linux_old1/fs/bfs/inode.c

491 lines
12 KiB
C
Raw Normal View History

// SPDX-License-Identifier: GPL-2.0-only
/*
* fs/bfs/inode.c
* BFS superblock and inode operations.
* Copyright (C) 1999-2018 Tigran Aivazian <aivazian.tigran@gmail.com>
* From fs/minix, Copyright (C) 1991, 1992 Linus Torvalds.
* Made endianness-clean by Andrew Stribblehill <ads@wompom.org>, 2005.
*/
#include <linux/module.h>
#include <linux/mm.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/fs.h>
#include <linux/buffer_head.h>
#include <linux/vfs.h>
#include <linux/writeback.h>
#include <linux/uio.h>
#include <linux/uaccess.h>
#include "bfs.h"
MODULE_AUTHOR("Tigran Aivazian <aivazian.tigran@gmail.com>");
MODULE_DESCRIPTION("SCO UnixWare BFS filesystem for Linux");
MODULE_LICENSE("GPL");
#undef DEBUG
#ifdef DEBUG
#define dprintf(x...) printf(x)
#else
#define dprintf(x...)
#endif
struct inode *bfs_iget(struct super_block *sb, unsigned long ino)
{
struct bfs_inode *di;
struct inode *inode;
struct buffer_head *bh;
int block, off;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
if ((ino < BFS_ROOT_INO) || (ino > BFS_SB(inode->i_sb)->si_lasti)) {
printf("Bad inode number %s:%08lx\n", inode->i_sb->s_id, ino);
goto error;
}
block = (ino - BFS_ROOT_INO) / BFS_INODES_PER_BLOCK + 1;
bh = sb_bread(inode->i_sb, block);
if (!bh) {
printf("Unable to read inode %s:%08lx\n", inode->i_sb->s_id,
ino);
goto error;
}
off = (ino - BFS_ROOT_INO) % BFS_INODES_PER_BLOCK;
di = (struct bfs_inode *)bh->b_data + off;
inode->i_mode = 0x0000FFFF & le32_to_cpu(di->i_mode);
if (le32_to_cpu(di->i_vtype) == BFS_VDIR) {
inode->i_mode |= S_IFDIR;
inode->i_op = &bfs_dir_inops;
inode->i_fop = &bfs_dir_operations;
} else if (le32_to_cpu(di->i_vtype) == BFS_VREG) {
inode->i_mode |= S_IFREG;
inode->i_op = &bfs_file_inops;
inode->i_fop = &bfs_file_operations;
inode->i_mapping->a_ops = &bfs_aops;
}
BFS_I(inode)->i_sblock = le32_to_cpu(di->i_sblock);
BFS_I(inode)->i_eblock = le32_to_cpu(di->i_eblock);
BFS_I(inode)->i_dsk_ino = le16_to_cpu(di->i_ino);
i_uid_write(inode, le32_to_cpu(di->i_uid));
i_gid_write(inode, le32_to_cpu(di->i_gid));
set_nlink(inode, le32_to_cpu(di->i_nlink));
inode->i_size = BFS_FILESIZE(di);
inode->i_blocks = BFS_FILEBLOCKS(di);
inode->i_atime.tv_sec = le32_to_cpu(di->i_atime);
inode->i_mtime.tv_sec = le32_to_cpu(di->i_mtime);
inode->i_ctime.tv_sec = le32_to_cpu(di->i_ctime);
inode->i_atime.tv_nsec = 0;
inode->i_mtime.tv_nsec = 0;
inode->i_ctime.tv_nsec = 0;
brelse(bh);
unlock_new_inode(inode);
return inode;
error:
iget_failed(inode);
return ERR_PTR(-EIO);
}
static struct bfs_inode *find_inode(struct super_block *sb, u16 ino, struct buffer_head **p)
{
if ((ino < BFS_ROOT_INO) || (ino > BFS_SB(sb)->si_lasti)) {
printf("Bad inode number %s:%08x\n", sb->s_id, ino);
return ERR_PTR(-EIO);
}
ino -= BFS_ROOT_INO;
*p = sb_bread(sb, 1 + ino / BFS_INODES_PER_BLOCK);
if (!*p) {
printf("Unable to read inode %s:%08x\n", sb->s_id, ino);
return ERR_PTR(-EIO);
}
return (struct bfs_inode *)(*p)->b_data + ino % BFS_INODES_PER_BLOCK;
}
static int bfs_write_inode(struct inode *inode, struct writeback_control *wbc)
{
struct bfs_sb_info *info = BFS_SB(inode->i_sb);
unsigned int ino = (u16)inode->i_ino;
unsigned long i_sblock;
struct bfs_inode *di;
struct buffer_head *bh;
int err = 0;
dprintf("ino=%08x\n", ino);
di = find_inode(inode->i_sb, ino, &bh);
if (IS_ERR(di))
return PTR_ERR(di);
mutex_lock(&info->bfs_lock);
if (ino == BFS_ROOT_INO)
di->i_vtype = cpu_to_le32(BFS_VDIR);
else
di->i_vtype = cpu_to_le32(BFS_VREG);
di->i_ino = cpu_to_le16(ino);
di->i_mode = cpu_to_le32(inode->i_mode);
di->i_uid = cpu_to_le32(i_uid_read(inode));
di->i_gid = cpu_to_le32(i_gid_read(inode));
di->i_nlink = cpu_to_le32(inode->i_nlink);
di->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
di->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
di->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
i_sblock = BFS_I(inode)->i_sblock;
di->i_sblock = cpu_to_le32(i_sblock);
di->i_eblock = cpu_to_le32(BFS_I(inode)->i_eblock);
di->i_eoffset = cpu_to_le32(i_sblock * BFS_BSIZE + inode->i_size - 1);
mark_buffer_dirty(bh);
if (wbc->sync_mode == WB_SYNC_ALL) {
sync_dirty_buffer(bh);
if (buffer_req(bh) && !buffer_uptodate(bh))
err = -EIO;
}
brelse(bh);
mutex_unlock(&info->bfs_lock);
return err;
}
static void bfs_evict_inode(struct inode *inode)
{
unsigned long ino = inode->i_ino;
struct bfs_inode *di;
struct buffer_head *bh;
struct super_block *s = inode->i_sb;
struct bfs_sb_info *info = BFS_SB(s);
struct bfs_inode_info *bi = BFS_I(inode);
dprintf("ino=%08lx\n", ino);
mm + fs: store shadow entries in page cache Reclaim will be leaving shadow entries in the page cache radix tree upon evicting the real page. As those pages are found from the LRU, an iput() can lead to the inode being freed concurrently. At this point, reclaim must no longer install shadow pages because the inode freeing code needs to ensure the page tree is really empty. Add an address_space flag, AS_EXITING, that the inode freeing code sets under the tree lock before doing the final truncate. Reclaim will check for this flag before installing shadow pages. Signed-off-by: Johannes Weiner <hannes@cmpxchg.org> Reviewed-by: Rik van Riel <riel@redhat.com> Reviewed-by: Minchan Kim <minchan@kernel.org> Cc: Andrea Arcangeli <aarcange@redhat.com> Cc: Bob Liu <bob.liu@oracle.com> Cc: Christoph Hellwig <hch@infradead.org> Cc: Dave Chinner <david@fromorbit.com> Cc: Greg Thelen <gthelen@google.com> Cc: Hugh Dickins <hughd@google.com> Cc: Jan Kara <jack@suse.cz> Cc: KOSAKI Motohiro <kosaki.motohiro@jp.fujitsu.com> Cc: Luigi Semenzato <semenzato@google.com> Cc: Mel Gorman <mgorman@suse.de> Cc: Metin Doslu <metin@citusdata.com> Cc: Michel Lespinasse <walken@google.com> Cc: Ozgun Erdogan <ozgun@citusdata.com> Cc: Peter Zijlstra <peterz@infradead.org> Cc: Roman Gushchin <klamm@yandex-team.ru> Cc: Ryan Mallon <rmallon@gmail.com> Cc: Tejun Heo <tj@kernel.org> Cc: Vlastimil Babka <vbabka@suse.cz> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
2014-04-04 05:47:49 +08:00
truncate_inode_pages_final(&inode->i_data);
invalidate_inode_buffers(inode);
clear_inode(inode);
if (inode->i_nlink)
return;
di = find_inode(s, inode->i_ino, &bh);
if (IS_ERR(di))
return;
mutex_lock(&info->bfs_lock);
/* clear on-disk inode */
memset(di, 0, sizeof(struct bfs_inode));
mark_buffer_dirty(bh);
brelse(bh);
if (bi->i_dsk_ino) {
if (bi->i_sblock)
info->si_freeb += bi->i_eblock + 1 - bi->i_sblock;
info->si_freei++;
clear_bit(ino, info->si_imap);
bfs_dump_imap("evict_inode", s);
}
/*
* If this was the last file, make the previous block
* "last block of the last file" even if there is no
* real file there, saves us 1 gap.
*/
if (info->si_lf_eblk == bi->i_eblock)
info->si_lf_eblk = bi->i_sblock - 1;
mutex_unlock(&info->bfs_lock);
}
static void bfs_put_super(struct super_block *s)
{
struct bfs_sb_info *info = BFS_SB(s);
if (!info)
return;
mutex_destroy(&info->bfs_lock);
kfree(info);
s->s_fs_info = NULL;
}
static int bfs_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *s = dentry->d_sb;
struct bfs_sb_info *info = BFS_SB(s);
u64 id = huge_encode_dev(s->s_bdev->bd_dev);
buf->f_type = BFS_MAGIC;
buf->f_bsize = s->s_blocksize;
buf->f_blocks = info->si_blocks;
buf->f_bfree = buf->f_bavail = info->si_freeb;
buf->f_files = info->si_lasti + 1 - BFS_ROOT_INO;
buf->f_ffree = info->si_freei;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
buf->f_namelen = BFS_NAMELEN;
return 0;
}
static struct kmem_cache *bfs_inode_cachep;
static struct inode *bfs_alloc_inode(struct super_block *sb)
{
struct bfs_inode_info *bi;
bi = kmem_cache_alloc(bfs_inode_cachep, GFP_KERNEL);
if (!bi)
return NULL;
return &bi->vfs_inode;
}
static void bfs_free_inode(struct inode *inode)
{
kmem_cache_free(bfs_inode_cachep, BFS_I(inode));
}
static void init_once(void *foo)
{
struct bfs_inode_info *bi = foo;
inode_init_once(&bi->vfs_inode);
}
static int __init init_inodecache(void)
{
bfs_inode_cachep = kmem_cache_create("bfs_inode_cache",
sizeof(struct bfs_inode_info),
0, (SLAB_RECLAIM_ACCOUNT|
2016-01-15 07:18:21 +08:00
SLAB_MEM_SPREAD|SLAB_ACCOUNT),
init_once);
if (bfs_inode_cachep == NULL)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(bfs_inode_cachep);
}
static const struct super_operations bfs_sops = {
.alloc_inode = bfs_alloc_inode,
.free_inode = bfs_free_inode,
.write_inode = bfs_write_inode,
.evict_inode = bfs_evict_inode,
.put_super = bfs_put_super,
.statfs = bfs_statfs,
};
void bfs_dump_imap(const char *prefix, struct super_block *s)
{
#ifdef DEBUG
int i;
char *tmpbuf = (char *)get_zeroed_page(GFP_KERNEL);
if (!tmpbuf)
return;
for (i = BFS_SB(s)->si_lasti; i >= 0; i--) {
if (i > PAGE_SIZE - 100) break;
if (test_bit(i, BFS_SB(s)->si_imap))
strcat(tmpbuf, "1");
else
strcat(tmpbuf, "0");
}
printf("%s: lasti=%08lx <%s>\n", prefix, BFS_SB(s)->si_lasti, tmpbuf);
free_page((unsigned long)tmpbuf);
#endif
}
static int bfs_fill_super(struct super_block *s, void *data, int silent)
{
struct buffer_head *bh, *sbh;
struct bfs_super_block *bfs_sb;
struct inode *inode;
unsigned i;
struct bfs_sb_info *info;
int ret = -EINVAL;
unsigned long i_sblock, i_eblock, i_eoff, s_size;
info = kzalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
mutex_init(&info->bfs_lock);
s->s_fs_info = info;
s->s_time_min = 0;
s->s_time_max = U32_MAX;
sb_set_blocksize(s, BFS_BSIZE);
sbh = sb_bread(s, 0);
if (!sbh)
goto out;
bfs_sb = (struct bfs_super_block *)sbh->b_data;
if (le32_to_cpu(bfs_sb->s_magic) != BFS_MAGIC) {
if (!silent)
printf("No BFS filesystem on %s (magic=%08x)\n", s->s_id, le32_to_cpu(bfs_sb->s_magic));
goto out1;
}
if (BFS_UNCLEAN(bfs_sb, s) && !silent)
printf("%s is unclean, continuing\n", s->s_id);
s->s_magic = BFS_MAGIC;
if (le32_to_cpu(bfs_sb->s_start) > le32_to_cpu(bfs_sb->s_end) ||
le32_to_cpu(bfs_sb->s_start) < sizeof(struct bfs_super_block) + sizeof(struct bfs_dirent)) {
printf("Superblock is corrupted on %s\n", s->s_id);
goto out1;
}
info->si_lasti = (le32_to_cpu(bfs_sb->s_start) - BFS_BSIZE) / sizeof(struct bfs_inode) + BFS_ROOT_INO - 1;
if (info->si_lasti == BFS_MAX_LASTI)
printf("WARNING: filesystem %s was created with 512 inodes, the real maximum is 511, mounting anyway\n", s->s_id);
else if (info->si_lasti > BFS_MAX_LASTI) {
printf("Impossible last inode number %lu > %d on %s\n", info->si_lasti, BFS_MAX_LASTI, s->s_id);
goto out1;
}
for (i = 0; i < BFS_ROOT_INO; i++)
set_bit(i, info->si_imap);
s->s_op = &bfs_sops;
inode = bfs_iget(s, BFS_ROOT_INO);
if (IS_ERR(inode)) {
ret = PTR_ERR(inode);
goto out1;
}
s->s_root = d_make_root(inode);
if (!s->s_root) {
ret = -ENOMEM;
goto out1;
}
info->si_blocks = (le32_to_cpu(bfs_sb->s_end) + 1) >> BFS_BSIZE_BITS;
info->si_freeb = (le32_to_cpu(bfs_sb->s_end) + 1 - le32_to_cpu(bfs_sb->s_start)) >> BFS_BSIZE_BITS;
info->si_freei = 0;
info->si_lf_eblk = 0;
/* can we read the last block? */
bh = sb_bread(s, info->si_blocks - 1);
if (!bh) {
printf("Last block not available on %s: %lu\n", s->s_id, info->si_blocks - 1);
ret = -EIO;
goto out2;
}
brelse(bh);
bh = NULL;
for (i = BFS_ROOT_INO; i <= info->si_lasti; i++) {
struct bfs_inode *di;
int block = (i - BFS_ROOT_INO) / BFS_INODES_PER_BLOCK + 1;
int off = (i - BFS_ROOT_INO) % BFS_INODES_PER_BLOCK;
unsigned long eblock;
if (!off) {
brelse(bh);
bh = sb_bread(s, block);
}
if (!bh)
continue;
di = (struct bfs_inode *)bh->b_data + off;
/* test if filesystem is not corrupted */
i_eoff = le32_to_cpu(di->i_eoffset);
i_sblock = le32_to_cpu(di->i_sblock);
i_eblock = le32_to_cpu(di->i_eblock);
s_size = le32_to_cpu(bfs_sb->s_end);
if (i_sblock > info->si_blocks ||
i_eblock > info->si_blocks ||
i_sblock > i_eblock ||
(i_eoff != le32_to_cpu(-1) && i_eoff > s_size) ||
i_sblock * BFS_BSIZE > i_eoff) {
printf("Inode 0x%08x corrupted on %s\n", i, s->s_id);
brelse(bh);
ret = -EIO;
goto out2;
}
if (!di->i_ino) {
info->si_freei++;
continue;
}
set_bit(i, info->si_imap);
info->si_freeb -= BFS_FILEBLOCKS(di);
eblock = le32_to_cpu(di->i_eblock);
if (eblock > info->si_lf_eblk)
info->si_lf_eblk = eblock;
}
brelse(bh);
brelse(sbh);
bfs_dump_imap("fill_super", s);
return 0;
out2:
dput(s->s_root);
s->s_root = NULL;
out1:
brelse(sbh);
out:
mutex_destroy(&info->bfs_lock);
kfree(info);
s->s_fs_info = NULL;
return ret;
}
static struct dentry *bfs_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, bfs_fill_super);
}
static struct file_system_type bfs_fs_type = {
.owner = THIS_MODULE,
.name = "bfs",
.mount = bfs_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
fs: Limit sys_mount to only request filesystem modules. Modify the request_module to prefix the file system type with "fs-" and add aliases to all of the filesystems that can be built as modules to match. A common practice is to build all of the kernel code and leave code that is not commonly needed as modules, with the result that many users are exposed to any bug anywhere in the kernel. Looking for filesystems with a fs- prefix limits the pool of possible modules that can be loaded by mount to just filesystems trivially making things safer with no real cost. Using aliases means user space can control the policy of which filesystem modules are auto-loaded by editing /etc/modprobe.d/*.conf with blacklist and alias directives. Allowing simple, safe, well understood work-arounds to known problematic software. This also addresses a rare but unfortunate problem where the filesystem name is not the same as it's module name and module auto-loading would not work. While writing this patch I saw a handful of such cases. The most significant being autofs that lives in the module autofs4. This is relevant to user namespaces because we can reach the request module in get_fs_type() without having any special permissions, and people get uncomfortable when a user specified string (in this case the filesystem type) goes all of the way to request_module. After having looked at this issue I don't think there is any particular reason to perform any filtering or permission checks beyond making it clear in the module request that we want a filesystem module. The common pattern in the kernel is to call request_module() without regards to the users permissions. In general all a filesystem module does once loaded is call register_filesystem() and go to sleep. Which means there is not much attack surface exposed by loading a filesytem module unless the filesystem is mounted. In a user namespace filesystems are not mounted unless .fs_flags = FS_USERNS_MOUNT, which most filesystems do not set today. Acked-by: Serge Hallyn <serge.hallyn@canonical.com> Acked-by: Kees Cook <keescook@chromium.org> Reported-by: Kees Cook <keescook@google.com> Signed-off-by: "Eric W. Biederman" <ebiederm@xmission.com>
2013-03-03 11:39:14 +08:00
MODULE_ALIAS_FS("bfs");
static int __init init_bfs_fs(void)
{
int err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&bfs_fs_type);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_bfs_fs(void)
{
unregister_filesystem(&bfs_fs_type);
destroy_inodecache();
}
module_init(init_bfs_fs)
module_exit(exit_bfs_fs)