need to ensure that
* all fifos are flushed before continuing */
writel(S3C_GRSTCTL_TxFNum(0x10) | S3C_GRSTCTL_TxFFlsh |
S3C_GRSTCTL_RxFFlsh, hsotg->regs + S3C_GRSTCTL);
/* wait until the fifos are both flushed */
timeout = 100;
while (1) {
val = readl(hsotg->regs + S3C_GRSTCTL);
if ((val & (S3C_GRSTCTL_TxFFlsh | S3C_GRSTCTL_RxFFlsh)) == 0)
break;
if (--timeout == 0) {
dev_err(hsotg->dev,
"%s: timeout flushing fifos (GRSTCTL=%08x)\n",
__func__, val);
}
udelay(1);
}
dev_dbg(hsotg->dev, "FIFOs reset, timeout at %d\n", timeout);
}
/**
* @ep: USB endpoint to allocate request for.
* @flags: Allocation flags
*
* Allocate a new USB request structure appropriate for the specified endpoint
*/
static struct usb_request *s3c_hsotg_ep_alloc_request(struct usb_ep *ep,
gfp_t flags)
{
struct s3c_hsotg_req *req;
req = kzalloc(sizeof(struct s3c_hsotg_req), flags);
if (!req)
return NULL;
INIT_LIST_HEAD(&req->queue);
req->req.dma = DMA_ADDR_INVALID;
return &req->req;
}
/**
* is_ep_periodic - return true if the endpoint is in periodic mode.
* @hs_ep: The endpoint to query.
*
* Returns true if the endpoint is in periodic mode, meaning it is being
* used for an Interrupt or ISO transfer.
*/
static inline int is_ep_periodic(struct s3c_hsotg_ep *hs_ep)
{
return hs_ep->periodic;
}
/**
* s3c_hsotg_unmap_dma - unmap the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint for the request
* @hs_req: The request being processed.
*
* This is the reverse of s3c_hsotg_map_dma(), called for the completion
* of a request to ensure the buffer is ready for access by the caller.
*/
static void s3c_hsotg_unmap_dma(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req)
{
struct usb_request *req = &hs_req->req;
enum dma_data_direction dir;
dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
/* ignore this if we're not moving any data */
if (hs_req->req.length == 0)
return;
if (hs_req->mapped) {
/* we mapped this, so unmap and remove the dma */
dma_unmap_single(hsotg->dev, req->dma, req->length, dir);
req->dma = DMA_ADDR_INVALID;
hs_req->mapped = 0;
} else {
dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
}
}
/**
* s3c_hsotg_write_fifo - write packet Data to the TxFIFO
* @hsotg: The controller state.
* @hs_ep: The endpoint we're going to write for.
* @hs_req: The request to write data for.
*
* This is called when the TxFIFO has some space in it to hold a new
* transmission and we have something to give it. The actual setup of
* the data size is done elsewhere, so all we have to do is to actually
* write the data.
*
* The return value is zero if there is more space (or nothing was done)
* otherwise -ENOSPC is returned if the FIFO space was used up.
*
* This routine is only needed for PIO
*/
static int s3c_hsotg_write_fifo(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req)
{
bool periodic = is_ep_periodic(hs_ep);
u32 gnptxsts = readl(hsotg->regs + S3C_GNPTXSTS);
int buf_pos = hs_req->req.actual;
int to_write = hs_ep->size_loaded;
void *data;
int can_write;
int pkt_round;
to_write -= (buf_pos - hs_ep->last_load);
/* if there's nothing to write, get out early */
if (to_write == 0)
return 0;
if (periodic && !hsotg->dedicated_fifos) {
u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
int size_left;
int size_done;
/* work out how much data was loaded so we can calculate
* how much data is left in the fifo. */
size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
/* if shared fifo, we cannot write anything until the
* previous data has been completely sent.
*/
if (hs_ep->fifo_load != 0) {
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
return -ENOSPC;
}
dev_dbg(hsotg->dev, "%s: left=%d, load=%d, fifo=%d, size %d\n",
__func__, size_left,
hs_ep->size_loaded, hs_ep->fifo_load, hs_ep->fifo_size);
/* how much of the data has moved */
size_done = hs_ep->size_loaded - size_left;
/* how much data is left in the fifo */
can_write = hs_ep->fifo_load - size_done;
dev_dbg(hsotg->dev, "%s: => can_write1=%d\n",
__func__, can_write);
can_write = hs_ep->fifo_size - can_write;
dev_dbg(hsotg->dev, "%s: => can_write2=%d\n",
__func__, can_write);
if (can_write <= 0) {
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
return -ENOSPC;
}
} else if (hsotg->dedicated_fifos && hs_ep->index != 0) {
can_write = readl(hsotg->regs + S3C_DTXFSTS(hs_ep->index));
can_write &= 0xffff;
can_write *= 4;
} else {
if (S3C_GNPTXSTS_NPTxQSpcAvail_GET(gnptxsts) == 0) {
dev_dbg(hsotg->dev,
"%s: no queue slots available (0x%08x)\n",
__func__, gnptxsts);
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
return -ENOSPC;
}
can_write = S3C_GNPTXSTS_NPTxFSpcAvail_GET(gnptxsts);
can_write *= 4; /* fifo size is in 32bit quantities. */
}
dev_dbg(hsotg->dev, "%s: GNPTXSTS=%08x, can=%d, to=%d, mps %d\n",
__func__, gnptxsts, can_write, to_write, hs_ep->ep.maxpacket);
/* limit to 512 bytes of data, it seems at least on the non-periodic
* FIFO, requests of >512 cause the endpoint to get stuck with a
* fragment of the end of the transfer in it.
*/
if (can_write > 512)
can_write = 512;
/* limit the write to one max-packet size worth of data, but allow
* the transfer to return that it did not run out of fifo space
* doing it. */
if (to_write > hs_ep->ep.maxpacket) {
to_write = hs_ep->ep.maxpacket;
s3c_hsotg_en_gsint(hsotg,
periodic ? S3C_GINTSTS_PTxFEmp :
S3C_GINTSTS_NPTxFEmp);
}
/* see if we can write data */
if (to_write > can_write) {
to_write = can_write;
pkt_round = to_write % hs_ep->ep.maxpacket;
/* Not sure, but we probably shouldn't be writing partial
* packets into the FIFO, so round the write down to an
* exact number of packets.
*
* Note, we do not currently check to see if we can ever
* write a full packet or not to the FIFO.
*/
if (pkt_round)
to_write -= pkt_round;
/* enable correct FIFO interrupt to alert us when there
* is more room left. */
s3c_hsotg_en_gsint(hsotg,
periodic ? S3C_GINTSTS_PTxFEmp :
S3C_GINTSTS_NPTxFEmp);
}
dev_dbg(hsotg->dev, "write %d/%d, can_write %d, done %d\n",
to_write, hs_req->req.length, can_write, buf_pos);
if (to_write <= 0)
return -ENOSPC;
hs_req->req.actual = buf_pos + to_write;
hs_ep->total_data += to_write;
if (periodic)
hs_ep->fifo_load += to_write;
to_write = DIV_ROUND_UP(to_write, 4);
data = hs_req->req.buf + buf_pos;
writesl(hsotg->regs + S3C_EPFIFO(hs_ep->index), data, to_write);
return (to_write >= can_write) ? -ENOSPC : 0;
}
/**
* get_ep_limit - get the maximum data legnth for this endpoint
* @hs_ep: The endpoint
*
* Return the maximum data that can be queued in one go on a given endpoint
* so that transfers that are too long can be split.
*/
static unsigned get_ep_limit(struct s3c_hsotg_ep *hs_ep)
{
int index = hs_ep->index;
unsigned maxsize;
unsigned maxpkt;
if (index != 0) {
maxsize = S3C_DxEPTSIZ_XferSize_LIMIT + 1;
maxpkt = S3C_DxEPTSIZ_PktCnt_LIMIT + 1;
} else {
maxsize = 64+64;
if (hs_ep->dir_in) {
maxpkt = S3C_DIEPTSIZ0_PktCnt_LIMIT + 1;
} else {
maxpkt = 2;
}
}
/* we made the constant loading easier above by using +1 */
maxpkt--;
maxsize--;
/* constrain by packet count if maxpkts*pktsize is greater
* than the length register size. */
if ((maxpkt * hs_ep->ep.maxpacket) < maxsize)
maxsize = maxpkt * hs_ep->ep.maxpacket;
return maxsize;
}
/**
* s3c_hsotg_start_req - start a USB request from an endpoint's queue
* @hsotg: The controller state.
* @hs_ep: The endpoint to process a request for
* @hs_req: The request to start.
* @continuing: True if we are doing more for the current request.
*
* Start the given request running by setting the endpoint registers
* appropriately, and writing any data to the FIFOs.
*/
static void s3c_hsotg_start_req(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
bool continuing)
{
struct usb_request *ureq = &hs_req->req;
int index = hs_ep->index;
int dir_in = hs_ep->dir_in;
u32 epctrl_reg;
u32 epsize_reg;
u32 epsize;
u32 ctrl;
unsigned length;
unsigned packets;
unsigned maxreq;
if (index != 0) {
if (hs_ep->req && !continuing) {
dev_err(hsotg->dev, "%s: active request\n", __func__);
WARN_ON(1);
return;
} else if (hs_ep->req != hs_req && continuing) {
dev_err(hsotg->dev,
"%s: continue different req\n", __func__);
WARN_ON(1);
return;
}
}
epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
epsize_reg = dir_in ? S3C_DIEPTSIZ(index) : S3C_DOEPTSIZ(index);
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x, ep %d, dir %s\n",
__func__, readl(hsotg->regs + epctrl_reg), index,
hs_ep->dir_in ? "in" : "out");
length = ureq->length - ureq->actual;
if (0)
dev_dbg(hsotg->dev,
"REQ buf %p len %d dma 0x%08x noi=%d zp=%d snok=%d\n",
ureq->buf, length, ureq->dma,
ureq->no_interrupt, ureq->zero, ureq->short_not_ok);
maxreq = get_ep_limit(hs_ep);
if (length > maxreq) {
int round = maxreq % hs_ep->ep.maxpacket;
dev_dbg(hsotg->dev, "%s: length %d, max-req %d, r %d\n",
__func__, length, maxreq, round);
/* round down to multiple of packets */
if (round)
maxreq -= round;
length = maxreq;
}
if (length)
packets = DIV_ROUND_UP(length, hs_ep->ep.maxpacket);
else
packets = 1; /* send one packet if length is zero. */
if (dir_in && index != 0)
epsize = S3C_DxEPTSIZ_MC(1);
else
epsize = 0;
if (index != 0 && ureq->zero) {
/* test for the packets being exactly right for the
* transfer */
if (length == (packets * hs_ep->ep.maxpacket))
packets++;
}
epsize |= S3C_DxEPTSIZ_PktCnt(packets);
epsize |= S3C_DxEPTSIZ_XferSize(length);
dev_dbg(hsotg->dev, "%s: %d@%d/%d, 0x%08x => 0x%08x\n",
__func__, packets, length, ureq->length, epsize, epsize_reg);
/* store the request as the current one we're doing */
hs_ep->req = hs_req;
/* write size / packets */
writel(epsize, hsotg->regs + epsize_reg);
ctrl = readl(hsotg->regs + epctrl_reg);
if (ctrl & S3C_DxEPCTL_Stall) {
dev_warn(hsotg->dev, "%s: ep%d is stalled\n", __func__, index);
/* not sure what we can do here, if it is EP0 then we should
* get this cleared once the endpoint has transmitted the
* STALL packet, otherwise it needs to be cleared by the
* host.
*/
}
if (using_dma(hsotg)) {
unsigned int dma_reg;
/* write DMA address to control register, buffer already
* synced by s3c_hsotg_ep_queue(). */
dma_reg = dir_in ? S3C_DIEPDMA(index) : S3C_DOEPDMA(index);
writel(ureq->dma, hsotg->regs + dma_reg);
dev_dbg(hsotg->dev, "%s: 0x%08x => 0x%08x\n",
__func__, ureq->dma, dma_reg);
}
ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
ctrl |= S3C_DxEPCTL_USBActEp;
ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
writel(ctrl, hsotg->regs + epctrl_reg);
/* set these, it seems that DMA support increments past the end
* of the packet buffer so we need to calculate the length from
* this information. */
hs_ep->size_loaded = length;
hs_ep->last_load = ureq->actual;
if (dir_in && !using_dma(hsotg)) {
/* set these anyway, we may need them for non-periodic in */
hs_ep->fifo_load = 0;
s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
/* clear the INTknTXFEmpMsk when we start request, more as a aide
* to debugging to see what is going on. */
if (dir_in)
writel(S3C_DIEPMSK_INTknTXFEmpMsk,
hsotg->regs + S3C_DIEPINT(index));
/* Note, trying to clear the NAK here causes problems with transmit
* on the S3C6400 ending up with the TXFIFO becomming full. */
/* check ep is enabled */
if (!(readl(hsotg->regs + epctrl_reg) & S3C_DxEPCTL_EPEna))
dev_warn(hsotg->dev,
"ep%d: failed to become enabled (DxEPCTL=0x%08x)?\n",
index, readl(hsotg->regs + epctrl_reg));
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n",
__func__, readl(hsotg->regs + epctrl_reg));
}
/**
* s3c_hsotg_map_dma - map the DMA memory being used for the request
* @hsotg: The device state.
* @hs_ep: The endpoint the request is on.
* @req: The request being processed.
*
* We've been asked to queue a request, so ensure that the memory buffer
* is correctly setup for DMA. If we've been passed an extant DMA address
* then ensure the buffer has been synced to memory. If our buffer has no
* DMA memory, then we map the memory and mark our request to allow us to
* cleanup on completion.
*/
static int s3c_hsotg_map_dma(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct usb_request *req)
{
enum dma_data_direction dir;
struct s3c_hsotg_req *hs_req = our_req(req);
dir = hs_ep->dir_in ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
/* if the length is zero, ignore the DMA data */
if (hs_req->req.length == 0)
return 0;
if (req->dma == DMA_ADDR_INVALID) {
dma_addr_t dma;
dma = dma_map_single(hsotg->dev, req->buf, req->length, dir);
if (unlikely(dma_mapping_error(hsotg->dev, dma)))
goto dma_error;
if (dma & 3) {
dev_err(hsotg->dev, "%s: unaligned dma buffer\n",
__func__);
dma_unmap_single(hsotg->dev, dma, req->length, dir);
return -EINVAL;
}
hs_req->mapped = 1;
req->dma = dma;
} else {
dma_sync_single_for_cpu(hsotg->dev, req->dma, req->length, dir);
hs_req->mapped = 0;
}
return 0;
dma_error:
dev_err(hsotg->dev, "%s: failed to map buffer %p, %d bytes\n",
__func__, req->buf, req->length);
return -EIO;
}
static int s3c_hsotg_ep_queue(struct usb_ep *ep, struct usb_request *req,
gfp_t gfp_flags)
{
struct s3c_hsotg_req *hs_req = our_req(req);
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
unsigned long irqflags;
bool first;
dev_dbg(hs->dev, "%s: req %p: %d@%p, noi=%d, zero=%d, snok=%d\n",
ep->name, req, req->length, req->buf, req->no_interrupt,
req->zero, req->short_not_ok);
/* initialise status of the request */
INIT_LIST_HEAD(&hs_req->queue);
req->actual = 0;
req->status = -EINPROGRESS;
/* if we're using DMA, sync the buffers as necessary */
if (using_dma(hs)) {
int ret = s3c_hsotg_map_dma(hs, hs_ep, req);
if (ret)
return ret;
}
spin_lock_irqsave(&hs_ep->lock, irqflags);
first = list_empty(&hs_ep->queue);
list_add_tail(&hs_req->queue, &hs_ep->queue);
if (first)
s3c_hsotg_start_req(hs, hs_ep, hs_req, false);
spin_unlock_irqrestore(&hs_ep->lock, irqflags);
return 0;
}
static void s3c_hsotg_ep_free_request(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_req *hs_req = our_req(req);
kfree(hs_req);
}
/**
* s3c_hsotg_complete_oursetup - setup completion callback
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself
* submitted that need cleaning up.
*/
static void s3c_hsotg_complete_oursetup(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
dev_dbg(hsotg->dev, "%s: ep %p, req %p\n", __func__, ep, req);
s3c_hsotg_ep_free_request(ep, req);
}
/**
* ep_from_windex - convert control wIndex value to endpoint
* @hsotg: The driver state.
* @windex: The control request wIndex field (in host order).
*
* Convert the given wIndex into a pointer to an driver endpoint
* structure, or return NULL if it is not a valid endpoint.
*/
static struct s3c_hsotg_ep *ep_from_windex(struct s3c_hsotg *hsotg,
u32 windex)
{
struct s3c_hsotg_ep *ep = &hsotg->eps[windex & 0x7F];
int dir = (windex & USB_DIR_IN) ? 1 : 0;
int idx = windex & 0x7F;
if (windex >= 0x100)
return NULL;
if (idx > S3C_HSOTG_EPS)
return NULL;
if (idx && ep->dir_in != dir)
return NULL;
return ep;
}
/**
* s3c_hsotg_send_reply - send reply to control request
* @hsotg: The device state
* @ep: Endpoint 0
* @buff: Buffer for request
* @length: Length of reply.
*
* Create a request and queue it on the given endpoint. This is useful as
* an internal method of sending replies to certain control requests, etc.
*/
static int s3c_hsotg_send_reply(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *ep,
void *buff,
int length)
{
struct usb_request *req;
int ret;
dev_dbg(hsotg->dev, "%s: buff %p, len %d\n", __func__, buff, length);
req = s3c_hsotg_ep_alloc_request(&ep->ep, GFP_ATOMIC);
hsotg->ep0_reply = req;
if (!req) {
dev_warn(hsotg->dev, "%s: cannot alloc req\n", __func__);
return -ENOMEM;
}
req->buf = hsotg->ep0_buff;
req->length = length;
req->zero = 1; /* always do zero-length final transfer */
req->complete = s3c_hsotg_complete_oursetup;
if (length)
memcpy(req->buf, buff, length);
else
ep->sent_zlp = 1;
ret = s3c_hsotg_ep_queue(&ep->ep, req, GFP_ATOMIC);
if (ret) {
dev_warn(hsotg->dev, "%s: cannot queue req\n", __func__);
return ret;
}
return 0;
}
/**
* s3c_hsotg_process_req_status - process request GET_STATUS
* @hsotg: The device state
* @ctrl: USB control request
*/
static int s3c_hsotg_process_req_status(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
struct s3c_hsotg_ep *ep;
__le16 reply;
int ret;
dev_dbg(hsotg->dev, "%s: USB_REQ_GET_STATUS\n", __func__);
if (!ep0->dir_in) {
dev_warn(hsotg->dev, "%s: direction out?\n", __func__);
return -EINVAL;
}
switch (ctrl->bRequestType & USB_RECIP_MASK) {
case USB_RECIP_DEVICE:
reply = cpu_to_le16(0); /* bit 0 => self powered,
* bit 1 => remote wakeup */
break;
case USB_RECIP_INTERFACE:
/* currently, the data result should be zero */
reply = cpu_to_le16(0);
break;
case USB_RECIP_ENDPOINT:
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
if (!ep)
return -ENOENT;
reply = cpu_to_le16(ep->halted ? 1 : 0);
break;
default:
return 0;
}
if (le16_to_cpu(ctrl->wLength) != 2)
return -EINVAL;
ret = s3c_hsotg_send_reply(hsotg, ep0, &reply, 2);
if (ret) {
dev_err(hsotg->dev, "%s: failed to send reply\n", __func__);
return ret;
}
return 1;
}
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value);
/**
* s3c_hsotg_process_req_featire - process request {SET,CLEAR}_FEATURE
* @hsotg: The device state
* @ctrl: USB control request
*/
static int s3c_hsotg_process_req_feature(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
bool set = (ctrl->bRequest == USB_REQ_SET_FEATURE);
struct s3c_hsotg_ep *ep;
dev_dbg(hsotg->dev, "%s: %s_FEATURE\n",
__func__, set ? "SET" : "CLEAR");
if (ctrl->bRequestType == USB_RECIP_ENDPOINT) {
ep = ep_from_windex(hsotg, le16_to_cpu(ctrl->wIndex));
if (!ep) {
dev_dbg(hsotg->dev, "%s: no endpoint for 0x%04x\n",
__func__, le16_to_cpu(ctrl->wIndex));
return -ENOENT;
}
switch (le16_to_cpu(ctrl->wValue)) {
case USB_ENDPOINT_HALT:
s3c_hsotg_ep_sethalt(&ep->ep, set);
break;
default:
return -ENOENT;
}
} else
return -ENOENT; /* currently only deal with endpoint */
return 1;
}
/**
* s3c_hsotg_process_control - process a control request
* @hsotg: The device state
* @ctrl: The control request received
*
* The controller has received the SETUP phase of a control request, and
* needs to work out what to do next (and whether to pass it on to the
* gadget driver).
*/
static void s3c_hsotg_process_control(struct s3c_hsotg *hsotg,
struct usb_ctrlrequest *ctrl)
{
struct s3c_hsotg_ep *ep0 = &hsotg->eps[0];
int ret = 0;
u32 dcfg;
ep0->sent_zlp = 0;
dev_dbg(hsotg->dev, "ctrl Req=%02x, Type=%02x, V=%04x, L=%04x\n",
ctrl->bRequest, ctrl->bRequestType,
ctrl->wValue, ctrl->wLength);
/* record the direction of the request, for later use when enquing
* packets onto EP0. */
ep0->dir_in = (ctrl->bRequestType & USB_DIR_IN) ? 1 : 0;
dev_dbg(hsotg->dev, "ctrl: dir_in=%d\n", ep0->dir_in);
/* if we've no data with this request, then the last part of the
* transaction is going to implicitly be IN. */
if (ctrl->wLength == 0)
ep0->dir_in = 1;
if ((ctrl->bRequestType & USB_TYPE_MASK) == USB_TYPE_STANDARD) {
switch (ctrl->bRequest) {
case USB_REQ_SET_ADDRESS:
dcfg = readl(hsotg->regs + S3C_DCFG);
dcfg &= ~S3C_DCFG_DevAddr_MASK;
dcfg |= ctrl->wValue << S3C_DCFG_DevAddr_SHIFT;
writel(dcfg, hsotg->regs + S3C_DCFG);
dev_info(hsotg->dev, "new address %d\n", ctrl->wValue);
ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
return;
case USB_REQ_GET_STATUS:
ret = s3c_hsotg_process_req_status(hsotg, ctrl);
break;
case USB_REQ_CLEAR_FEATURE:
case USB_REQ_SET_FEATURE:
ret = s3c_hsotg_process_req_feature(hsotg, ctrl);
break;
}
}
/* as a fallback, try delivering it to the driver to deal with */
if (ret == 0 && hsotg->driver) {
ret = hsotg->driver->setup(&hsotg->gadget, ctrl);
if (ret < 0)
dev_dbg(hsotg->dev, "driver->setup() ret %d\n", ret);
}
if (ret > 0) {
if (!ep0->dir_in) {
/* need to generate zlp in reply or take data */
/* todo - deal with any data we might be sent? */
ret = s3c_hsotg_send_reply(hsotg, ep0, NULL, 0);
}
}
/* the request is either unhandlable, or is not formatted correctly
* so respond with a STALL for the status stage to indicate failure.
*/
if (ret < 0) {
u32 reg;
u32 ctrl;
dev_dbg(hsotg->dev, "ep0 stall (dir=%d)\n", ep0->dir_in);
reg = (ep0->dir_in) ? S3C_DIEPCTL0 : S3C_DOEPCTL0;
/* S3C_DxEPCTL_Stall will be cleared by EP once it has
* taken effect, so no need to clear later. */
ctrl = readl(hsotg->regs + reg);
ctrl |= S3C_DxEPCTL_Stall;
ctrl |= S3C_DxEPCTL_CNAK;
writel(ctrl, hsotg->regs + reg);
dev_dbg(hsotg->dev,
"writen DxEPCTL=0x%08x to %08x (DxEPCTL=0x%08x)\n",
ctrl, reg, readl(hsotg->regs + reg));
/* don't belive we need to anything more to get the EP
* to reply with a STALL packet */
}
}
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg);
/**
* s3c_hsotg_complete_setup - completion of a setup transfer
* @ep: The endpoint the request was on.
* @req: The request completed.
*
* Called on completion of any requests the driver itself submitted for
* EP0 setup packets
*/
static void s3c_hsotg_complete_setup(struct usb_ep *ep,
struct usb_request *req)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
if (req->status < 0) {
dev_dbg(hsotg->dev, "%s: failed %d\n", __func__, req->status);
return;
}
if (req->actual == 0)
s3c_hsotg_enqueue_setup(hsotg);
else
s3c_hsotg_process_control(hsotg, req->buf);
}
/**
* s3c_hsotg_enqueue_setup - start a request for EP0 packets
* @hsotg: The device state.
*
* Enqueue a request on EP0 if necessary to received any SETUP packets
* received from the host.
*/
static void s3c_hsotg_enqueue_setup(struct s3c_hsotg *hsotg)
{
struct usb_request *req = hsotg->ctrl_req;
struct s3c_hsotg_req *hs_req = our_req(req);
int ret;
dev_dbg(hsotg->dev, "%s: queueing setup request\n", __func__);
req->zero = 0;
req->length = 8;
req->buf = hsotg->ctrl_buff;
req->complete = s3c_hsotg_complete_setup;
if (!list_empty(&hs_req->queue)) {
dev_dbg(hsotg->dev, "%s already queued???\n", __func__);
return;
}
hsotg->eps[0].dir_in = 0;
ret = s3c_hsotg_ep_queue(&hsotg->eps[0].ep, req, GFP_ATOMIC);
if (ret < 0) {
dev_err(hsotg->dev, "%s: failed queue (%d)\n", __func__, ret);
/* Don't think there's much we can do other than watch the
* driver fail. */
}
}
/**
* get_ep_head - return the first request on the endpoint
* @hs_ep: The controller endpoint to get
*
* Get the first request on the endpoint.
*/
static struct s3c_hsotg_req *get_ep_head(struct s3c_hsotg_ep *hs_ep)
{
if (list_empty(&hs_ep->queue))
return NULL;
return list_first_entry(&hs_ep->queue, struct s3c_hsotg_req, queue);
}
/**
* s3c_hsotg_complete_request - complete a request given to us
* @hsotg: The device state.
* @hs_ep: The endpoint the request was on.
* @hs_req: The request to complete.
* @result: The result code (0 => Ok, otherwise errno)
*
* The given request has finished, so call the necessary completion
* if it has one and then look to see if we can start a new request
* on the endpoint.
*
* Note, expects the ep to already be locked as appropriate.
*/
static void s3c_hsotg_complete_request(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
int result)
{
bool restart;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: nothing to complete?\n", __func__);
return;
}
dev_dbg(hsotg->dev, "complete: ep %p %s, req %p, %d => %p\n",
hs_ep, hs_ep->ep.name, hs_req, result, hs_req->req.complete);
/* only replace the status if we've not already set an error
* from a previous transaction */
if (hs_req->req.status == -EINPROGRESS)
hs_req->req.status = result;
hs_ep->req = NULL;
list_del_init(&hs_req->queue);
if (using_dma(hsotg))
s3c_hsotg_unmap_dma(hsotg, hs_ep, hs_req);
/* call the complete request with the locks off, just in case the
* request tries to queue more work for this endpoint. */
if (hs_req->req.complete) {
spin_unlock(&hs_ep->lock);
hs_req->req.complete(&hs_ep->ep, &hs_req->req);
spin_lock(&hs_ep->lock);
}
/* Look to see if there is anything else to do. Note, the completion
* of the previous request may have caused a new request to be started
* so be careful when doing this. */
if (!hs_ep->req && result >= 0) {
restart = !list_empty(&hs_ep->queue);
if (restart) {
hs_req = get_ep_head(hs_ep);
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, false);
}
}
}
/**
* s3c_hsotg_complete_request_lock - complete a request given to us (locked)
* @hsotg: The device state.
* @hs_ep: The endpoint the request was on.
* @hs_req: The request to complete.
* @result: The result code (0 => Ok, otherwise errno)
*
* See s3c_hsotg_complete_request(), but called with the endpoint's
* lock held.
*/
static void s3c_hsotg_complete_request_lock(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
struct s3c_hsotg_req *hs_req,
int result)
{
unsigned long flags;
spin_lock_irqsave(&hs_ep->lock, flags);
s3c_hsotg_complete_request(hsotg, hs_ep, hs_req, result);
spin_unlock_irqrestore(&hs_ep->lock, flags);
}
/**
* s3c_hsotg_rx_data - receive data from the FIFO for an endpoint
* @hsotg: The device state.
* @ep_idx: The endpoint index for the data
* @size: The size of data in the fifo, in bytes
*
* The FIFO status shows there is data to read from the FIFO for a given
* endpoint, so sort out whether we need to read the data into a request
* that has been made for that endpoint.
*/
static void s3c_hsotg_rx_data(struct s3c_hsotg *hsotg, int ep_idx, int size)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep_idx];
struct s3c_hsotg_req *hs_req = hs_ep->req;
void __iomem *fifo = hsotg->regs + S3C_EPFIFO(ep_idx);
int to_read;
int max_req;
int read_ptr;
if (!hs_req) {
u32 epctl = readl(hsotg->regs + S3C_DOEPCTL(ep_idx));
int ptr;
dev_warn(hsotg->dev,
"%s: FIFO %d bytes on ep%d but no req (DxEPCTl=0x%08x)\n",
__func__, size, ep_idx, epctl);
/* dump the data from the FIFO, we've nothing we can do */
for (ptr = 0; ptr < size; ptr += 4)
(void)readl(fifo);
return;
}
spin_lock(&hs_ep->lock);
to_read = size;
read_ptr = hs_req->req.actual;
max_req = hs_req->req.length - read_ptr;
dev_dbg(hsotg->dev, "%s: read %d/%d, done %d/%d\n",
__func__, to_read, max_req, read_ptr, hs_req->req.length);
if (to_read > max_req) {
/* more data appeared than we where willing
* to deal with in this request.
*/
/* currently we don't deal this */
WARN_ON_ONCE(1);
}
hs_ep->total_data += to_read;
hs_req->req.actual += to_read;
to_read = DIV_ROUND_UP(to_read, 4);
/* note, we might over-write the buffer end by 3 bytes depending on
* alignment of the data. */
readsl(fifo, hs_req->req.buf + read_ptr, to_read);
spin_unlock(&hs_ep->lock);
}
/**
* s3c_hsotg_send_zlp - send zero-length packet on control endpoint
* @hsotg: The device instance
* @req: The request currently on this endpoint
*
* Generate a zero-length IN packet request for terminating a SETUP
* transaction.
*
* Note, since we don't write any data to the TxFIFO, then it is
* currently belived that we do not need to wait for any space in
* the TxFIFO.
*/
static void s3c_hsotg_send_zlp(struct s3c_hsotg *hsotg,
struct s3c_hsotg_req *req)
{
u32 ctrl;
if (!req) {
dev_warn(hsotg->dev, "%s: no request?\n", __func__);
return;
}
if (req->req.length == 0) {
hsotg->eps[0].sent_zlp = 1;
s3c_hsotg_enqueue_setup(hsotg);
return;
}
hsotg->eps[0].dir_in = 1;
hsotg->eps[0].sent_zlp = 1;
dev_dbg(hsotg->dev, "sending zero-length packet\n");
/* issue a zero-sized packet to terminate this */
writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
S3C_DxEPTSIZ_XferSize(0), hsotg->regs + S3C_DIEPTSIZ(0));
ctrl = readl(hsotg->regs + S3C_DIEPCTL0);
ctrl |= S3C_DxEPCTL_CNAK; /* clear NAK set by core */
ctrl |= S3C_DxEPCTL_EPEna; /* ensure ep enabled */
ctrl |= S3C_DxEPCTL_USBActEp;
writel(ctrl, hsotg->regs + S3C_DIEPCTL0);
}
/**
* s3c_hsotg_handle_outdone - handle receiving OutDone/SetupDone from RXFIFO
* @hsotg: The device instance
* @epnum: The endpoint received from
* @was_setup: Set if processing a SetupDone event.
*
* The RXFIFO has delivered an OutDone event, which means that the data
* transfer for an OUT endpoint has been completed, either by a short
* packet or by the finish of a transfer.
*/
static void s3c_hsotg_handle_outdone(struct s3c_hsotg *hsotg,
int epnum, bool was_setup)
{
u32 epsize = readl(hsotg->regs + S3C_DOEPTSIZ(epnum));
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[epnum];
struct s3c_hsotg_req *hs_req = hs_ep->req;
struct usb_request *req = &hs_req->req;
unsigned size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
int result = 0;
if (!hs_req) {
dev_dbg(hsotg->dev, "%s: no request active\n", __func__);
return;
}
if (using_dma(hsotg)) {
unsigned size_done;
/* Calculate the size of the transfer by checking how much
* is left in the endpoint size register and then working it
* out from the amount we loaded for the transfer.
*
* We need to do this as DMA pointers are always 32bit aligned
* so may overshoot/undershoot the transfer.
*/
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
req->actual = size_done;
}
/* if there is more request to do, schedule new transfer */
if (req->actual < req->length && size_left == 0) {
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
return;
}
if (req->actual < req->length && req->short_not_ok) {
dev_dbg(hsotg->dev, "%s: got %d/%d (short not ok) => error\n",
__func__, req->actual, req->length);
/* todo - what should we return here? there's no one else
* even bothering to check the status. */
}
if (epnum == 0) {
if (!was_setup && req->complete != s3c_hsotg_complete_setup)
s3c_hsotg_send_zlp(hsotg, hs_req);
}
s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, result);
}
/**
* s3c_hsotg_read_frameno - read current frame number
* @hsotg: The device instance
*
* Return the current frame number
*/
static u32 s3c_hsotg_read_frameno(struct s3c_hsotg *hsotg)
{
u32 dsts;
dsts = readl(hsotg->regs + S3C_DSTS);
dsts &= S3C_DSTS_SOFFN_MASK;
dsts >>= S3C_DSTS_SOFFN_SHIFT;
return dsts;
}
/**
* s3c_hsotg_handle_rx - RX FIFO has data
* @hsotg: The device instance
*
* The IRQ handler has detected that the RX FIFO has some data in it
* that requires processing, so find out what is in there and do the
* appropriate read.
*
* The RXFIFO is a true FIFO, the packets comming out are still in packet
* chunks, so if you have x packets received on an endpoint you'll get x
* FIFO events delivered, each with a packet's worth of data in it.
*
* When using DMA, we should not be processing events from the RXFIFO
* as the actual data should be sent to the memory directly and we turn
* on the completion interrupts to get notifications of transfer completion.
*/
static void s3c_hsotg_handle_rx(struct s3c_hsotg *hsotg)
{
u32 grxstsr = readl(hsotg->regs + S3C_GRXSTSP);
u32 epnum, status, size;
WARN_ON(using_dma(hsotg));
epnum = grxstsr & S3C_GRXSTS_EPNum_MASK;
status = grxstsr & S3C_GRXSTS_PktSts_MASK;
size = grxstsr & S3C_GRXSTS_ByteCnt_MASK;
size >>= S3C_GRXSTS_ByteCnt_SHIFT;
if (1)
dev_dbg(hsotg->dev, "%s: GRXSTSP=0x%08x (%d@%d)\n",
__func__, grxstsr, size, epnum);
#define __status(x) ((x) >> S3C_GRXSTS_PktSts_SHIFT)
switch (status >> S3C_GRXSTS_PktSts_SHIFT) {
case __status(S3C_GRXSTS_PktSts_GlobalOutNAK):
dev_dbg(hsotg->dev, "GlobalOutNAK\n");
break;
case __status(S3C_GRXSTS_PktSts_OutDone):
dev_dbg(hsotg->dev, "OutDone (Frame=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg));
if (!using_dma(hsotg))
s3c_hsotg_handle_outdone(hsotg, epnum, false);
break;
case __status(S3C_GRXSTS_PktSts_SetupDone):
dev_dbg(hsotg->dev,
"SetupDone (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg),
readl(hsotg->regs + S3C_DOEPCTL(0)));
s3c_hsotg_handle_outdone(hsotg, epnum, true);
break;
case __status(S3C_GRXSTS_PktSts_OutRX):
s3c_hsotg_rx_data(hsotg, epnum, size);
break;
case __status(S3C_GRXSTS_PktSts_SetupRX):
dev_dbg(hsotg->dev,
"SetupRX (Frame=0x%08x, DOPEPCTL=0x%08x)\n",
s3c_hsotg_read_frameno(hsotg),
readl(hsotg->regs + S3C_DOEPCTL(0)));
s3c_hsotg_rx_data(hsotg, epnum, size);
break;
default:
dev_warn(hsotg->dev, "%s: unknown status %08x\n",
__func__, grxstsr);
s3c_hsotg_dump(hsotg);
break;
}
}
/**
* s3c_hsotg_ep0_mps - turn max packet size into register setting
* @mps: The maximum packet size in bytes.
*/
static u32 s3c_hsotg_ep0_mps(unsigned int mps)
{
switch (mps) {
case 64:
return S3C_D0EPCTL_MPS_64;
case 32:
return S3C_D0EPCTL_MPS_32;
case 16:
return S3C_D0EPCTL_MPS_16;
case 8:
return S3C_D0EPCTL_MPS_8;
}
/* bad max packet size, warn and return invalid result */
WARN_ON(1);
return (u32)-1;
}
/**
* s3c_hsotg_set_ep_maxpacket - set endpoint's max-packet field
* @hsotg: The driver state.
* @ep: The index number of the endpoint
* @mps: The maximum packet size in bytes
*
* Configure the maximum packet size for the given endpoint, updating
* the hardware control registers to reflect this.
*/
static void s3c_hsotg_set_ep_maxpacket(struct s3c_hsotg *hsotg,
unsigned int ep, unsigned int mps)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[ep];
void __iomem *regs = hsotg->regs;
u32 mpsval;
u32 reg;
if (ep == 0) {
/* EP0 is a special case */
mpsval = s3c_hsotg_ep0_mps(mps);
if (mpsval > 3)
goto bad_mps;
} else {
if (mps >= S3C_DxEPCTL_MPS_LIMIT+1)
goto bad_mps;
mpsval = mps;
}
hs_ep->ep.maxpacket = mps;
/* update both the in and out endpoint controldir_ registers, even
* if one of the directions may not be in use. */
reg = readl(regs + S3C_DIEPCTL(ep));
reg &= ~S3C_DxEPCTL_MPS_MASK;
reg |= mpsval;
writel(reg, regs + S3C_DIEPCTL(ep));
reg = readl(regs + S3C_DOEPCTL(ep));
reg &= ~S3C_DxEPCTL_MPS_MASK;
reg |= mpsval;
writel(reg, regs + S3C_DOEPCTL(ep));
return;
bad_mps:
dev_err(hsotg->dev, "ep%d: bad mps of %d\n", ep, mps);
}
/**
* s3c_hsotg_trytx - check to see if anything needs transmitting
* @hsotg: The driver state
* @hs_ep: The driver endpoint to check.
*
* Check to see if there is a request that has data to send, and if so
* make an attempt to write data into the FIFO.
*/
static int s3c_hsotg_trytx(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep)
{
struct s3c_hsotg_req *hs_req = hs_ep->req;
if (!hs_ep->dir_in || !hs_req)
return 0;
if (hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "trying to write more for ep%d\n",
hs_ep->index);
return s3c_hsotg_write_fifo(hsotg, hs_ep, hs_req);
}
return 0;
}
/**
* s3c_hsotg_complete_in - complete IN transfer
* @hsotg: The device state.
* @hs_ep: The endpoint that has just completed.
*
* An IN transfer has been completed, update the transfer's state and then
* call the relevant completion routines.
*/
static void s3c_hsotg_complete_in(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep)
{
struct s3c_hsotg_req *hs_req = hs_ep->req;
u32 epsize = readl(hsotg->regs + S3C_DIEPTSIZ(hs_ep->index));
int size_left, size_done;
if (!hs_req) {
dev_dbg(hsotg->dev, "XferCompl but no req\n");
return;
}
/* Calculate the size of the transfer by checking how much is left
* in the endpoint size register and then working it out from
* the amount we loaded for the transfer.
*
* We do this even for DMA, as the transfer may have incremented
* past the end of the buffer (DMA transfers are always 32bit
* aligned).
*/
size_left = S3C_DxEPTSIZ_XferSize_GET(epsize);
size_done = hs_ep->size_loaded - size_left;
size_done += hs_ep->last_load;
if (hs_req->req.actual != size_done)
dev_dbg(hsotg->dev, "%s: adjusting size done %d => %d\n",
__func__, hs_req->req.actual, size_done);
hs_req->req.actual = size_done;
/* if we did all of the transfer, and there is more data left
* around, then try restarting the rest of the request */
if (!size_left && hs_req->req.actual < hs_req->req.length) {
dev_dbg(hsotg->dev, "%s trying more for req...\n", __func__);
s3c_hsotg_start_req(hsotg, hs_ep, hs_req, true);
} else
s3c_hsotg_complete_request_lock(hsotg, hs_ep, hs_req, 0);
}
/**
* s3c_hsotg_epint - handle an in/out endpoint interrupt
* @hsotg: The driver state
* @idx: The index for the endpoint (0..15)
* @dir_in: Set if this is an IN endpoint
*
* Process and clear any interrupt pending for an individual endpoint
*/
static void s3c_hsotg_epint(struct s3c_hsotg *hsotg, unsigned int idx,
int dir_in)
{
struct s3c_hsotg_ep *hs_ep = &hsotg->eps[idx];
u32 epint_reg = dir_in ? S3C_DIEPINT(idx) : S3C_DOEPINT(idx);
u32 epctl_reg = dir_in ? S3C_DIEPCTL(idx) : S3C_DOEPCTL(idx);
u32 epsiz_reg = dir_in ? S3C_DIEPTSIZ(idx) : S3C_DOEPTSIZ(idx);
u32 ints;
u32 clear = 0;
ints = readl(hsotg->regs + epint_reg);
dev_dbg(hsotg->dev, "%s: ep%d(%s) DxEPINT=0x%08x\n",
__func__, idx, dir_in ? "in" : "out", ints);
if (ints & S3C_DxEPINT_XferCompl) {
dev_dbg(hsotg->dev,
"%s: XferCompl: DxEPCTL=0x%08x, DxEPTSIZ=%08x\n",
__func__, readl(hsotg->regs + epctl_reg),
readl(hsotg->regs + epsiz_reg));
/* we get OutDone from the FIFO, so we only need to look
* at completing IN requests here */
if (dir_in) {
s3c_hsotg_complete_in(hsotg, hs_ep);
if (idx == 0 && !hs_ep->req)
s3c_hsotg_enqueue_setup(hsotg);
} else if (using_dma(hsotg)) {
/* We're using DMA, we need to fire an OutDone here
* as we ignore the RXFIFO. */
s3c_hsotg_handle_outdone(hsotg, idx, false);
}
clear |= S3C_DxEPINT_XferCompl;
}
if (ints & S3C_DxEPINT_EPDisbld) {
dev_dbg(hsotg->dev, "%s: EPDisbld\n", __func__);
clear |= S3C_DxEPINT_EPDisbld;
}
if (ints & S3C_DxEPINT_AHBErr) {
dev_dbg(hsotg->dev, "%s: AHBErr\n", __func__);
clear |= S3C_DxEPINT_AHBErr;
}
if (ints & S3C_DxEPINT_Setup) { /* Setup or Timeout */
dev_dbg(hsotg->dev, "%s: Setup/Timeout\n", __func__);
if (using_dma(hsotg) && idx == 0) {
/* this is the notification we've received a
* setup packet. In non-DMA mode we'd get this
* from the RXFIFO, instead we need to process
* the setup here. */
if (dir_in)
WARN_ON_ONCE(1);
else
s3c_hsotg_handle_outdone(hsotg, 0, true);
}
clear |= S3C_DxEPINT_Setup;
}
if (ints & S3C_DxEPINT_Back2BackSetup) {
dev_dbg(hsotg->dev, "%s: B2BSetup/INEPNakEff\n", __func__);
clear |= S3C_DxEPINT_Back2BackSetup;
}
if (dir_in) {
/* not sure if this is important, but we'll clear it anyway
*/
if (ints & S3C_DIEPMSK_INTknTXFEmpMsk) {
dev_dbg(hsotg->dev, "%s: ep%d: INTknTXFEmpMsk\n",
__func__, idx);
clear |= S3C_DIEPMSK_INTknTXFEmpMsk;
}
/* this probably means something bad is happening */
if (ints & S3C_DIEPMSK_INTknEPMisMsk) {
dev_warn(hsotg->dev, "%s: ep%d: INTknEP\n",
__func__, idx);
clear |= S3C_DIEPMSK_INTknEPMisMsk;
}
/* FIFO has space or is empty (see GAHBCFG) */
if (hsotg->dedicated_fifos &&
ints & S3C_DIEPMSK_TxFIFOEmpty) {
dev_dbg(hsotg->dev, "%s: ep%d: TxFIFOEmpty\n",
__func__, idx);
s3c_hsotg_trytx(hsotg, hs_ep);
clear |= S3C_DIEPMSK_TxFIFOEmpty;
}
}
writel(clear, hsotg->regs + epint_reg);
}
/**
* s3c_hsotg_irq_enumdone - Handle EnumDone interrupt (enumeration done)
* @hsotg: The device state.
*
* Handle updating the device settings after the enumeration phase has
* been completed.
*/
static void s3c_hsotg_irq_enumdone(struct s3c_hsotg *hsotg)
{
u32 dsts = readl(hsotg->regs + S3C_DSTS);
int ep0_mps = 0, ep_mps;
/* This should signal the finish of the enumeration phase
* of the USB handshaking, so we should now know what rate
* we connected at. */
dev_dbg(hsotg->dev, "EnumDone (DSTS=0x%08x)\n", dsts);
/* note, since we're limited by the size of transfer on EP0, and
* it seems IN transfers must be a even number of packets we do
* not advertise a 64byte MPS on EP0. */
/* catch both EnumSpd_FS and EnumSpd_FS48 */
switch (dsts & S3C_DSTS_EnumSpd_MASK) {
case S3C_DSTS_EnumSpd_FS:
case S3C_DSTS_EnumSpd_FS48:
hsotg->gadget.speed = USB_SPEED_FULL;
dev_info(hsotg->dev, "new device is full-speed\n");
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 64;
break;
case S3C_DSTS_EnumSpd_HS:
dev_info(hsotg->dev, "new device is high-speed\n");
hsotg->gadget.speed = USB_SPEED_HIGH;
ep0_mps = EP0_MPS_LIMIT;
ep_mps = 512;
break;
case S3C_DSTS_EnumSpd_LS:
hsotg->gadget.speed = USB_SPEED_LOW;
dev_info(hsotg->dev, "new device is low-speed\n");
/* note, we don't actually support LS in this driver at the
* moment, and the documentation seems to imply that it isn't
* supported by the PHYs on some of the devices.
*/
break;
}
/* we should now know the maximum packet size for an
* endpoint, so set the endpoints to a default value. */
if (ep0_mps) {
int i;
s3c_hsotg_set_ep_maxpacket(hsotg, 0, ep0_mps);
for (i = 1; i < S3C_HSOTG_EPS; i++)
s3c_hsotg_set_ep_maxpacket(hsotg, i, ep_mps);
}
/* ensure after enumeration our EP0 is active */
s3c_hsotg_enqueue_setup(hsotg);
dev_dbg(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + S3C_DIEPCTL0),
readl(hsotg->regs + S3C_DOEPCTL0));
}
/**
* kill_all_requests - remove all requests from the endpoint's queue
* @hsotg: The device state.
* @ep: The endpoint the requests may be on.
* @result: The result code to use.
* @force: Force removal of any current requests
*
* Go through the requests on the given endpoint and mark them
* completed with the given result code.
*/
static void kill_all_requests(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *ep,
int result, bool force)
{
struct s3c_hsotg_req *req, *treq;
unsigned long flags;
spin_lock_irqsave(&ep->lock, flags);
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
/* currently, we can't do much about an already
* running request on an in endpoint */
if (ep->req == req && ep->dir_in && !force)
continue;
s3c_hsotg_complete_request(hsotg, ep, req,
result);
}
spin_unlock_irqrestore(&ep->lock, flags);
}
#define call_gadget(_hs, _entry) \
if ((_hs)->gadget.speed != USB_SPEED_UNKNOWN && \
(_hs)->driver && (_hs)->driver->_entry) \
(_hs)->driver->_entry(&(_hs)->gadget);
/**
* s3c_hsotg_disconnect_irq - disconnect irq service
* @hsotg: The device state.
*
* A disconnect IRQ has been received, meaning that the host has
* lost contact with the bus. Remove all current transactions
* and signal the gadget driver that this has happened.
*/
static void s3c_hsotg_disconnect_irq(struct s3c_hsotg *hsotg)
{
unsigned ep;
for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
kill_all_requests(hsotg, &hsotg->eps[ep], -ESHUTDOWN, true);
call_gadget(hsotg, disconnect);
}
/**
* s3c_hsotg_irq_fifoempty - TX FIFO empty interrupt handler
* @hsotg: The device state:
* @periodic: True if this is a periodic FIFO interrupt
*/
static void s3c_hsotg_irq_fifoempty(struct s3c_hsotg *hsotg, bool periodic)
{
struct s3c_hsotg_ep *ep;
int epno, ret;
/* look through for any more data to transmit */
for (epno = 0; epno < S3C_HSOTG_EPS; epno++) {
ep = &hsotg->eps[epno];
if (!ep->dir_in)
continue;
if ((periodic && !ep->periodic) ||
(!periodic && ep->periodic))
continue;
ret = s3c_hsotg_trytx(hsotg, ep);
if (ret < 0)
break;
}
}
static struct s3c_hsotg *our_hsotg;
/* IRQ flags which will trigger a retry around the IRQ loop */
#define IRQ_RETRY_MASK (S3C_GINTSTS_NPTxFEmp | \
S3C_GINTSTS_PTxFEmp | \
S3C_GINTSTS_RxFLvl)
/**
* s3c_hsotg_irq - handle device interrupt
* @irq: The IRQ number triggered
* @pw: The pw value when registered the handler.
*/
static irqreturn_t s3c_hsotg_irq(int irq, void *pw)
{
struct s3c_hsotg *hsotg = pw;
int retry_count = 8;
u32 gintsts;
u32 gintmsk;
irq_retry:
gintsts = readl(hsotg->regs + S3C_GINTSTS);
gintmsk = readl(hsotg->regs + S3C_GINTMSK);
dev_dbg(hsotg->dev, "%s: %08x %08x (%08x) retry %d\n",
__func__, gintsts, gintsts & gintmsk, gintmsk, retry_count);
gintsts &= gintmsk;
if (gintsts & S3C_GINTSTS_OTGInt) {
u32 otgint = readl(hsotg->regs + S3C_GOTGINT);
dev_info(hsotg->dev, "OTGInt: %08x\n", otgint);
writel(otgint, hsotg->regs + S3C_GOTGINT);
writel(S3C_GINTSTS_OTGInt, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_DisconnInt) {
dev_dbg(hsotg->dev, "%s: DisconnInt\n", __func__);
writel(S3C_GINTSTS_DisconnInt, hsotg->regs + S3C_GINTSTS);
s3c_hsotg_disconnect_irq(hsotg);
}
if (gintsts & S3C_GINTSTS_SessReqInt) {
dev_dbg(hsotg->dev, "%s: SessReqInt\n", __func__);
writel(S3C_GINTSTS_SessReqInt, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_EnumDone) {
s3c_hsotg_irq_enumdone(hsotg);
writel(S3C_GINTSTS_EnumDone, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_ConIDStsChng) {
dev_dbg(hsotg->dev, "ConIDStsChg (DSTS=0x%08x, GOTCTL=%08x)\n",
readl(hsotg->regs + S3C_DSTS),
readl(hsotg->regs + S3C_GOTGCTL));
writel(S3C_GINTSTS_ConIDStsChng, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt)) {
u32 daint = readl(hsotg->regs + S3C_DAINT);
u32 daint_out = daint >> S3C_DAINT_OutEP_SHIFT;
u32 daint_in = daint & ~(daint_out << S3C_DAINT_OutEP_SHIFT);
int ep;
dev_dbg(hsotg->dev, "%s: daint=%08x\n", __func__, daint);
for (ep = 0; ep < 15 && daint_out; ep++, daint_out >>= 1) {
if (daint_out & 1)
s3c_hsotg_epint(hsotg, ep, 0);
}
for (ep = 0; ep < 15 && daint_in; ep++, daint_in >>= 1) {
if (daint_in & 1)
s3c_hsotg_epint(hsotg, ep, 1);
}
writel(daint, hsotg->regs + S3C_DAINT);
writel(gintsts & (S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt),
hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_USBRst) {
dev_info(hsotg->dev, "%s: USBRst\n", __func__);
dev_dbg(hsotg->dev, "GNPTXSTS=%08x\n",
readl(hsotg->regs + S3C_GNPTXSTS));
kill_all_requests(hsotg, &hsotg->eps[0], -ECONNRESET, true);
/* it seems after a reset we can end up with a situation
* where the TXFIFO still has data in it... the docs
* suggest resetting all the fifos, so use the init_fifo
* code to relayout and flush the fifos.
*/
s3c_hsotg_init_fifo(hsotg);
s3c_hsotg_enqueue_setup(hsotg);
writel(S3C_GINTSTS_USBRst, hsotg->regs + S3C_GINTSTS);
}
/* check both FIFOs */
if (gintsts & S3C_GINTSTS_NPTxFEmp) {
dev_dbg(hsotg->dev, "NPTxFEmp\n");
/* Disable the interrupt to stop it happening again
* unless one of these endpoint routines decides that
* it needs re-enabling */
s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_NPTxFEmp);
s3c_hsotg_irq_fifoempty(hsotg, false);
writel(S3C_GINTSTS_NPTxFEmp, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_PTxFEmp) {
dev_dbg(hsotg->dev, "PTxFEmp\n");
/* See note in S3C_GINTSTS_NPTxFEmp */
s3c_hsotg_disable_gsint(hsotg, S3C_GINTSTS_PTxFEmp);
s3c_hsotg_irq_fifoempty(hsotg, true);
writel(S3C_GINTSTS_PTxFEmp, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_RxFLvl) {
/* note, since GINTSTS_RxFLvl doubles as FIFO-not-empty,
* we need to retry s3c_hsotg_handle_rx if this is still
* set. */
s3c_hsotg_handle_rx(hsotg);
writel(S3C_GINTSTS_RxFLvl, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_ModeMis) {
dev_warn(hsotg->dev, "warning, mode mismatch triggered\n");
writel(S3C_GINTSTS_ModeMis, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_USBSusp) {
dev_info(hsotg->dev, "S3C_GINTSTS_USBSusp\n");
writel(S3C_GINTSTS_USBSusp, hsotg->regs + S3C_GINTSTS);
call_gadget(hsotg, suspend);
}
if (gintsts & S3C_GINTSTS_WkUpInt) {
dev_info(hsotg->dev, "S3C_GINTSTS_WkUpIn\n");
writel(S3C_GINTSTS_WkUpInt, hsotg->regs + S3C_GINTSTS);
call_gadget(hsotg, resume);
}
if (gintsts & S3C_GINTSTS_ErlySusp) {
dev_dbg(hsotg->dev, "S3C_GINTSTS_ErlySusp\n");
writel(S3C_GINTSTS_ErlySusp, hsotg->regs + S3C_GINTSTS);
}
/* these next two seem to crop-up occasionally causing the core
* to shutdown the USB transfer, so try clearing them and logging
* the occurence. */
if (gintsts & S3C_GINTSTS_GOUTNakEff) {
dev_info(hsotg->dev, "GOUTNakEff triggered\n");
s3c_hsotg_dump(hsotg);
writel(S3C_DCTL_CGOUTNak, hsotg->regs + S3C_DCTL);
writel(S3C_GINTSTS_GOUTNakEff, hsotg->regs + S3C_GINTSTS);
}
if (gintsts & S3C_GINTSTS_GINNakEff) {
dev_info(hsotg->dev, "GINNakEff triggered\n");
s3c_hsotg_dump(hsotg);
writel(S3C_DCTL_CGNPInNAK, hsotg->regs + S3C_DCTL);
writel(S3C_GINTSTS_GINNakEff, hsotg->regs + S3C_GINTSTS);
}
/* if we've had fifo events, we should try and go around the
* loop again to see if there's any point in returning yet. */
if (gintsts & IRQ_RETRY_MASK && --retry_count > 0)
goto irq_retry;
return IRQ_HANDLED;
}
/**
* s3c_hsotg_ep_enable - enable the given endpoint
* @ep: The USB endpint to configure
* @desc: The USB endpoint descriptor to configure with.
*
* This is called from the USB gadget code's usb_ep_enable().
*/
static int s3c_hsotg_ep_enable(struct usb_ep *ep,
const struct usb_endpoint_descriptor *desc)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
unsigned long flags;
int index = hs_ep->index;
u32 epctrl_reg;
u32 epctrl;
u32 mps;
int dir_in;
int ret = 0;
dev_dbg(hsotg->dev,
"%s: ep %s: a 0x%02x, attr 0x%02x, mps 0x%04x, intr %d\n",
__func__, ep->name, desc->bEndpointAddress, desc->bmAttributes,
desc->wMaxPacketSize, desc->bInterval);
/* not to be called for EP0 */
WARN_ON(index == 0);
dir_in = (desc->bEndpointAddress & USB_ENDPOINT_DIR_MASK) ? 1 : 0;
if (dir_in != hs_ep->dir_in) {
dev_err(hsotg->dev, "%s: direction mismatch!\n", __func__);
return -EINVAL;
}
mps = le16_to_cpu(desc->wMaxPacketSize);
/* note, we handle this here instead of s3c_hsotg_set_ep_maxpacket */
epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
epctrl = readl(hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x from 0x%08x\n",
__func__, epctrl, epctrl_reg);
spin_lock_irqsave(&hs_ep->lock, flags);
epctrl &= ~(S3C_DxEPCTL_EPType_MASK | S3C_DxEPCTL_MPS_MASK);
epctrl |= S3C_DxEPCTL_MPS(mps);
/* mark the endpoint as active, otherwise the core may ignore
* transactions entirely for this endpoint */
epctrl |= S3C_DxEPCTL_USBActEp;
/* set the NAK status on the endpoint, otherwise we might try and
* do something with data that we've yet got a request to process
* since the RXFIFO will take data for an endpoint even if the
* size register hasn't been set.
*/
epctrl |= S3C_DxEPCTL_SNAK;
/* update the endpoint state */
hs_ep->ep.maxpacket = mps;
/* default, set to non-periodic */
hs_ep->periodic = 0;
switch (desc->bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) {
case USB_ENDPOINT_XFER_ISOC:
dev_err(hsotg->dev, "no current ISOC support\n");
ret = -EINVAL;
goto out;
case USB_ENDPOINT_XFER_BULK:
epctrl |= S3C_DxEPCTL_EPType_Bulk;
break;
case USB_ENDPOINT_XFER_INT:
if (dir_in) {
/* Allocate our TxFNum by simply using the index
* of the endpoint for the moment. We could do
* something better if the host indicates how
* many FIFOs we are expecting to use. */
hs_ep->periodic = 1;
epctrl |= S3C_DxEPCTL_TxFNum(index);
}
epctrl |= S3C_DxEPCTL_EPType_Intterupt;
break;
case USB_ENDPOINT_XFER_CONTROL:
epctrl |= S3C_DxEPCTL_EPType_Control;
break;
}
/* if the hardware has dedicated fifos, we must give each IN EP
* a unique tx-fifo even if it is non-periodic.
*/
if (dir_in && hsotg->dedicated_fifos)
epctrl |= S3C_DxEPCTL_TxFNum(index);
/* for non control endpoints, set PID to D0 */
if (index)
epctrl |= S3C_DxEPCTL_SetD0PID;
dev_dbg(hsotg->dev, "%s: write DxEPCTL=0x%08x\n",
__func__, epctrl);
writel(epctrl, hsotg->regs + epctrl_reg);
dev_dbg(hsotg->dev, "%s: read DxEPCTL=0x%08x\n",
__func__, readl(hsotg->regs + epctrl_reg));
/* enable the endpoint interrupt */
s3c_hsotg_ctrl_epint(hsotg, index, dir_in, 1);
out:
spin_unlock_irqrestore(&hs_ep->lock, flags);
return ret;
}
static int s3c_hsotg_ep_disable(struct usb_ep *ep)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hsotg = hs_ep->parent;
int dir_in = hs_ep->dir_in;
int index = hs_ep->index;
unsigned long flags;
u32 epctrl_reg;
u32 ctrl;
dev_info(hsotg->dev, "%s(ep %p)\n", __func__, ep);
if (ep == &hsotg->eps[0].ep) {
dev_err(hsotg->dev, "%s: called for ep0\n", __func__);
return -EINVAL;
}
epctrl_reg = dir_in ? S3C_DIEPCTL(index) : S3C_DOEPCTL(index);
/* terminate all requests with shutdown */
kill_all_requests(hsotg, hs_ep, -ESHUTDOWN, false);
spin_lock_irqsave(&hs_ep->lock, flags);
ctrl = readl(hsotg->regs + epctrl_reg);
ctrl &= ~S3C_DxEPCTL_EPEna;
ctrl &= ~S3C_DxEPCTL_USBActEp;
ctrl |= S3C_DxEPCTL_SNAK;
dev_dbg(hsotg->dev, "%s: DxEPCTL=0x%08x\n", __func__, ctrl);
writel(ctrl, hsotg->regs + epctrl_reg);
/* disable endpoint interrupts */
s3c_hsotg_ctrl_epint(hsotg, hs_ep->index, hs_ep->dir_in, 0);
spin_unlock_irqrestore(&hs_ep->lock, flags);
return 0;
}
/**
* on_list - check request is on the given endpoint
* @ep: The endpoint to check.
* @test: The request to test if it is on the endpoint.
*/
static bool on_list(struct s3c_hsotg_ep *ep, struct s3c_hsotg_req *test)
{
struct s3c_hsotg_req *req, *treq;
list_for_each_entry_safe(req, treq, &ep->queue, queue) {
if (req == test)
return true;
}
return false;
}
static int s3c_hsotg_ep_dequeue(struct usb_ep *ep, struct usb_request *req)
{
struct s3c_hsotg_req *hs_req = our_req(req);
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
unsigned long flags;
dev_info(hs->dev, "ep_dequeue(%p,%p)\n", ep, req);
if (hs_req == hs_ep->req) {
dev_dbg(hs->dev, "%s: already in progress\n", __func__);
return -EINPROGRESS;
}
spin_lock_irqsave(&hs_ep->lock, flags);
if (!on_list(hs_ep, hs_req)) {
spin_unlock_irqrestore(&hs_ep->lock, flags);
return -EINVAL;
}
s3c_hsotg_complete_request(hs, hs_ep, hs_req, -ECONNRESET);
spin_unlock_irqrestore(&hs_ep->lock, flags);
return 0;
}
static int s3c_hsotg_ep_sethalt(struct usb_ep *ep, int value)
{
struct s3c_hsotg_ep *hs_ep = our_ep(ep);
struct s3c_hsotg *hs = hs_ep->parent;
int index = hs_ep->index;
unsigned long irqflags;
u32 epreg;
u32 epctl;
dev_info(hs->dev, "%s(ep %p %s, %d)\n", __func__, ep, ep->name, value);
spin_lock_irqsave(&hs_ep->lock, irqflags);
/* write both IN and OUT control registers */
epreg = S3C_DIEPCTL(index);
epctl = readl(hs->regs + epreg);
if (value)
epctl |= S3C_DxEPCTL_Stall;
else
epctl &= ~S3C_DxEPCTL_Stall;
writel(epctl, hs->regs + epreg);
epreg = S3C_DOEPCTL(index);
epctl = readl(hs->regs + epreg);
if (value)
epctl |= S3C_DxEPCTL_Stall;
else
epctl &= ~S3C_DxEPCTL_Stall;
writel(epctl, hs->regs + epreg);
spin_unlock_irqrestore(&hs_ep->lock, irqflags);
return 0;
}
static struct usb_ep_ops s3c_hsotg_ep_ops = {
.enable = s3c_hsotg_ep_enable,
.disable = s3c_hsotg_ep_disable,
.alloc_request = s3c_hsotg_ep_alloc_request,
.free_request = s3c_hsotg_ep_free_request,
.queue = s3c_hsotg_ep_queue,
.dequeue = s3c_hsotg_ep_dequeue,
.set_halt = s3c_hsotg_ep_sethalt,
/* note, don't belive we have any call for the fifo routines */
};
/**
* s3c_hsotg_corereset - issue softreset to the core
* @hsotg: The device state
*
* Issue a soft reset to the core, and await the core finishing it.
*/
static int s3c_hsotg_corereset(struct s3c_hsotg *hsotg)
{
int timeout;
u32 grstctl;
dev_dbg(hsotg->dev, "resetting core\n");
/* issue soft reset */
writel(S3C_GRSTCTL_CSftRst, hsotg->regs + S3C_GRSTCTL);
timeout = 1000;
do {
grstctl = readl(hsotg->regs + S3C_GRSTCTL);
} while (!(grstctl & S3C_GRSTCTL_CSftRst) && timeout-- > 0);
if (!(grstctl & S3C_GRSTCTL_CSftRst)) {
dev_err(hsotg->dev, "Failed to get CSftRst asserted\n");
return -EINVAL;
}
timeout = 1000;
while (1) {
u32 grstctl = readl(hsotg->regs + S3C_GRSTCTL);
if (timeout-- < 0) {
dev_info(hsotg->dev,
"%s: reset failed, GRSTCTL=%08x\n",
__func__, grstctl);
return -ETIMEDOUT;
}
if (grstctl & S3C_GRSTCTL_CSftRst)
continue;
if (!(grstctl & S3C_GRSTCTL_AHBIdle))
continue;
break; /* reset done */
}
dev_dbg(hsotg->dev, "reset successful\n");
return 0;
}
int usb_gadget_register_driver(struct usb_gadget_driver *driver)
{
struct s3c_hsotg *hsotg = our_hsotg;
int ret;
if (!hsotg) {
printk(KERN_ERR "%s: called with no device\n", __func__);
return -ENODEV;
}
if (!driver) {
dev_err(hsotg->dev, "%s: no driver\n", __func__);
return -EINVAL;
}
if (driver->speed != USB_SPEED_HIGH &&
driver->speed != USB_SPEED_FULL) {
dev_err(hsotg->dev, "%s: bad speed\n", __func__);
}
if (!driver->bind || !driver->setup) {
dev_err(hsotg->dev, "%s: missing entry points\n", __func__);
return -EINVAL;
}
WARN_ON(hsotg->driver);
driver->driver.bus = NULL;
hsotg->driver = driver;
hsotg->gadget.dev.driver = &driver->driver;
hsotg->gadget.dev.dma_mask = hsotg->dev->dma_mask;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
ret = device_add(&hsotg->gadget.dev);
if (ret) {
dev_err(hsotg->dev, "failed to register gadget device\n");
goto err;
}
ret = driver->bind(&hsotg->gadget);
if (ret) {
dev_err(hsotg->dev, "failed bind %s\n", driver->driver.name);
hsotg->gadget.dev.driver = NULL;
hsotg->driver = NULL;
goto err;
}
/* we must now enable ep0 ready for host detection and then
* set configuration. */
s3c_hsotg_corereset(hsotg);
/* set the PLL on, remove the HNP/SRP and set the PHY */
writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) |
(0x5 << 10), hsotg->regs + S3C_GUSBCFG);
/* looks like soft-reset changes state of FIFOs */
s3c_hsotg_init_fifo(hsotg);
__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
writel(1 << 18 | S3C_DCFG_DevSpd_HS, hsotg->regs + S3C_DCFG);
writel(S3C_GINTSTS_DisconnInt | S3C_GINTSTS_SessReqInt |
S3C_GINTSTS_ConIDStsChng | S3C_GINTSTS_USBRst |
S3C_GINTSTS_EnumDone | S3C_GINTSTS_OTGInt |
S3C_GINTSTS_USBSusp | S3C_GINTSTS_WkUpInt |
S3C_GINTSTS_GOUTNakEff | S3C_GINTSTS_GINNakEff |
S3C_GINTSTS_ErlySusp,
hsotg->regs + S3C_GINTMSK);
if (using_dma(hsotg))
writel(S3C_GAHBCFG_GlblIntrEn | S3C_GAHBCFG_DMAEn |
S3C_GAHBCFG_HBstLen_Incr4,
hsotg->regs + S3C_GAHBCFG);
else
writel(S3C_GAHBCFG_GlblIntrEn, hsotg->regs + S3C_GAHBCFG);
/* Enabling INTknTXFEmpMsk here seems to be a big mistake, we end
* up being flooded with interrupts if the host is polling the
* endpoint to try and read data. */
writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
S3C_DIEPMSK_INTknEPMisMsk |
S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk |
((hsotg->dedicated_fifos) ? S3C_DIEPMSK_TxFIFOEmpty : 0),
hsotg->regs + S3C_DIEPMSK);
/* don't need XferCompl, we get that from RXFIFO in slave mode. In
* DMA mode we may need this. */
writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
S3C_DOEPMSK_EPDisbldMsk |
(using_dma(hsotg) ? (S3C_DIEPMSK_XferComplMsk |
S3C_DIEPMSK_TimeOUTMsk) : 0),
hsotg->regs + S3C_DOEPMSK);
writel(0, hsotg->regs + S3C_DAINTMSK);
dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + S3C_DIEPCTL0),
readl(hsotg->regs + S3C_DOEPCTL0));
/* enable in and out endpoint interrupts */
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_OEPInt | S3C_GINTSTS_IEPInt);
/* Enable the RXFIFO when in slave mode, as this is how we collect
* the data. In DMA mode, we get events from the FIFO but also
* things we cannot process, so do not use it. */
if (!using_dma(hsotg))
s3c_hsotg_en_gsint(hsotg, S3C_GINTSTS_RxFLvl);
/* Enable interrupts for EP0 in and out */
s3c_hsotg_ctrl_epint(hsotg, 0, 0, 1);
s3c_hsotg_ctrl_epint(hsotg, 0, 1, 1);
__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
udelay(10); /* see openiboot */
__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_PWROnPrgDone);
dev_info(hsotg->dev, "DCTL=0x%08x\n", readl(hsotg->regs + S3C_DCTL));
/* S3C_DxEPCTL_USBActEp says RO in manual, but seems to be set by
writing to the EPCTL register.. */
/* set to read 1 8byte packet */
writel(S3C_DxEPTSIZ_MC(1) | S3C_DxEPTSIZ_PktCnt(1) |
S3C_DxEPTSIZ_XferSize(8), hsotg->regs + DOEPTSIZ0);
writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
S3C_DxEPCTL_CNAK | S3C_DxEPCTL_EPEna |
S3C_DxEPCTL_USBActEp,
hsotg->regs + S3C_DOEPCTL0);
/* enable, but don't activate EP0in */
writel(s3c_hsotg_ep0_mps(hsotg->eps[0].ep.maxpacket) |
S3C_DxEPCTL_USBActEp, hsotg->regs + S3C_DIEPCTL0);
s3c_hsotg_enqueue_setup(hsotg);
dev_info(hsotg->dev, "EP0: DIEPCTL0=0x%08x, DOEPCTL0=0x%08x\n",
readl(hsotg->regs + S3C_DIEPCTL0),
readl(hsotg->regs + S3C_DOEPCTL0));
/* clear global NAKs */
writel(S3C_DCTL_CGOUTNak | S3C_DCTL_CGNPInNAK,
hsotg->regs + S3C_DCTL);
/* must be at-least 3ms to allow bus to see disconnect */
msleep(3);
/* remove the soft-disconnect and let's go */
__bic32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
/* report to the user, and return */
dev_info(hsotg->dev, "bound driver %s\n", driver->driver.name);
return 0;
err:
hsotg->driver = NULL;
hsotg->gadget.dev.driver = NULL;
return ret;
}
EXPORT_SYMBOL(usb_gadget_register_driver);
int usb_gadget_unregister_driver(struct usb_gadget_driver *driver)
{
struct s3c_hsotg *hsotg = our_hsotg;
int ep;
if (!hsotg)
return -ENODEV;
if (!driver || driver != hsotg->driver || !driver->unbind)
return -EINVAL;
/* all endpoints should be shutdown */
for (ep = 0; ep < S3C_HSOTG_EPS; ep++)
s3c_hsotg_ep_disable(&hsotg->eps[ep].ep);
call_gadget(hsotg, disconnect);
driver->unbind(&hsotg->gadget);
hsotg->driver = NULL;
hsotg->gadget.speed = USB_SPEED_UNKNOWN;
device_del(&hsotg->gadget.dev);
dev_info(hsotg->dev, "unregistered gadget driver '%s'\n",
driver->driver.name);
return 0;
}
EXPORT_SYMBOL(usb_gadget_unregister_driver);
static int s3c_hsotg_gadget_getframe(struct usb_gadget *gadget)
{
return s3c_hsotg_read_frameno(to_hsotg(gadget));
}
static struct usb_gadget_ops s3c_hsotg_gadget_ops = {
.get_frame = s3c_hsotg_gadget_getframe,
};
/**
* s3c_hsotg_initep - initialise a single endpoint
* @hsotg: The device state.
* @hs_ep: The endpoint to be initialised.
* @epnum: The endpoint number
*
* Initialise the given endpoint (as part of the probe and device state
* creation) to give to the gadget driver. Setup the endpoint name, any
* direction information and other state that may be required.
*/
static void __devinit s3c_hsotg_initep(struct s3c_hsotg *hsotg,
struct s3c_hsotg_ep *hs_ep,
int epnum)
{
u32 ptxfifo;
char *dir;
if (epnum == 0)
dir = "";
else if ((epnum % 2) == 0) {
dir = "out";
} else {
dir = "in";
hs_ep->dir_in = 1;
}
hs_ep->index = epnum;
snprintf(hs_ep->name, sizeof(hs_ep->name), "ep%d%s", epnum, dir);
INIT_LIST_HEAD(&hs_ep->queue);
INIT_LIST_HEAD(&hs_ep->ep.ep_list);
spin_lock_init(&hs_ep->lock);
/* add to the list of endpoints known by the gadget driver */
if (epnum)
list_add_tail(&hs_ep->ep.ep_list, &hsotg->gadget.ep_list);
hs_ep->parent = hsotg;
hs_ep->ep.name = hs_ep->name;
hs_ep->ep.maxpacket = epnum ? 512 : EP0_MPS_LIMIT;
hs_ep->ep.ops = &s3c_hsotg_ep_ops;
/* Read the FIFO size for the Periodic TX FIFO, even if we're
* an OUT endpoint, we may as well do this if in future the
* code is changed to make each endpoint's direction changeable.
*/
ptxfifo = readl(hsotg->regs + S3C_DPTXFSIZn(epnum));
hs_ep->fifo_size = S3C_DPTXFSIZn_DPTxFSize_GET(ptxfifo) * 4;
/* if we're using dma, we need to set the next-endpoint pointer
* to be something valid.
*/
if (using_dma(hsotg)) {
u32 next = S3C_DxEPCTL_NextEp((epnum + 1) % 15);
writel(next, hsotg->regs + S3C_DIEPCTL(epnum));
writel(next, hsotg->regs + S3C_DOEPCTL(epnum));
}
}
/**
* s3c_hsotg_otgreset - reset the OtG phy block
* @hsotg: The host state.
*
* Power up the phy, set the basic configuration and start the PHY.
*/
static void s3c_hsotg_otgreset(struct s3c_hsotg *hsotg)
{
struct clk *xusbxti;
u32 osc;
writel(0, S3C_PHYPWR);
mdelay(1);
osc = hsotg->plat->is_osc ? S3C_PHYCLK_EXT_OSC : 0;
xusbxti = clk_get(hsotg->dev, "xusbxti");
if (xusbxti && !IS_ERR(xusbxti)) {
switch (clk_get_rate(xusbxti)) {
case 12*MHZ:
osc |= S3C_PHYCLK_CLKSEL_12M;
break;
case 24*MHZ:
osc |= S3C_PHYCLK_CLKSEL_24M;
break;
default:
case 48*MHZ:
/* default reference clock */
break;
}
clk_put(xusbxti);
}
writel(osc | 0x10, S3C_PHYCLK);
/* issue a full set of resets to the otg and core */
writel(S3C_RSTCON_PHY, S3C_RSTCON);
udelay(20); /* at-least 10uS */
writel(0, S3C_RSTCON);
}
static void s3c_hsotg_init(struct s3c_hsotg *hsotg)
{
u32 cfg4;
/* unmask subset of endpoint interrupts */
writel(S3C_DIEPMSK_TimeOUTMsk | S3C_DIEPMSK_AHBErrMsk |
S3C_DIEPMSK_EPDisbldMsk | S3C_DIEPMSK_XferComplMsk,
hsotg->regs + S3C_DIEPMSK);
writel(S3C_DOEPMSK_SetupMsk | S3C_DOEPMSK_AHBErrMsk |
S3C_DOEPMSK_EPDisbldMsk | S3C_DOEPMSK_XferComplMsk,
hsotg->regs + S3C_DOEPMSK);
writel(0, hsotg->regs + S3C_DAINTMSK);
/* Be in disconnected state until gadget is registered */
__orr32(hsotg->regs + S3C_DCTL, S3C_DCTL_SftDiscon);
if (0) {
/* post global nak until we're ready */
writel(S3C_DCTL_SGNPInNAK | S3C_DCTL_SGOUTNak,
hsotg->regs + S3C_DCTL);
}
/* setup fifos */
dev_info(hsotg->dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
readl(hsotg->regs + S3C_GRXFSIZ),
readl(hsotg->regs + S3C_GNPTXFSIZ));
s3c_hsotg_init_fifo(hsotg);
/* set the PLL on, remove the HNP/SRP and set the PHY */
writel(S3C_GUSBCFG_PHYIf16 | S3C_GUSBCFG_TOutCal(7) | (0x5 << 10),
hsotg->regs + S3C_GUSBCFG);
writel(using_dma(hsotg) ? S3C_GAHBCFG_DMAEn : 0x0,
hsotg->regs + S3C_GAHBCFG);
/* check hardware configuration */
cfg4 = readl(hsotg->regs + 0x50);
hsotg->dedicated_fifos = (cfg4 >> 25) & 1;
dev_info(hsotg->dev, "%s fifos\n",
hsotg->dedicated_fifos ? "dedicated" : "shared");
}
static void s3c_hsotg_dump(struct s3c_hsotg *hsotg)
{
struct device *dev = hsotg->dev;
void __iomem *regs = hsotg->regs;
u32 val;
int idx;
dev_info(dev, "DCFG=0x%08x, DCTL=0x%08x, DIEPMSK=%08x\n",
readl(regs + S3C_DCFG), readl(regs + S3C_DCTL),
readl(regs + S3C_DIEPMSK));
dev_info(dev, "GAHBCFG=0x%08x, 0x44=0x%08x\n",
readl(regs + S3C_GAHBCFG), readl(regs + 0x44));
dev_info(dev, "GRXFSIZ=0x%08x, GNPTXFSIZ=0x%08x\n",
readl(regs + S3C_GRXFSIZ), readl(regs + S3C_GNPTXFSIZ));
/* show periodic fifo settings */
for (idx = 1; idx <= 15; idx++) {
val = readl(regs + S3C_DPTXFSIZn(idx));
dev_info(dev, "DPTx[%d] FSize=%d, StAddr=0x%08x\n", idx,
val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
}
for (idx = 0; idx < 15; idx++) {
dev_info(dev,
"ep%d-in: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n", idx,
readl(regs + S3C_DIEPCTL(idx)),
readl(regs + S3C_DIEPTSIZ(idx)),
readl(regs + S3C_DIEPDMA(idx)));
val = readl(regs + S3C_DOEPCTL(idx));
dev_info(dev,
"ep%d-out: EPCTL=0x%08x, SIZ=0x%08x, DMA=0x%08x\n",
idx, readl(regs + S3C_DOEPCTL(idx)),
readl(regs + S3C_DOEPTSIZ(idx)),
readl(regs + S3C_DOEPDMA(idx)));
}
dev_info(dev, "DVBUSDIS=0x%08x, DVBUSPULSE=%08x\n",
readl(regs + S3C_DVBUSDIS), readl(regs + S3C_DVBUSPULSE));
}
/**
* state_show - debugfs: show overall driver and device state.
* @seq: The seq file to write to.
* @v: Unused parameter.
*
* This debugfs entry shows the overall state of the hardware and
* some general information about each of the endpoints available
* to the system.
*/
static int state_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg *hsotg = seq->private;
void __iomem *regs = hsotg->regs;
int idx;
seq_printf(seq, "DCFG=0x%08x, DCTL=0x%08x, DSTS=0x%08x\n",
readl(regs + S3C_DCFG),
readl(regs + S3C_DCTL),
readl(regs + S3C_DSTS));
seq_printf(seq, "DIEPMSK=0x%08x, DOEPMASK=0x%08x\n",
readl(regs + S3C_DIEPMSK), readl(regs + S3C_DOEPMSK));
seq_printf(seq, "GINTMSK=0x%08x, GINTSTS=0x%08x\n",
readl(regs + S3C_GINTMSK),
readl(regs + S3C_GINTSTS));
seq_printf(seq, "DAINTMSK=0x%08x, DAINT=0x%08x\n",
readl(regs + S3C_DAINTMSK),
readl(regs + S3C_DAINT));
seq_printf(seq, "GNPTXSTS=0x%08x, GRXSTSR=%08x\n",
readl(regs + S3C_GNPTXSTS),
readl(regs + S3C_GRXSTSR));
seq_printf(seq, "\nEndpoint status:\n");
for (idx = 0; idx < 15; idx++) {
u32 in, out;
in = readl(regs + S3C_DIEPCTL(idx));
out = readl(regs + S3C_DOEPCTL(idx));
seq_printf(seq, "ep%d: DIEPCTL=0x%08x, DOEPCTL=0x%08x",
idx, in, out);
in = readl(regs + S3C_DIEPTSIZ(idx));
out = readl(regs + S3C_DOEPTSIZ(idx));
seq_printf(seq, ", DIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x",
in, out);
seq_printf(seq, "\n");
}
return 0;
}
static int state_open(struct inode *inode, struct file *file)
{
return single_open(file, state_show, inode->i_private);
}
static const struct file_operations state_fops = {
.owner = THIS_MODULE,
.open = state_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* fifo_show - debugfs: show the fifo information
* @seq: The seq_file to write data to.
* @v: Unused parameter.
*
* Show the FIFO information for the overall fifo and all the
* periodic transmission FIFOs.
*/
static int fifo_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg *hsotg = seq->private;
void __iomem *regs = hsotg->regs;
u32 val;
int idx;
seq_printf(seq, "Non-periodic FIFOs:\n");
seq_printf(seq, "RXFIFO: Size %d\n", readl(regs + S3C_GRXFSIZ));
val = readl(regs + S3C_GNPTXFSIZ);
seq_printf(seq, "NPTXFIFO: Size %d, Start 0x%08x\n",
val >> S3C_GNPTXFSIZ_NPTxFDep_SHIFT,
val & S3C_GNPTXFSIZ_NPTxFStAddr_MASK);
seq_printf(seq, "\nPeriodic TXFIFOs:\n");
for (idx = 1; idx <= 15; idx++) {
val = readl(regs + S3C_DPTXFSIZn(idx));
seq_printf(seq, "\tDPTXFIFO%2d: Size %d, Start 0x%08x\n", idx,
val >> S3C_DPTXFSIZn_DPTxFSize_SHIFT,
val & S3C_DPTXFSIZn_DPTxFStAddr_MASK);
}
return 0;
}
static int fifo_open(struct inode *inode, struct file *file)
{
return single_open(file, fifo_show, inode->i_private);
}
static const struct file_operations fifo_fops = {
.owner = THIS_MODULE,
.open = fifo_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
static const char *decode_direction(int is_in)
{
return is_in ? "in" : "out";
}
/**
* ep_show - debugfs: show the state of an endpoint.
* @seq: The seq_file to write data to.
* @v: Unused parameter.
*
* This debugfs entry shows the state of the given endpoint (one is
* registered for each available).
*/
static int ep_show(struct seq_file *seq, void *v)
{
struct s3c_hsotg_ep *ep = seq->private;
struct s3c_hsotg *hsotg = ep->parent;
struct s3c_hsotg_req *req;
void __iomem *regs = hsotg->regs;
int index = ep->index;
int show_limit = 15;
unsigned long flags;
seq_printf(seq, "Endpoint index %d, named %s, dir %s:\n",
ep->index, ep->ep.name, decode_direction(ep->dir_in));
/* first show the register state */
seq_printf(seq, "\tDIEPCTL=0x%08x, DOEPCTL=0x%08x\n",
readl(regs + S3C_DIEPCTL(index)),
readl(regs + S3C_DOEPCTL(index)));
seq_printf(seq, "\tDIEPDMA=0x%08x, DOEPDMA=0x%08x\n",
readl(regs + S3C_DIEPDMA(index)),
readl(regs + S3C_DOEPDMA(index)));
seq_printf(seq, "\tDIEPINT=0x%08x, DOEPINT=0x%08x\n",
readl(regs + S3C_DIEPINT(index)),
readl(regs + S3C_DOEPINT(index)));
seq_printf(seq, "\tDIEPTSIZ=0x%08x, DOEPTSIZ=0x%08x\n",
readl(regs + S3C_DIEPTSIZ(index)),
readl(regs + S3C_DOEPTSIZ(index)));
seq_printf(seq, "\n");
seq_printf(seq, "mps %d\n", ep->ep.maxpacket);
seq_printf(seq, "total_data=%ld\n", ep->total_data);
seq_printf(seq, "request list (%p,%p):\n",
ep->queue.next, ep->queue.prev);
spin_lock_irqsave(&ep->lock, flags);
list_for_each_entry(req, &ep->queue, queue) {
if (--show_limit < 0) {
seq_printf(seq, "not showing more requests...\n");
break;
}
seq_printf(seq, "%c req %p: %d bytes @%p, ",
req == ep->req ? '*' : ' ',
req, req->req.length, req->req.buf);
seq_printf(seq, "%d done, res %d\n",
req->req.actual, req->req.status);
}
spin_unlock_irqrestore(&ep->lock, flags);
return 0;
}
static int ep_open(struct inode *inode, struct file *file)
{
return single_open(file, ep_show, inode->i_private);
}
static const struct file_operations ep_fops = {
.owner = THIS_MODULE,
.open = ep_open,
.read = seq_read,
.llseek = seq_lseek,
.release = single_release,
};
/**
* s3c_hsotg_create_debug - create debugfs directory and files
* @hsotg: The driver state
*
* Create the debugfs files to allow the user to get information
* about the state of the system. The directory name is created
* with the same name as the device itself, in case we end up
* with multiple blocks in future systems.
*/
static void __devinit s3c_hsotg_create_debug(struct s3c_hsotg *hsotg)
{
struct dentry *root;
unsigned epidx;
root = debugfs_create_dir(dev_name(hsotg->dev), NULL);
hsotg->debug_root = root;
if (IS_ERR(root)) {
dev_err(hsotg->dev, "cannot create debug root\n");
return;
}
/* create general state file */
hsotg->debug_file = debugfs_create_file("state", 0444, root,
hsotg, &state_fops);
if (IS_ERR(hsotg->debug_file))
dev_err(hsotg->dev, "%s: failed to create state\n", __func__);
hsotg->debug_fifo = debugfs_create_file("fifo", 0444, root,
hsotg, &fifo_fops);
if (IS_ERR(hsotg->debug_fifo))
dev_err(hsotg->dev, "%s: failed to create fifo\n", __func__);
/* create one file for each endpoint */
for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
ep->debugfs = debugfs_create_file(ep->name, 0444,
root, ep, &ep_fops);
if (IS_ERR(ep->debugfs))
dev_err(hsotg->dev, "failed to create %s debug file\n",
ep->name);
}
}
/**
* s3c_hsotg_delete_debug - cleanup debugfs entries
* @hsotg: The driver state
*
* Cleanup (remove) the debugfs files for use on module exit.
*/
static void __devexit s3c_hsotg_delete_debug(struct s3c_hsotg *hsotg)
{
unsigned epidx;
for (epidx = 0; epidx < S3C_HSOTG_EPS; epidx++) {
struct s3c_hsotg_ep *ep = &hsotg->eps[epidx];
debugfs_remove(ep->debugfs);
}
debugfs_remove(hsotg->debug_file);
debugfs_remove(hsotg->debug_fifo);
debugfs_remove(hsotg->debug_root);
}
/**
* s3c_hsotg_gate - set the hardware gate for the block
* @pdev: The device we bound to
* @on: On or off.
*
* Set the hardware gate setting into the block. If we end up on
* something other than an S3C64XX, then we might need to change this
* to using a platform data callback, or some other mechanism.
*/
static void s3c_hsotg_gate(struct platform_device *pdev, bool on)
{
unsigned long flags;
u32 others;
local_irq_save(flags);
others = __raw_readl(S3C64XX_OTHERS);
if (on)
others |= S3C64XX_OTHERS_USBMASK;
else
others &= ~S3C64XX_OTHERS_USBMASK;
__raw_writel(others, S3C64XX_OTHERS);
local_irq_restore(flags);
}
static struct s3c_hsotg_plat s3c_hsotg_default_pdata;
static int __devinit s3c_hsotg_probe(struct platform_device *pdev)
{
struct s3c_hsotg_plat *plat = pdev->dev.platform_data;
struct device *dev = &pdev->dev;
struct s3c_hsotg *hsotg;
struct resource *res;
int epnum;
int ret;
if (!plat)
plat = &s3c_hsotg_default_pdata;
hsotg = kzalloc(sizeof(struct s3c_hsotg) +
sizeof(struct s3c_hsotg_ep) * S3C_HSOTG_EPS,
GFP_KERNEL);
if (!hsotg) {
dev_err(dev, "cannot get memory\n");
return -ENOMEM;
}
hsotg->dev = dev;
hsotg->plat = plat;
platform_set_drvdata(pdev, hsotg);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res) {
dev_err(dev, "cannot find register resource 0\n");
ret = -EINVAL;
goto err_mem;
}
hsotg->regs_res = request_mem_region(res->start, resource_size(res),
dev_name(dev));
if (!hsotg->regs_res) {
dev_err(dev, "cannot reserve registers\n");
ret = -ENOENT;
goto err_mem;
}
hsotg->regs = ioremap(res->start, resource_size(res));
if (!hsotg->regs) {
dev_err(dev, "cannot map registers\n");
ret = -ENXIO;
goto err_regs_res;
}
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_err(dev, "cannot find IRQ\n");
goto err_regs;
}
hsotg->irq = ret;
ret = request_irq(ret, s3c_hsotg_irq, 0, dev_name(dev), hsotg);
if (ret < 0) {
dev_err(dev, "cannot claim IRQ\n");
goto err_regs;
}
dev_info(dev, "regs %p, irq %d\n", hsotg->regs, hsotg->irq);
device_initialize(&hsotg->gadget.dev);
dev_set_name(&hsotg->gadget.dev, "gadget");
hsotg->gadget.is_dualspeed = 1;
hsotg->gadget.ops = &s3c_hsotg_gadget_ops;
hsotg->gadget.name = dev_name(dev);
hsotg->gadget.dev.parent = dev;
hsotg->gadget.dev.dma_mask = dev->dma_mask;
/* setup endpoint information */
INIT_LIST_HEAD(&hsotg->gadget.ep_list);
hsotg->gadget.ep0 = &hsotg->eps[0].ep;
/* allocate EP0 request */
hsotg->ctrl_req = s3c_hsotg_ep_alloc_request(&hsotg->eps[0].ep,
GFP_KERNEL);
if (!hsotg->ctrl_req) {
dev_err(dev, "failed to allocate ctrl req\n");
goto err_regs;
}
/* reset the system */
s3c_hsotg_gate(pdev, true);
s3c_hsotg_otgreset(hsotg);
s3c_hsotg_corereset(hsotg);
s3c_hsotg_init(hsotg);
/* initialise the endpoints now the core has been initialised */
for (epnum = 0; epnum < S3C_HSOTG_EPS; epnum++)
s3c_hsotg_initep(hsotg, &hsotg->eps[epnum], epnum);
s3c_hsotg_create_debug(hsotg);
s3c_hsotg_dump(hsotg);
our_hsotg = hsotg;
return 0;
err_regs:
iounmap(hsotg->regs);
err_regs_res:
release_resource(hsotg->regs_res);
kfree(hsotg->regs_res);
err_mem:
kfree(hsotg);
return ret;
}
static int __devexit s3c_hsotg_remove(struct platform_device *pdev)
{
struct s3c_hsotg *hsotg = platform_get_drvdata(pdev);
s3c_hsotg_delete_debug(hsotg);
usb_gadget_unregister_driver(hsotg->driver);
free_irq(hsotg->irq, hsotg);
iounmap(hsotg->regs);
release_resource(hsotg->regs_res);
kfree(hsotg->regs_res);
s3c_hsotg_gate(pdev, false);
kfree(hsotg);
return 0;
}
#if 1
#define s3c_hsotg_suspend NULL
#define s3c_hsotg_resume NULL
#endif
static struct platform_driver s3c_hsotg_driver = {
.driver = {
.name = "s3c-hsotg",
.owner = THIS_MODULE,
},
.probe = s3c_hsotg_probe,
.remove = __devexit_p(s3c_hsotg_remove),
.suspend = s3c_hsotg_suspend,
.resume = s3c_hsotg_resume,
};
static int __init s3c_hsotg_modinit(void)
{
return platform_driver_register(&s3c_hsotg_driver);
}
static void __exit s3c_hsotg_modexit(void)
{
platform_driver_unregister(&s3c_hsotg_driver);
}
module_init(s3c_hsotg_modinit);
module_exit(s3c_hsotg_modexit);
MODULE_DESCRIPTION("Samsung S3C USB High-speed/OtG device");
MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:s3c-hsotg");