423 lines
14 KiB
C
423 lines
14 KiB
C
|
#ifndef _I386_PGTABLE_H
|
||
|
#define _I386_PGTABLE_H
|
||
|
|
||
|
#include <linux/config.h>
|
||
|
|
||
|
/*
|
||
|
* The Linux memory management assumes a three-level page table setup. On
|
||
|
* the i386, we use that, but "fold" the mid level into the top-level page
|
||
|
* table, so that we physically have the same two-level page table as the
|
||
|
* i386 mmu expects.
|
||
|
*
|
||
|
* This file contains the functions and defines necessary to modify and use
|
||
|
* the i386 page table tree.
|
||
|
*/
|
||
|
#ifndef __ASSEMBLY__
|
||
|
#include <asm/processor.h>
|
||
|
#include <asm/fixmap.h>
|
||
|
#include <linux/threads.h>
|
||
|
|
||
|
#ifndef _I386_BITOPS_H
|
||
|
#include <asm/bitops.h>
|
||
|
#endif
|
||
|
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/list.h>
|
||
|
#include <linux/spinlock.h>
|
||
|
|
||
|
/*
|
||
|
* ZERO_PAGE is a global shared page that is always zero: used
|
||
|
* for zero-mapped memory areas etc..
|
||
|
*/
|
||
|
#define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
|
||
|
extern unsigned long empty_zero_page[1024];
|
||
|
extern pgd_t swapper_pg_dir[1024];
|
||
|
extern kmem_cache_t *pgd_cache;
|
||
|
extern kmem_cache_t *pmd_cache;
|
||
|
extern spinlock_t pgd_lock;
|
||
|
extern struct page *pgd_list;
|
||
|
|
||
|
void pmd_ctor(void *, kmem_cache_t *, unsigned long);
|
||
|
void pgd_ctor(void *, kmem_cache_t *, unsigned long);
|
||
|
void pgd_dtor(void *, kmem_cache_t *, unsigned long);
|
||
|
void pgtable_cache_init(void);
|
||
|
void paging_init(void);
|
||
|
|
||
|
/*
|
||
|
* The Linux x86 paging architecture is 'compile-time dual-mode', it
|
||
|
* implements both the traditional 2-level x86 page tables and the
|
||
|
* newer 3-level PAE-mode page tables.
|
||
|
*/
|
||
|
#ifdef CONFIG_X86_PAE
|
||
|
# include <asm/pgtable-3level-defs.h>
|
||
|
# define PMD_SIZE (1UL << PMD_SHIFT)
|
||
|
# define PMD_MASK (~(PMD_SIZE-1))
|
||
|
#else
|
||
|
# include <asm/pgtable-2level-defs.h>
|
||
|
#endif
|
||
|
|
||
|
#define PGDIR_SIZE (1UL << PGDIR_SHIFT)
|
||
|
#define PGDIR_MASK (~(PGDIR_SIZE-1))
|
||
|
|
||
|
#define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
|
||
|
#define FIRST_USER_PGD_NR 0
|
||
|
|
||
|
#define USER_PGD_PTRS (PAGE_OFFSET >> PGDIR_SHIFT)
|
||
|
#define KERNEL_PGD_PTRS (PTRS_PER_PGD-USER_PGD_PTRS)
|
||
|
|
||
|
#define TWOLEVEL_PGDIR_SHIFT 22
|
||
|
#define BOOT_USER_PGD_PTRS (__PAGE_OFFSET >> TWOLEVEL_PGDIR_SHIFT)
|
||
|
#define BOOT_KERNEL_PGD_PTRS (1024-BOOT_USER_PGD_PTRS)
|
||
|
|
||
|
/* Just any arbitrary offset to the start of the vmalloc VM area: the
|
||
|
* current 8MB value just means that there will be a 8MB "hole" after the
|
||
|
* physical memory until the kernel virtual memory starts. That means that
|
||
|
* any out-of-bounds memory accesses will hopefully be caught.
|
||
|
* The vmalloc() routines leaves a hole of 4kB between each vmalloced
|
||
|
* area for the same reason. ;)
|
||
|
*/
|
||
|
#define VMALLOC_OFFSET (8*1024*1024)
|
||
|
#define VMALLOC_START (((unsigned long) high_memory + vmalloc_earlyreserve + \
|
||
|
2*VMALLOC_OFFSET-1) & ~(VMALLOC_OFFSET-1))
|
||
|
#ifdef CONFIG_HIGHMEM
|
||
|
# define VMALLOC_END (PKMAP_BASE-2*PAGE_SIZE)
|
||
|
#else
|
||
|
# define VMALLOC_END (FIXADDR_START-2*PAGE_SIZE)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* The 4MB page is guessing.. Detailed in the infamous "Chapter H"
|
||
|
* of the Pentium details, but assuming intel did the straightforward
|
||
|
* thing, this bit set in the page directory entry just means that
|
||
|
* the page directory entry points directly to a 4MB-aligned block of
|
||
|
* memory.
|
||
|
*/
|
||
|
#define _PAGE_BIT_PRESENT 0
|
||
|
#define _PAGE_BIT_RW 1
|
||
|
#define _PAGE_BIT_USER 2
|
||
|
#define _PAGE_BIT_PWT 3
|
||
|
#define _PAGE_BIT_PCD 4
|
||
|
#define _PAGE_BIT_ACCESSED 5
|
||
|
#define _PAGE_BIT_DIRTY 6
|
||
|
#define _PAGE_BIT_PSE 7 /* 4 MB (or 2MB) page, Pentium+, if present.. */
|
||
|
#define _PAGE_BIT_GLOBAL 8 /* Global TLB entry PPro+ */
|
||
|
#define _PAGE_BIT_UNUSED1 9 /* available for programmer */
|
||
|
#define _PAGE_BIT_UNUSED2 10
|
||
|
#define _PAGE_BIT_UNUSED3 11
|
||
|
#define _PAGE_BIT_NX 63
|
||
|
|
||
|
#define _PAGE_PRESENT 0x001
|
||
|
#define _PAGE_RW 0x002
|
||
|
#define _PAGE_USER 0x004
|
||
|
#define _PAGE_PWT 0x008
|
||
|
#define _PAGE_PCD 0x010
|
||
|
#define _PAGE_ACCESSED 0x020
|
||
|
#define _PAGE_DIRTY 0x040
|
||
|
#define _PAGE_PSE 0x080 /* 4 MB (or 2MB) page, Pentium+, if present.. */
|
||
|
#define _PAGE_GLOBAL 0x100 /* Global TLB entry PPro+ */
|
||
|
#define _PAGE_UNUSED1 0x200 /* available for programmer */
|
||
|
#define _PAGE_UNUSED2 0x400
|
||
|
#define _PAGE_UNUSED3 0x800
|
||
|
|
||
|
#define _PAGE_FILE 0x040 /* set:pagecache unset:swap */
|
||
|
#define _PAGE_PROTNONE 0x080 /* If not present */
|
||
|
#ifdef CONFIG_X86_PAE
|
||
|
#define _PAGE_NX (1ULL<<_PAGE_BIT_NX)
|
||
|
#else
|
||
|
#define _PAGE_NX 0
|
||
|
#endif
|
||
|
|
||
|
#define _PAGE_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED | _PAGE_DIRTY)
|
||
|
#define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_RW | _PAGE_ACCESSED | _PAGE_DIRTY)
|
||
|
#define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
|
||
|
|
||
|
#define PAGE_NONE \
|
||
|
__pgprot(_PAGE_PROTNONE | _PAGE_ACCESSED)
|
||
|
#define PAGE_SHARED \
|
||
|
__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
|
||
|
|
||
|
#define PAGE_SHARED_EXEC \
|
||
|
__pgprot(_PAGE_PRESENT | _PAGE_RW | _PAGE_USER | _PAGE_ACCESSED)
|
||
|
#define PAGE_COPY_NOEXEC \
|
||
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
|
||
|
#define PAGE_COPY_EXEC \
|
||
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
|
||
|
#define PAGE_COPY \
|
||
|
PAGE_COPY_NOEXEC
|
||
|
#define PAGE_READONLY \
|
||
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED | _PAGE_NX)
|
||
|
#define PAGE_READONLY_EXEC \
|
||
|
__pgprot(_PAGE_PRESENT | _PAGE_USER | _PAGE_ACCESSED)
|
||
|
|
||
|
#define _PAGE_KERNEL \
|
||
|
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED | _PAGE_NX)
|
||
|
#define _PAGE_KERNEL_EXEC \
|
||
|
(_PAGE_PRESENT | _PAGE_RW | _PAGE_DIRTY | _PAGE_ACCESSED)
|
||
|
|
||
|
extern unsigned long long __PAGE_KERNEL, __PAGE_KERNEL_EXEC;
|
||
|
#define __PAGE_KERNEL_RO (__PAGE_KERNEL & ~_PAGE_RW)
|
||
|
#define __PAGE_KERNEL_NOCACHE (__PAGE_KERNEL | _PAGE_PCD)
|
||
|
#define __PAGE_KERNEL_LARGE (__PAGE_KERNEL | _PAGE_PSE)
|
||
|
#define __PAGE_KERNEL_LARGE_EXEC (__PAGE_KERNEL_EXEC | _PAGE_PSE)
|
||
|
|
||
|
#define PAGE_KERNEL __pgprot(__PAGE_KERNEL)
|
||
|
#define PAGE_KERNEL_RO __pgprot(__PAGE_KERNEL_RO)
|
||
|
#define PAGE_KERNEL_EXEC __pgprot(__PAGE_KERNEL_EXEC)
|
||
|
#define PAGE_KERNEL_NOCACHE __pgprot(__PAGE_KERNEL_NOCACHE)
|
||
|
#define PAGE_KERNEL_LARGE __pgprot(__PAGE_KERNEL_LARGE)
|
||
|
#define PAGE_KERNEL_LARGE_EXEC __pgprot(__PAGE_KERNEL_LARGE_EXEC)
|
||
|
|
||
|
/*
|
||
|
* The i386 can't do page protection for execute, and considers that
|
||
|
* the same are read. Also, write permissions imply read permissions.
|
||
|
* This is the closest we can get..
|
||
|
*/
|
||
|
#define __P000 PAGE_NONE
|
||
|
#define __P001 PAGE_READONLY
|
||
|
#define __P010 PAGE_COPY
|
||
|
#define __P011 PAGE_COPY
|
||
|
#define __P100 PAGE_READONLY_EXEC
|
||
|
#define __P101 PAGE_READONLY_EXEC
|
||
|
#define __P110 PAGE_COPY_EXEC
|
||
|
#define __P111 PAGE_COPY_EXEC
|
||
|
|
||
|
#define __S000 PAGE_NONE
|
||
|
#define __S001 PAGE_READONLY
|
||
|
#define __S010 PAGE_SHARED
|
||
|
#define __S011 PAGE_SHARED
|
||
|
#define __S100 PAGE_READONLY_EXEC
|
||
|
#define __S101 PAGE_READONLY_EXEC
|
||
|
#define __S110 PAGE_SHARED_EXEC
|
||
|
#define __S111 PAGE_SHARED_EXEC
|
||
|
|
||
|
/*
|
||
|
* Define this if things work differently on an i386 and an i486:
|
||
|
* it will (on an i486) warn about kernel memory accesses that are
|
||
|
* done without a 'verify_area(VERIFY_WRITE,..)'
|
||
|
*/
|
||
|
#undef TEST_VERIFY_AREA
|
||
|
|
||
|
/* The boot page tables (all created as a single array) */
|
||
|
extern unsigned long pg0[];
|
||
|
|
||
|
#define pte_present(x) ((x).pte_low & (_PAGE_PRESENT | _PAGE_PROTNONE))
|
||
|
#define pte_clear(mm,addr,xp) do { set_pte_at(mm, addr, xp, __pte(0)); } while (0)
|
||
|
|
||
|
#define pmd_none(x) (!pmd_val(x))
|
||
|
#define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
|
||
|
#define pmd_clear(xp) do { set_pmd(xp, __pmd(0)); } while (0)
|
||
|
#define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
|
||
|
|
||
|
|
||
|
#define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
|
||
|
|
||
|
/*
|
||
|
* The following only work if pte_present() is true.
|
||
|
* Undefined behaviour if not..
|
||
|
*/
|
||
|
static inline int pte_user(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
|
||
|
static inline int pte_read(pte_t pte) { return (pte).pte_low & _PAGE_USER; }
|
||
|
static inline int pte_dirty(pte_t pte) { return (pte).pte_low & _PAGE_DIRTY; }
|
||
|
static inline int pte_young(pte_t pte) { return (pte).pte_low & _PAGE_ACCESSED; }
|
||
|
static inline int pte_write(pte_t pte) { return (pte).pte_low & _PAGE_RW; }
|
||
|
|
||
|
/*
|
||
|
* The following only works if pte_present() is not true.
|
||
|
*/
|
||
|
static inline int pte_file(pte_t pte) { return (pte).pte_low & _PAGE_FILE; }
|
||
|
|
||
|
static inline pte_t pte_rdprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
|
||
|
static inline pte_t pte_exprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_USER; return pte; }
|
||
|
static inline pte_t pte_mkclean(pte_t pte) { (pte).pte_low &= ~_PAGE_DIRTY; return pte; }
|
||
|
static inline pte_t pte_mkold(pte_t pte) { (pte).pte_low &= ~_PAGE_ACCESSED; return pte; }
|
||
|
static inline pte_t pte_wrprotect(pte_t pte) { (pte).pte_low &= ~_PAGE_RW; return pte; }
|
||
|
static inline pte_t pte_mkread(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
|
||
|
static inline pte_t pte_mkexec(pte_t pte) { (pte).pte_low |= _PAGE_USER; return pte; }
|
||
|
static inline pte_t pte_mkdirty(pte_t pte) { (pte).pte_low |= _PAGE_DIRTY; return pte; }
|
||
|
static inline pte_t pte_mkyoung(pte_t pte) { (pte).pte_low |= _PAGE_ACCESSED; return pte; }
|
||
|
static inline pte_t pte_mkwrite(pte_t pte) { (pte).pte_low |= _PAGE_RW; return pte; }
|
||
|
|
||
|
#ifdef CONFIG_X86_PAE
|
||
|
# include <asm/pgtable-3level.h>
|
||
|
#else
|
||
|
# include <asm/pgtable-2level.h>
|
||
|
#endif
|
||
|
|
||
|
static inline int ptep_test_and_clear_dirty(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
if (!pte_dirty(*ptep))
|
||
|
return 0;
|
||
|
return test_and_clear_bit(_PAGE_BIT_DIRTY, &ptep->pte_low);
|
||
|
}
|
||
|
|
||
|
static inline int ptep_test_and_clear_young(struct vm_area_struct *vma, unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
if (!pte_young(*ptep))
|
||
|
return 0;
|
||
|
return test_and_clear_bit(_PAGE_BIT_ACCESSED, &ptep->pte_low);
|
||
|
}
|
||
|
|
||
|
static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
|
||
|
{
|
||
|
clear_bit(_PAGE_BIT_RW, &ptep->pte_low);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* Macro to mark a page protection value as "uncacheable". On processors which do not support
|
||
|
* it, this is a no-op.
|
||
|
*/
|
||
|
#define pgprot_noncached(prot) ((boot_cpu_data.x86 > 3) \
|
||
|
? (__pgprot(pgprot_val(prot) | _PAGE_PCD | _PAGE_PWT)) : (prot))
|
||
|
|
||
|
/*
|
||
|
* Conversion functions: convert a page and protection to a page entry,
|
||
|
* and a page entry and page directory to the page they refer to.
|
||
|
*/
|
||
|
|
||
|
#define mk_pte(page, pgprot) pfn_pte(page_to_pfn(page), (pgprot))
|
||
|
#define mk_pte_huge(entry) ((entry).pte_low |= _PAGE_PRESENT | _PAGE_PSE)
|
||
|
|
||
|
static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
|
||
|
{
|
||
|
pte.pte_low &= _PAGE_CHG_MASK;
|
||
|
pte.pte_low |= pgprot_val(newprot);
|
||
|
#ifdef CONFIG_X86_PAE
|
||
|
/*
|
||
|
* Chop off the NX bit (if present), and add the NX portion of
|
||
|
* the newprot (if present):
|
||
|
*/
|
||
|
pte.pte_high &= ~(1 << (_PAGE_BIT_NX - 32));
|
||
|
pte.pte_high |= (pgprot_val(newprot) >> 32) & \
|
||
|
(__supported_pte_mask >> 32);
|
||
|
#endif
|
||
|
return pte;
|
||
|
}
|
||
|
|
||
|
#define page_pte(page) page_pte_prot(page, __pgprot(0))
|
||
|
|
||
|
#define pmd_large(pmd) \
|
||
|
((pmd_val(pmd) & (_PAGE_PSE|_PAGE_PRESENT)) == (_PAGE_PSE|_PAGE_PRESENT))
|
||
|
|
||
|
/*
|
||
|
* the pgd page can be thought of an array like this: pgd_t[PTRS_PER_PGD]
|
||
|
*
|
||
|
* this macro returns the index of the entry in the pgd page which would
|
||
|
* control the given virtual address
|
||
|
*/
|
||
|
#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
|
||
|
#define pgd_index_k(addr) pgd_index(addr)
|
||
|
|
||
|
/*
|
||
|
* pgd_offset() returns a (pgd_t *)
|
||
|
* pgd_index() is used get the offset into the pgd page's array of pgd_t's;
|
||
|
*/
|
||
|
#define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
|
||
|
|
||
|
/*
|
||
|
* a shortcut which implies the use of the kernel's pgd, instead
|
||
|
* of a process's
|
||
|
*/
|
||
|
#define pgd_offset_k(address) pgd_offset(&init_mm, address)
|
||
|
|
||
|
/*
|
||
|
* the pmd page can be thought of an array like this: pmd_t[PTRS_PER_PMD]
|
||
|
*
|
||
|
* this macro returns the index of the entry in the pmd page which would
|
||
|
* control the given virtual address
|
||
|
*/
|
||
|
#define pmd_index(address) \
|
||
|
(((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
|
||
|
|
||
|
/*
|
||
|
* the pte page can be thought of an array like this: pte_t[PTRS_PER_PTE]
|
||
|
*
|
||
|
* this macro returns the index of the entry in the pte page which would
|
||
|
* control the given virtual address
|
||
|
*/
|
||
|
#define pte_index(address) \
|
||
|
(((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
|
||
|
#define pte_offset_kernel(dir, address) \
|
||
|
((pte_t *) pmd_page_kernel(*(dir)) + pte_index(address))
|
||
|
|
||
|
/*
|
||
|
* Helper function that returns the kernel pagetable entry controlling
|
||
|
* the virtual address 'address'. NULL means no pagetable entry present.
|
||
|
* NOTE: the return type is pte_t but if the pmd is PSE then we return it
|
||
|
* as a pte too.
|
||
|
*/
|
||
|
extern pte_t *lookup_address(unsigned long address);
|
||
|
|
||
|
/*
|
||
|
* Make a given kernel text page executable/non-executable.
|
||
|
* Returns the previous executability setting of that page (which
|
||
|
* is used to restore the previous state). Used by the SMP bootup code.
|
||
|
* NOTE: this is an __init function for security reasons.
|
||
|
*/
|
||
|
#ifdef CONFIG_X86_PAE
|
||
|
extern int set_kernel_exec(unsigned long vaddr, int enable);
|
||
|
#else
|
||
|
static inline int set_kernel_exec(unsigned long vaddr, int enable) { return 0;}
|
||
|
#endif
|
||
|
|
||
|
extern void noexec_setup(const char *str);
|
||
|
|
||
|
#if defined(CONFIG_HIGHPTE)
|
||
|
#define pte_offset_map(dir, address) \
|
||
|
((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE0) + pte_index(address))
|
||
|
#define pte_offset_map_nested(dir, address) \
|
||
|
((pte_t *)kmap_atomic(pmd_page(*(dir)),KM_PTE1) + pte_index(address))
|
||
|
#define pte_unmap(pte) kunmap_atomic(pte, KM_PTE0)
|
||
|
#define pte_unmap_nested(pte) kunmap_atomic(pte, KM_PTE1)
|
||
|
#else
|
||
|
#define pte_offset_map(dir, address) \
|
||
|
((pte_t *)page_address(pmd_page(*(dir))) + pte_index(address))
|
||
|
#define pte_offset_map_nested(dir, address) pte_offset_map(dir, address)
|
||
|
#define pte_unmap(pte) do { } while (0)
|
||
|
#define pte_unmap_nested(pte) do { } while (0)
|
||
|
#endif
|
||
|
|
||
|
/*
|
||
|
* The i386 doesn't have any external MMU info: the kernel page
|
||
|
* tables contain all the necessary information.
|
||
|
*
|
||
|
* Also, we only update the dirty/accessed state if we set
|
||
|
* the dirty bit by hand in the kernel, since the hardware
|
||
|
* will do the accessed bit for us, and we don't want to
|
||
|
* race with other CPU's that might be updating the dirty
|
||
|
* bit at the same time.
|
||
|
*/
|
||
|
#define update_mmu_cache(vma,address,pte) do { } while (0)
|
||
|
#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
|
||
|
#define ptep_set_access_flags(__vma, __address, __ptep, __entry, __dirty) \
|
||
|
do { \
|
||
|
if (__dirty) { \
|
||
|
(__ptep)->pte_low = (__entry).pte_low; \
|
||
|
flush_tlb_page(__vma, __address); \
|
||
|
} \
|
||
|
} while (0)
|
||
|
|
||
|
#endif /* !__ASSEMBLY__ */
|
||
|
|
||
|
#ifndef CONFIG_DISCONTIGMEM
|
||
|
#define kern_addr_valid(addr) (1)
|
||
|
#endif /* !CONFIG_DISCONTIGMEM */
|
||
|
|
||
|
#define io_remap_page_range(vma, vaddr, paddr, size, prot) \
|
||
|
remap_pfn_range(vma, vaddr, (paddr) >> PAGE_SHIFT, size, prot)
|
||
|
|
||
|
#define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
|
||
|
remap_pfn_range(vma, vaddr, pfn, size, prot)
|
||
|
|
||
|
#define MK_IOSPACE_PFN(space, pfn) (pfn)
|
||
|
#define GET_IOSPACE(pfn) 0
|
||
|
#define GET_PFN(pfn) (pfn)
|
||
|
|
||
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
|
||
|
#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_DIRTY
|
||
|
#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
|
||
|
#define __HAVE_ARCH_PTEP_SET_WRPROTECT
|
||
|
#define __HAVE_ARCH_PTE_SAME
|
||
|
#include <asm-generic/pgtable.h>
|
||
|
|
||
|
#endif /* _I386_PGTABLE_H */
|