linux_old1/fs/ntfs/attrib.c

2614 lines
90 KiB
C
Raw Normal View History

/**
* attrib.c - NTFS attribute operations. Part of the Linux-NTFS project.
*
* Copyright (c) 2001-2006 Anton Altaparmakov
* Copyright (c) 2002 Richard Russon
*
* This program/include file is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as published
* by the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program/include file is distributed in the hope that it will be
* useful, but WITHOUT ANY WARRANTY; without even the implied warranty
* of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program (in the main directory of the Linux-NTFS
* distribution in the file COPYING); if not, write to the Free Software
* Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/buffer_head.h>
#include <linux/sched.h>
#include <linux/swap.h>
#include <linux/writeback.h>
#include "attrib.h"
#include "debug.h"
#include "layout.h"
#include "lcnalloc.h"
#include "malloc.h"
#include "mft.h"
#include "ntfs.h"
#include "types.h"
/**
* ntfs_map_runlist_nolock - map (a part of) a runlist of an ntfs inode
* @ni: ntfs inode for which to map (part of) a runlist
* @vcn: map runlist part containing this vcn
* @ctx: active attribute search context if present or NULL if not
*
* Map the part of a runlist containing the @vcn of the ntfs inode @ni.
*
* If @ctx is specified, it is an active search context of @ni and its base mft
* record. This is needed when ntfs_map_runlist_nolock() encounters unmapped
* runlist fragments and allows their mapping. If you do not have the mft
* record mapped, you can specify @ctx as NULL and ntfs_map_runlist_nolock()
* will perform the necessary mapping and unmapping.
*
* Note, ntfs_map_runlist_nolock() saves the state of @ctx on entry and
* restores it before returning. Thus, @ctx will be left pointing to the same
* attribute on return as on entry. However, the actual pointers in @ctx may
* point to different memory locations on return, so you must remember to reset
* any cached pointers from the @ctx, i.e. after the call to
* ntfs_map_runlist_nolock(), you will probably want to do:
* m = ctx->mrec;
* a = ctx->attr;
* Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
* you cache ctx->mrec in a variable @m of type MFT_RECORD *.
*
* Return 0 on success and -errno on error. There is one special error code
* which is not an error as such. This is -ENOENT. It means that @vcn is out
* of bounds of the runlist.
*
* Note the runlist can be NULL after this function returns if @vcn is zero and
* the attribute has zero allocated size, i.e. there simply is no runlist.
*
* WARNING: If @ctx is supplied, regardless of whether success or failure is
* returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
* is no longer valid, i.e. you need to either call
* ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
* In that case PTR_ERR(@ctx->mrec) will give you the error code for
* why the mapping of the old inode failed.
*
* Locking: - The runlist described by @ni must be locked for writing on entry
* and is locked on return. Note the runlist will be modified.
* - If @ctx is NULL, the base mft record of @ni must not be mapped on
* entry and it will be left unmapped on return.
* - If @ctx is not NULL, the base mft record must be mapped on entry
* and it will be left mapped on return.
*/
int ntfs_map_runlist_nolock(ntfs_inode *ni, VCN vcn, ntfs_attr_search_ctx *ctx)
{
VCN end_vcn;
unsigned long flags;
ntfs_inode *base_ni;
MFT_RECORD *m;
ATTR_RECORD *a;
runlist_element *rl;
struct page *put_this_page = NULL;
int err = 0;
bool ctx_is_temporary, ctx_needs_reset;
ntfs_attr_search_ctx old_ctx = { NULL, };
ntfs_debug("Mapping runlist part containing vcn 0x%llx.",
(unsigned long long)vcn);
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
if (!ctx) {
ctx_is_temporary = ctx_needs_reset = true;
m = map_mft_record(base_ni);
if (IS_ERR(m))
return PTR_ERR(m);
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
} else {
VCN allocated_size_vcn;
BUG_ON(IS_ERR(ctx->mrec));
a = ctx->attr;
BUG_ON(!a->non_resident);
ctx_is_temporary = false;
end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn);
read_lock_irqsave(&ni->size_lock, flags);
allocated_size_vcn = ni->allocated_size >>
ni->vol->cluster_size_bits;
read_unlock_irqrestore(&ni->size_lock, flags);
if (!a->data.non_resident.lowest_vcn && end_vcn <= 0)
end_vcn = allocated_size_vcn - 1;
/*
* If we already have the attribute extent containing @vcn in
* @ctx, no need to look it up again. We slightly cheat in
* that if vcn exceeds the allocated size, we will refuse to
* map the runlist below, so there is definitely no need to get
* the right attribute extent.
*/
if (vcn >= allocated_size_vcn || (a->type == ni->type &&
a->name_length == ni->name_len &&
!memcmp((u8*)a + le16_to_cpu(a->name_offset),
ni->name, ni->name_len) &&
sle64_to_cpu(a->data.non_resident.lowest_vcn)
<= vcn && end_vcn >= vcn))
ctx_needs_reset = false;
else {
/* Save the old search context. */
old_ctx = *ctx;
/*
* If the currently mapped (extent) inode is not the
* base inode we will unmap it when we reinitialize the
* search context which means we need to get a
* reference to the page containing the mapped mft
* record so we do not accidentally drop changes to the
* mft record when it has not been marked dirty yet.
*/
if (old_ctx.base_ntfs_ino && old_ctx.ntfs_ino !=
old_ctx.base_ntfs_ino) {
put_this_page = old_ctx.ntfs_ino->page;
page_cache_get(put_this_page);
}
/*
* Reinitialize the search context so we can lookup the
* needed attribute extent.
*/
ntfs_attr_reinit_search_ctx(ctx);
ctx_needs_reset = true;
}
}
if (ctx_needs_reset) {
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, vcn, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
BUG_ON(!ctx->attr->non_resident);
}
a = ctx->attr;
/*
* Only decompress the mapping pairs if @vcn is inside it. Otherwise
* we get into problems when we try to map an out of bounds vcn because
* we then try to map the already mapped runlist fragment and
* ntfs_mapping_pairs_decompress() fails.
*/
end_vcn = sle64_to_cpu(a->data.non_resident.highest_vcn) + 1;
if (!a->data.non_resident.lowest_vcn && end_vcn == 1)
end_vcn = sle64_to_cpu(a->data.non_resident.allocated_size) >>
ni->vol->cluster_size_bits;
if (unlikely(vcn >= end_vcn)) {
err = -ENOENT;
goto err_out;
}
rl = ntfs_mapping_pairs_decompress(ni->vol, a, ni->runlist.rl);
if (IS_ERR(rl))
err = PTR_ERR(rl);
else
ni->runlist.rl = rl;
err_out:
if (ctx_is_temporary) {
if (likely(ctx))
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
} else if (ctx_needs_reset) {
/*
* If there is no attribute list, restoring the search context
* is acomplished simply by copying the saved context back over
* the caller supplied context. If there is an attribute list,
* things are more complicated as we need to deal with mapping
* of mft records and resulting potential changes in pointers.
*/
if (NInoAttrList(base_ni)) {
/*
* If the currently mapped (extent) inode is not the
* one we had before, we need to unmap it and map the
* old one.
*/
if (ctx->ntfs_ino != old_ctx.ntfs_ino) {
/*
* If the currently mapped inode is not the
* base inode, unmap it.
*/
if (ctx->base_ntfs_ino && ctx->ntfs_ino !=
ctx->base_ntfs_ino) {
unmap_extent_mft_record(ctx->ntfs_ino);
ctx->mrec = ctx->base_mrec;
BUG_ON(!ctx->mrec);
}
/*
* If the old mapped inode is not the base
* inode, map it.
*/
if (old_ctx.base_ntfs_ino &&
old_ctx.ntfs_ino !=
old_ctx.base_ntfs_ino) {
retry_map:
ctx->mrec = map_mft_record(
old_ctx.ntfs_ino);
/*
* Something bad has happened. If out
* of memory retry till it succeeds.
* Any other errors are fatal and we
* return the error code in ctx->mrec.
* Let the caller deal with it... We
* just need to fudge things so the
* caller can reinit and/or put the
* search context safely.
*/
if (IS_ERR(ctx->mrec)) {
if (PTR_ERR(ctx->mrec) ==
-ENOMEM) {
schedule();
goto retry_map;
} else
old_ctx.ntfs_ino =
old_ctx.
base_ntfs_ino;
}
}
}
/* Update the changed pointers in the saved context. */
if (ctx->mrec != old_ctx.mrec) {
if (!IS_ERR(ctx->mrec))
old_ctx.attr = (ATTR_RECORD*)(
(u8*)ctx->mrec +
((u8*)old_ctx.attr -
(u8*)old_ctx.mrec));
old_ctx.mrec = ctx->mrec;
}
}
/* Restore the search context to the saved one. */
*ctx = old_ctx;
/*
* We drop the reference on the page we took earlier. In the
* case that IS_ERR(ctx->mrec) is true this means we might lose
* some changes to the mft record that had been made between
* the last time it was marked dirty/written out and now. This
* at this stage is not a problem as the mapping error is fatal
* enough that the mft record cannot be written out anyway and
* the caller is very likely to shutdown the whole inode
* immediately and mark the volume dirty for chkdsk to pick up
* the pieces anyway.
*/
if (put_this_page)
page_cache_release(put_this_page);
}
return err;
}
/**
* ntfs_map_runlist - map (a part of) a runlist of an ntfs inode
* @ni: ntfs inode for which to map (part of) a runlist
* @vcn: map runlist part containing this vcn
*
* Map the part of a runlist containing the @vcn of the ntfs inode @ni.
*
* Return 0 on success and -errno on error. There is one special error code
* which is not an error as such. This is -ENOENT. It means that @vcn is out
* of bounds of the runlist.
*
* Locking: - The runlist must be unlocked on entry and is unlocked on return.
* - This function takes the runlist lock for writing and may modify
* the runlist.
*/
int ntfs_map_runlist(ntfs_inode *ni, VCN vcn)
{
int err = 0;
down_write(&ni->runlist.lock);
/* Make sure someone else didn't do the work while we were sleeping. */
if (likely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) <=
LCN_RL_NOT_MAPPED))
err = ntfs_map_runlist_nolock(ni, vcn, NULL);
up_write(&ni->runlist.lock);
return err;
}
/**
* ntfs_attr_vcn_to_lcn_nolock - convert a vcn into a lcn given an ntfs inode
* @ni: ntfs inode of the attribute whose runlist to search
* @vcn: vcn to convert
* @write_locked: true if the runlist is locked for writing
*
* Find the virtual cluster number @vcn in the runlist of the ntfs attribute
* described by the ntfs inode @ni and return the corresponding logical cluster
* number (lcn).
*
* If the @vcn is not mapped yet, the attempt is made to map the attribute
* extent containing the @vcn and the vcn to lcn conversion is retried.
*
* If @write_locked is true the caller has locked the runlist for writing and
* if false for reading.
*
* Since lcns must be >= 0, we use negative return codes with special meaning:
*
* Return code Meaning / Description
* ==========================================
* LCN_HOLE Hole / not allocated on disk.
* LCN_ENOENT There is no such vcn in the runlist, i.e. @vcn is out of bounds.
* LCN_ENOMEM Not enough memory to map runlist.
* LCN_EIO Critical error (runlist/file is corrupt, i/o error, etc).
*
* Locking: - The runlist must be locked on entry and is left locked on return.
* - If @write_locked is 'false', i.e. the runlist is locked for reading,
* the lock may be dropped inside the function so you cannot rely on
* the runlist still being the same when this function returns.
*/
LCN ntfs_attr_vcn_to_lcn_nolock(ntfs_inode *ni, const VCN vcn,
const bool write_locked)
{
LCN lcn;
unsigned long flags;
bool is_retry = false;
ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, %s_locked.",
ni->mft_no, (unsigned long long)vcn,
write_locked ? "write" : "read");
BUG_ON(!ni);
BUG_ON(!NInoNonResident(ni));
BUG_ON(vcn < 0);
if (!ni->runlist.rl) {
read_lock_irqsave(&ni->size_lock, flags);
if (!ni->allocated_size) {
read_unlock_irqrestore(&ni->size_lock, flags);
return LCN_ENOENT;
}
read_unlock_irqrestore(&ni->size_lock, flags);
}
retry_remap:
/* Convert vcn to lcn. If that fails map the runlist and retry once. */
lcn = ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn);
if (likely(lcn >= LCN_HOLE)) {
ntfs_debug("Done, lcn 0x%llx.", (long long)lcn);
return lcn;
}
if (lcn != LCN_RL_NOT_MAPPED) {
if (lcn != LCN_ENOENT)
lcn = LCN_EIO;
} else if (!is_retry) {
int err;
if (!write_locked) {
up_read(&ni->runlist.lock);
down_write(&ni->runlist.lock);
if (unlikely(ntfs_rl_vcn_to_lcn(ni->runlist.rl, vcn) !=
LCN_RL_NOT_MAPPED)) {
up_write(&ni->runlist.lock);
down_read(&ni->runlist.lock);
goto retry_remap;
}
}
err = ntfs_map_runlist_nolock(ni, vcn, NULL);
if (!write_locked) {
up_write(&ni->runlist.lock);
down_read(&ni->runlist.lock);
}
if (likely(!err)) {
is_retry = true;
goto retry_remap;
}
if (err == -ENOENT)
lcn = LCN_ENOENT;
else if (err == -ENOMEM)
lcn = LCN_ENOMEM;
else
lcn = LCN_EIO;
}
if (lcn != LCN_ENOENT)
ntfs_error(ni->vol->sb, "Failed with error code %lli.",
(long long)lcn);
return lcn;
}
/**
* ntfs_attr_find_vcn_nolock - find a vcn in the runlist of an ntfs inode
* @ni: ntfs inode describing the runlist to search
* @vcn: vcn to find
* @ctx: active attribute search context if present or NULL if not
*
* Find the virtual cluster number @vcn in the runlist described by the ntfs
* inode @ni and return the address of the runlist element containing the @vcn.
*
* If the @vcn is not mapped yet, the attempt is made to map the attribute
* extent containing the @vcn and the vcn to lcn conversion is retried.
*
* If @ctx is specified, it is an active search context of @ni and its base mft
* record. This is needed when ntfs_attr_find_vcn_nolock() encounters unmapped
* runlist fragments and allows their mapping. If you do not have the mft
* record mapped, you can specify @ctx as NULL and ntfs_attr_find_vcn_nolock()
* will perform the necessary mapping and unmapping.
*
* Note, ntfs_attr_find_vcn_nolock() saves the state of @ctx on entry and
* restores it before returning. Thus, @ctx will be left pointing to the same
* attribute on return as on entry. However, the actual pointers in @ctx may
* point to different memory locations on return, so you must remember to reset
* any cached pointers from the @ctx, i.e. after the call to
* ntfs_attr_find_vcn_nolock(), you will probably want to do:
* m = ctx->mrec;
* a = ctx->attr;
* Assuming you cache ctx->attr in a variable @a of type ATTR_RECORD * and that
* you cache ctx->mrec in a variable @m of type MFT_RECORD *.
* Note you need to distinguish between the lcn of the returned runlist element
* being >= 0 and LCN_HOLE. In the later case you have to return zeroes on
* read and allocate clusters on write.
*
* Return the runlist element containing the @vcn on success and
* ERR_PTR(-errno) on error. You need to test the return value with IS_ERR()
* to decide if the return is success or failure and PTR_ERR() to get to the
* error code if IS_ERR() is true.
*
* The possible error return codes are:
* -ENOENT - No such vcn in the runlist, i.e. @vcn is out of bounds.
* -ENOMEM - Not enough memory to map runlist.
* -EIO - Critical error (runlist/file is corrupt, i/o error, etc).
*
* WARNING: If @ctx is supplied, regardless of whether success or failure is
* returned, you need to check IS_ERR(@ctx->mrec) and if 'true' the @ctx
* is no longer valid, i.e. you need to either call
* ntfs_attr_reinit_search_ctx() or ntfs_attr_put_search_ctx() on it.
* In that case PTR_ERR(@ctx->mrec) will give you the error code for
* why the mapping of the old inode failed.
*
* Locking: - The runlist described by @ni must be locked for writing on entry
* and is locked on return. Note the runlist may be modified when
* needed runlist fragments need to be mapped.
* - If @ctx is NULL, the base mft record of @ni must not be mapped on
* entry and it will be left unmapped on return.
* - If @ctx is not NULL, the base mft record must be mapped on entry
* and it will be left mapped on return.
*/
runlist_element *ntfs_attr_find_vcn_nolock(ntfs_inode *ni, const VCN vcn,
ntfs_attr_search_ctx *ctx)
{
unsigned long flags;
runlist_element *rl;
int err = 0;
bool is_retry = false;
ntfs_debug("Entering for i_ino 0x%lx, vcn 0x%llx, with%s ctx.",
ni->mft_no, (unsigned long long)vcn, ctx ? "" : "out");
BUG_ON(!ni);
BUG_ON(!NInoNonResident(ni));
BUG_ON(vcn < 0);
if (!ni->runlist.rl) {
read_lock_irqsave(&ni->size_lock, flags);
if (!ni->allocated_size) {
read_unlock_irqrestore(&ni->size_lock, flags);
return ERR_PTR(-ENOENT);
}
read_unlock_irqrestore(&ni->size_lock, flags);
}
retry_remap:
rl = ni->runlist.rl;
if (likely(rl && vcn >= rl[0].vcn)) {
while (likely(rl->length)) {
if (unlikely(vcn < rl[1].vcn)) {
if (likely(rl->lcn >= LCN_HOLE)) {
ntfs_debug("Done.");
return rl;
}
break;
}
rl++;
}
if (likely(rl->lcn != LCN_RL_NOT_MAPPED)) {
if (likely(rl->lcn == LCN_ENOENT))
err = -ENOENT;
else
err = -EIO;
}
}
if (!err && !is_retry) {
/*
* If the search context is invalid we cannot map the unmapped
* region.
*/
if (IS_ERR(ctx->mrec))
err = PTR_ERR(ctx->mrec);
else {
/*
* The @vcn is in an unmapped region, map the runlist
* and retry.
*/
err = ntfs_map_runlist_nolock(ni, vcn, ctx);
if (likely(!err)) {
is_retry = true;
goto retry_remap;
}
}
if (err == -EINVAL)
err = -EIO;
} else if (!err)
err = -EIO;
if (err != -ENOENT)
ntfs_error(ni->vol->sb, "Failed with error code %i.", err);
return ERR_PTR(err);
}
/**
* ntfs_attr_find - find (next) attribute in mft record
* @type: attribute type to find
* @name: attribute name to find (optional, i.e. NULL means don't care)
* @name_len: attribute name length (only needed if @name present)
* @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
* @val: attribute value to find (optional, resident attributes only)
* @val_len: attribute value length
* @ctx: search context with mft record and attribute to search from
*
* You should not need to call this function directly. Use ntfs_attr_lookup()
* instead.
*
* ntfs_attr_find() takes a search context @ctx as parameter and searches the
* mft record specified by @ctx->mrec, beginning at @ctx->attr, for an
* attribute of @type, optionally @name and @val.
*
* If the attribute is found, ntfs_attr_find() returns 0 and @ctx->attr will
* point to the found attribute.
*
* If the attribute is not found, ntfs_attr_find() returns -ENOENT and
* @ctx->attr will point to the attribute before which the attribute being
* searched for would need to be inserted if such an action were to be desired.
*
* On actual error, ntfs_attr_find() returns -EIO. In this case @ctx->attr is
* undefined and in particular do not rely on it not changing.
*
* If @ctx->is_first is 'true', the search begins with @ctx->attr itself. If it
* is 'false', the search begins after @ctx->attr.
*
* If @ic is IGNORE_CASE, the @name comparisson is not case sensitive and
* @ctx->ntfs_ino must be set to the ntfs inode to which the mft record
* @ctx->mrec belongs. This is so we can get at the ntfs volume and hence at
* the upcase table. If @ic is CASE_SENSITIVE, the comparison is case
* sensitive. When @name is present, @name_len is the @name length in Unicode
* characters.
*
* If @name is not present (NULL), we assume that the unnamed attribute is
* being searched for.
*
* Finally, the resident attribute value @val is looked for, if present. If
* @val is not present (NULL), @val_len is ignored.
*
* ntfs_attr_find() only searches the specified mft record and it ignores the
* presence of an attribute list attribute (unless it is the one being searched
* for, obviously). If you need to take attribute lists into consideration,
* use ntfs_attr_lookup() instead (see below). This also means that you cannot
* use ntfs_attr_find() to search for extent records of non-resident
* attributes, as extents with lowest_vcn != 0 are usually described by the
* attribute list attribute only. - Note that it is possible that the first
* extent is only in the attribute list while the last extent is in the base
* mft record, so do not rely on being able to find the first extent in the
* base mft record.
*
* Warning: Never use @val when looking for attribute types which can be
* non-resident as this most likely will result in a crash!
*/
static int ntfs_attr_find(const ATTR_TYPE type, const ntfschar *name,
const u32 name_len, const IGNORE_CASE_BOOL ic,
const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
{
ATTR_RECORD *a;
ntfs_volume *vol = ctx->ntfs_ino->vol;
ntfschar *upcase = vol->upcase;
u32 upcase_len = vol->upcase_len;
/*
* Iterate over attributes in mft record starting at @ctx->attr, or the
* attribute following that, if @ctx->is_first is 'true'.
*/
if (ctx->is_first) {
a = ctx->attr;
ctx->is_first = false;
} else
a = (ATTR_RECORD*)((u8*)ctx->attr +
le32_to_cpu(ctx->attr->length));
for (;; a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length))) {
if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
le32_to_cpu(ctx->mrec->bytes_allocated))
break;
ctx->attr = a;
if (unlikely(le32_to_cpu(a->type) > le32_to_cpu(type) ||
a->type == AT_END))
return -ENOENT;
if (unlikely(!a->length))
break;
if (a->type != type)
continue;
/*
* If @name is present, compare the two names. If @name is
* missing, assume we want an unnamed attribute.
*/
if (!name) {
/* The search failed if the found attribute is named. */
if (a->name_length)
return -ENOENT;
} else if (!ntfs_are_names_equal(name, name_len,
(ntfschar*)((u8*)a + le16_to_cpu(a->name_offset)),
a->name_length, ic, upcase, upcase_len)) {
register int rc;
rc = ntfs_collate_names(name, name_len,
(ntfschar*)((u8*)a +
le16_to_cpu(a->name_offset)),
a->name_length, 1, IGNORE_CASE,
upcase, upcase_len);
/*
* If @name collates before a->name, there is no
* matching attribute.
*/
if (rc == -1)
return -ENOENT;
/* If the strings are not equal, continue search. */
if (rc)
continue;
rc = ntfs_collate_names(name, name_len,
(ntfschar*)((u8*)a +
le16_to_cpu(a->name_offset)),
a->name_length, 1, CASE_SENSITIVE,
upcase, upcase_len);
if (rc == -1)
return -ENOENT;
if (rc)
continue;
}
/*
* The names match or @name not present and attribute is
* unnamed. If no @val specified, we have found the attribute
* and are done.
*/
if (!val)
return 0;
/* @val is present; compare values. */
else {
register int rc;
rc = memcmp(val, (u8*)a + le16_to_cpu(
a->data.resident.value_offset),
min_t(u32, val_len, le32_to_cpu(
a->data.resident.value_length)));
/*
* If @val collates before the current attribute's
* value, there is no matching attribute.
*/
if (!rc) {
register u32 avl;
avl = le32_to_cpu(
a->data.resident.value_length);
if (val_len == avl)
return 0;
if (val_len < avl)
return -ENOENT;
} else if (rc < 0)
return -ENOENT;
}
}
ntfs_error(vol->sb, "Inode is corrupt. Run chkdsk.");
NVolSetErrors(vol);
return -EIO;
}
/**
* load_attribute_list - load an attribute list into memory
* @vol: ntfs volume from which to read
* @runlist: runlist of the attribute list
* @al_start: destination buffer
* @size: size of the destination buffer in bytes
* @initialized_size: initialized size of the attribute list
*
* Walk the runlist @runlist and load all clusters from it copying them into
* the linear buffer @al. The maximum number of bytes copied to @al is @size
* bytes. Note, @size does not need to be a multiple of the cluster size. If
* @initialized_size is less than @size, the region in @al between
* @initialized_size and @size will be zeroed and not read from disk.
*
* Return 0 on success or -errno on error.
*/
int load_attribute_list(ntfs_volume *vol, runlist *runlist, u8 *al_start,
const s64 size, const s64 initialized_size)
{
LCN lcn;
u8 *al = al_start;
u8 *al_end = al + initialized_size;
runlist_element *rl;
struct buffer_head *bh;
struct super_block *sb;
unsigned long block_size;
unsigned long block, max_block;
int err = 0;
unsigned char block_size_bits;
ntfs_debug("Entering.");
if (!vol || !runlist || !al || size <= 0 || initialized_size < 0 ||
initialized_size > size)
return -EINVAL;
if (!initialized_size) {
memset(al, 0, size);
return 0;
}
sb = vol->sb;
block_size = sb->s_blocksize;
block_size_bits = sb->s_blocksize_bits;
down_read(&runlist->lock);
rl = runlist->rl;
if (!rl) {
ntfs_error(sb, "Cannot read attribute list since runlist is "
"missing.");
goto err_out;
}
/* Read all clusters specified by the runlist one run at a time. */
while (rl->length) {
lcn = ntfs_rl_vcn_to_lcn(rl, rl->vcn);
ntfs_debug("Reading vcn = 0x%llx, lcn = 0x%llx.",
(unsigned long long)rl->vcn,
(unsigned long long)lcn);
/* The attribute list cannot be sparse. */
if (lcn < 0) {
ntfs_error(sb, "ntfs_rl_vcn_to_lcn() failed. Cannot "
"read attribute list.");
goto err_out;
}
block = lcn << vol->cluster_size_bits >> block_size_bits;
/* Read the run from device in chunks of block_size bytes. */
max_block = block + (rl->length << vol->cluster_size_bits >>
block_size_bits);
ntfs_debug("max_block = 0x%lx.", max_block);
do {
ntfs_debug("Reading block = 0x%lx.", block);
bh = sb_bread(sb, block);
if (!bh) {
ntfs_error(sb, "sb_bread() failed. Cannot "
"read attribute list.");
goto err_out;
}
if (al + block_size >= al_end)
goto do_final;
memcpy(al, bh->b_data, block_size);
brelse(bh);
al += block_size;
} while (++block < max_block);
rl++;
}
if (initialized_size < size) {
initialize:
memset(al_start + initialized_size, 0, size - initialized_size);
}
done:
up_read(&runlist->lock);
return err;
do_final:
if (al < al_end) {
/*
* Partial block.
*
* Note: The attribute list can be smaller than its allocation
* by multiple clusters. This has been encountered by at least
* two people running Windows XP, thus we cannot do any
* truncation sanity checking here. (AIA)
*/
memcpy(al, bh->b_data, al_end - al);
brelse(bh);
if (initialized_size < size)
goto initialize;
goto done;
}
brelse(bh);
/* Real overflow! */
ntfs_error(sb, "Attribute list buffer overflow. Read attribute list "
"is truncated.");
err_out:
err = -EIO;
goto done;
}
/**
* ntfs_external_attr_find - find an attribute in the attribute list of an inode
* @type: attribute type to find
* @name: attribute name to find (optional, i.e. NULL means don't care)
* @name_len: attribute name length (only needed if @name present)
* @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
* @lowest_vcn: lowest vcn to find (optional, non-resident attributes only)
* @val: attribute value to find (optional, resident attributes only)
* @val_len: attribute value length
* @ctx: search context with mft record and attribute to search from
*
* You should not need to call this function directly. Use ntfs_attr_lookup()
* instead.
*
* Find an attribute by searching the attribute list for the corresponding
* attribute list entry. Having found the entry, map the mft record if the
* attribute is in a different mft record/inode, ntfs_attr_find() the attribute
* in there and return it.
*
* On first search @ctx->ntfs_ino must be the base mft record and @ctx must
* have been obtained from a call to ntfs_attr_get_search_ctx(). On subsequent
* calls @ctx->ntfs_ino can be any extent inode, too (@ctx->base_ntfs_ino is
* then the base inode).
*
* After finishing with the attribute/mft record you need to call
* ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
* mapped inodes, etc).
*
* If the attribute is found, ntfs_external_attr_find() returns 0 and
* @ctx->attr will point to the found attribute. @ctx->mrec will point to the
* mft record in which @ctx->attr is located and @ctx->al_entry will point to
* the attribute list entry for the attribute.
*
* If the attribute is not found, ntfs_external_attr_find() returns -ENOENT and
* @ctx->attr will point to the attribute in the base mft record before which
* the attribute being searched for would need to be inserted if such an action
* were to be desired. @ctx->mrec will point to the mft record in which
* @ctx->attr is located and @ctx->al_entry will point to the attribute list
* entry of the attribute before which the attribute being searched for would
* need to be inserted if such an action were to be desired.
*
* Thus to insert the not found attribute, one wants to add the attribute to
* @ctx->mrec (the base mft record) and if there is not enough space, the
* attribute should be placed in a newly allocated extent mft record. The
* attribute list entry for the inserted attribute should be inserted in the
* attribute list attribute at @ctx->al_entry.
*
* On actual error, ntfs_external_attr_find() returns -EIO. In this case
* @ctx->attr is undefined and in particular do not rely on it not changing.
*/
static int ntfs_external_attr_find(const ATTR_TYPE type,
const ntfschar *name, const u32 name_len,
const IGNORE_CASE_BOOL ic, const VCN lowest_vcn,
const u8 *val, const u32 val_len, ntfs_attr_search_ctx *ctx)
{
ntfs_inode *base_ni, *ni;
ntfs_volume *vol;
ATTR_LIST_ENTRY *al_entry, *next_al_entry;
u8 *al_start, *al_end;
ATTR_RECORD *a;
ntfschar *al_name;
u32 al_name_len;
int err = 0;
static const char *es = " Unmount and run chkdsk.";
ni = ctx->ntfs_ino;
base_ni = ctx->base_ntfs_ino;
ntfs_debug("Entering for inode 0x%lx, type 0x%x.", ni->mft_no, type);
if (!base_ni) {
/* First call happens with the base mft record. */
base_ni = ctx->base_ntfs_ino = ctx->ntfs_ino;
ctx->base_mrec = ctx->mrec;
}
if (ni == base_ni)
ctx->base_attr = ctx->attr;
if (type == AT_END)
goto not_found;
vol = base_ni->vol;
al_start = base_ni->attr_list;
al_end = al_start + base_ni->attr_list_size;
if (!ctx->al_entry)
ctx->al_entry = (ATTR_LIST_ENTRY*)al_start;
/*
* Iterate over entries in attribute list starting at @ctx->al_entry,
* or the entry following that, if @ctx->is_first is 'true'.
*/
if (ctx->is_first) {
al_entry = ctx->al_entry;
ctx->is_first = false;
} else
al_entry = (ATTR_LIST_ENTRY*)((u8*)ctx->al_entry +
le16_to_cpu(ctx->al_entry->length));
for (;; al_entry = next_al_entry) {
/* Out of bounds check. */
if ((u8*)al_entry < base_ni->attr_list ||
(u8*)al_entry > al_end)
break; /* Inode is corrupt. */
ctx->al_entry = al_entry;
/* Catch the end of the attribute list. */
if ((u8*)al_entry == al_end)
goto not_found;
if (!al_entry->length)
break;
if ((u8*)al_entry + 6 > al_end || (u8*)al_entry +
le16_to_cpu(al_entry->length) > al_end)
break;
next_al_entry = (ATTR_LIST_ENTRY*)((u8*)al_entry +
le16_to_cpu(al_entry->length));
if (le32_to_cpu(al_entry->type) > le32_to_cpu(type))
goto not_found;
if (type != al_entry->type)
continue;
/*
* If @name is present, compare the two names. If @name is
* missing, assume we want an unnamed attribute.
*/
al_name_len = al_entry->name_length;
al_name = (ntfschar*)((u8*)al_entry + al_entry->name_offset);
if (!name) {
if (al_name_len)
goto not_found;
} else if (!ntfs_are_names_equal(al_name, al_name_len, name,
name_len, ic, vol->upcase, vol->upcase_len)) {
register int rc;
rc = ntfs_collate_names(name, name_len, al_name,
al_name_len, 1, IGNORE_CASE,
vol->upcase, vol->upcase_len);
/*
* If @name collates before al_name, there is no
* matching attribute.
*/
if (rc == -1)
goto not_found;
/* If the strings are not equal, continue search. */
if (rc)
continue;
/*
* FIXME: Reverse engineering showed 0, IGNORE_CASE but
* that is inconsistent with ntfs_attr_find(). The
* subsequent rc checks were also different. Perhaps I
* made a mistake in one of the two. Need to recheck
* which is correct or at least see what is going on...
* (AIA)
*/
rc = ntfs_collate_names(name, name_len, al_name,
al_name_len, 1, CASE_SENSITIVE,
vol->upcase, vol->upcase_len);
if (rc == -1)
goto not_found;
if (rc)
continue;
}
/*
* The names match or @name not present and attribute is
* unnamed. Now check @lowest_vcn. Continue search if the
* next attribute list entry still fits @lowest_vcn. Otherwise
* we have reached the right one or the search has failed.
*/
if (lowest_vcn && (u8*)next_al_entry >= al_start &&
(u8*)next_al_entry + 6 < al_end &&
(u8*)next_al_entry + le16_to_cpu(
next_al_entry->length) <= al_end &&
sle64_to_cpu(next_al_entry->lowest_vcn) <=
lowest_vcn &&
next_al_entry->type == al_entry->type &&
next_al_entry->name_length == al_name_len &&
ntfs_are_names_equal((ntfschar*)((u8*)
next_al_entry +
next_al_entry->name_offset),
next_al_entry->name_length,
al_name, al_name_len, CASE_SENSITIVE,
vol->upcase, vol->upcase_len))
continue;
if (MREF_LE(al_entry->mft_reference) == ni->mft_no) {
if (MSEQNO_LE(al_entry->mft_reference) != ni->seq_no) {
ntfs_error(vol->sb, "Found stale mft "
"reference in attribute list "
"of base inode 0x%lx.%s",
base_ni->mft_no, es);
err = -EIO;
break;
}
} else { /* Mft references do not match. */
/* If there is a mapped record unmap it first. */
if (ni != base_ni)
unmap_extent_mft_record(ni);
/* Do we want the base record back? */
if (MREF_LE(al_entry->mft_reference) ==
base_ni->mft_no) {
ni = ctx->ntfs_ino = base_ni;
ctx->mrec = ctx->base_mrec;
} else {
/* We want an extent record. */
ctx->mrec = map_extent_mft_record(base_ni,
le64_to_cpu(
al_entry->mft_reference), &ni);
if (IS_ERR(ctx->mrec)) {
ntfs_error(vol->sb, "Failed to map "
"extent mft record "
"0x%lx of base inode "
"0x%lx.%s",
MREF_LE(al_entry->
mft_reference),
base_ni->mft_no, es);
err = PTR_ERR(ctx->mrec);
if (err == -ENOENT)
err = -EIO;
/* Cause @ctx to be sanitized below. */
ni = NULL;
break;
}
ctx->ntfs_ino = ni;
}
ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
le16_to_cpu(ctx->mrec->attrs_offset));
}
/*
* ctx->vfs_ino, ctx->mrec, and ctx->attr now point to the
* mft record containing the attribute represented by the
* current al_entry.
*/
/*
* We could call into ntfs_attr_find() to find the right
* attribute in this mft record but this would be less
* efficient and not quite accurate as ntfs_attr_find() ignores
* the attribute instance numbers for example which become
* important when one plays with attribute lists. Also,
* because a proper match has been found in the attribute list
* entry above, the comparison can now be optimized. So it is
* worth re-implementing a simplified ntfs_attr_find() here.
*/
a = ctx->attr;
/*
* Use a manual loop so we can still use break and continue
* with the same meanings as above.
*/
do_next_attr_loop:
if ((u8*)a < (u8*)ctx->mrec || (u8*)a > (u8*)ctx->mrec +
le32_to_cpu(ctx->mrec->bytes_allocated))
break;
if (a->type == AT_END)
break;
if (!a->length)
break;
if (al_entry->instance != a->instance)
goto do_next_attr;
/*
* If the type and/or the name are mismatched between the
* attribute list entry and the attribute record, there is
* corruption so we break and return error EIO.
*/
if (al_entry->type != a->type)
break;
if (!ntfs_are_names_equal((ntfschar*)((u8*)a +
le16_to_cpu(a->name_offset)), a->name_length,
al_name, al_name_len, CASE_SENSITIVE,
vol->upcase, vol->upcase_len))
break;
ctx->attr = a;
/*
* If no @val specified or @val specified and it matches, we
* have found it!
*/
if (!val || (!a->non_resident && le32_to_cpu(
a->data.resident.value_length) == val_len &&
!memcmp((u8*)a +
le16_to_cpu(a->data.resident.value_offset),
val, val_len))) {
ntfs_debug("Done, found.");
return 0;
}
do_next_attr:
/* Proceed to the next attribute in the current mft record. */
a = (ATTR_RECORD*)((u8*)a + le32_to_cpu(a->length));
goto do_next_attr_loop;
}
if (!err) {
ntfs_error(vol->sb, "Base inode 0x%lx contains corrupt "
"attribute list attribute.%s", base_ni->mft_no,
es);
err = -EIO;
}
if (ni != base_ni) {
if (ni)
unmap_extent_mft_record(ni);
ctx->ntfs_ino = base_ni;
ctx->mrec = ctx->base_mrec;
ctx->attr = ctx->base_attr;
}
if (err != -ENOMEM)
NVolSetErrors(vol);
return err;
not_found:
/*
* If we were looking for AT_END, we reset the search context @ctx and
* use ntfs_attr_find() to seek to the end of the base mft record.
*/
if (type == AT_END) {
ntfs_attr_reinit_search_ctx(ctx);
return ntfs_attr_find(AT_END, name, name_len, ic, val, val_len,
ctx);
}
/*
* The attribute was not found. Before we return, we want to ensure
* @ctx->mrec and @ctx->attr indicate the position at which the
* attribute should be inserted in the base mft record. Since we also
* want to preserve @ctx->al_entry we cannot reinitialize the search
* context using ntfs_attr_reinit_search_ctx() as this would set
* @ctx->al_entry to NULL. Thus we do the necessary bits manually (see
* ntfs_attr_init_search_ctx() below). Note, we _only_ preserve
* @ctx->al_entry as the remaining fields (base_*) are identical to
* their non base_ counterparts and we cannot set @ctx->base_attr
* correctly yet as we do not know what @ctx->attr will be set to by
* the call to ntfs_attr_find() below.
*/
if (ni != base_ni)
unmap_extent_mft_record(ni);
ctx->mrec = ctx->base_mrec;
ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
le16_to_cpu(ctx->mrec->attrs_offset));
ctx->is_first = true;
ctx->ntfs_ino = base_ni;
ctx->base_ntfs_ino = NULL;
ctx->base_mrec = NULL;
ctx->base_attr = NULL;
/*
* In case there are multiple matches in the base mft record, need to
* keep enumerating until we get an attribute not found response (or
* another error), otherwise we would keep returning the same attribute
* over and over again and all programs using us for enumeration would
* lock up in a tight loop.
*/
do {
err = ntfs_attr_find(type, name, name_len, ic, val, val_len,
ctx);
} while (!err);
ntfs_debug("Done, not found.");
return err;
}
/**
* ntfs_attr_lookup - find an attribute in an ntfs inode
* @type: attribute type to find
* @name: attribute name to find (optional, i.e. NULL means don't care)
* @name_len: attribute name length (only needed if @name present)
* @ic: IGNORE_CASE or CASE_SENSITIVE (ignored if @name not present)
* @lowest_vcn: lowest vcn to find (optional, non-resident attributes only)
* @val: attribute value to find (optional, resident attributes only)
* @val_len: attribute value length
* @ctx: search context with mft record and attribute to search from
*
* Find an attribute in an ntfs inode. On first search @ctx->ntfs_ino must
* be the base mft record and @ctx must have been obtained from a call to
* ntfs_attr_get_search_ctx().
*
* This function transparently handles attribute lists and @ctx is used to
* continue searches where they were left off at.
*
* After finishing with the attribute/mft record you need to call
* ntfs_attr_put_search_ctx() to cleanup the search context (unmapping any
* mapped inodes, etc).
*
* Return 0 if the search was successful and -errno if not.
*
* When 0, @ctx->attr is the found attribute and it is in mft record
* @ctx->mrec. If an attribute list attribute is present, @ctx->al_entry is
* the attribute list entry of the found attribute.
*
* When -ENOENT, @ctx->attr is the attribute which collates just after the
* attribute being searched for, i.e. if one wants to add the attribute to the
* mft record this is the correct place to insert it into. If an attribute
* list attribute is present, @ctx->al_entry is the attribute list entry which
* collates just after the attribute list entry of the attribute being searched
* for, i.e. if one wants to add the attribute to the mft record this is the
* correct place to insert its attribute list entry into.
*
* When -errno != -ENOENT, an error occured during the lookup. @ctx->attr is
* then undefined and in particular you should not rely on it not changing.
*/
int ntfs_attr_lookup(const ATTR_TYPE type, const ntfschar *name,
const u32 name_len, const IGNORE_CASE_BOOL ic,
const VCN lowest_vcn, const u8 *val, const u32 val_len,
ntfs_attr_search_ctx *ctx)
{
ntfs_inode *base_ni;
ntfs_debug("Entering.");
BUG_ON(IS_ERR(ctx->mrec));
if (ctx->base_ntfs_ino)
base_ni = ctx->base_ntfs_ino;
else
base_ni = ctx->ntfs_ino;
/* Sanity check, just for debugging really. */
BUG_ON(!base_ni);
if (!NInoAttrList(base_ni) || type == AT_ATTRIBUTE_LIST)
return ntfs_attr_find(type, name, name_len, ic, val, val_len,
ctx);
return ntfs_external_attr_find(type, name, name_len, ic, lowest_vcn,
val, val_len, ctx);
}
/**
* ntfs_attr_init_search_ctx - initialize an attribute search context
* @ctx: attribute search context to initialize
* @ni: ntfs inode with which to initialize the search context
* @mrec: mft record with which to initialize the search context
*
* Initialize the attribute search context @ctx with @ni and @mrec.
*/
static inline void ntfs_attr_init_search_ctx(ntfs_attr_search_ctx *ctx,
ntfs_inode *ni, MFT_RECORD *mrec)
{
*ctx = (ntfs_attr_search_ctx) {
.mrec = mrec,
/* Sanity checks are performed elsewhere. */
.attr = (ATTR_RECORD*)((u8*)mrec +
le16_to_cpu(mrec->attrs_offset)),
.is_first = true,
.ntfs_ino = ni,
};
}
/**
* ntfs_attr_reinit_search_ctx - reinitialize an attribute search context
* @ctx: attribute search context to reinitialize
*
* Reinitialize the attribute search context @ctx, unmapping an associated
* extent mft record if present, and initialize the search context again.
*
* This is used when a search for a new attribute is being started to reset
* the search context to the beginning.
*/
void ntfs_attr_reinit_search_ctx(ntfs_attr_search_ctx *ctx)
{
if (likely(!ctx->base_ntfs_ino)) {
/* No attribute list. */
ctx->is_first = true;
/* Sanity checks are performed elsewhere. */
ctx->attr = (ATTR_RECORD*)((u8*)ctx->mrec +
le16_to_cpu(ctx->mrec->attrs_offset));
/*
* This needs resetting due to ntfs_external_attr_find() which
* can leave it set despite having zeroed ctx->base_ntfs_ino.
*/
ctx->al_entry = NULL;
return;
} /* Attribute list. */
if (ctx->ntfs_ino != ctx->base_ntfs_ino)
unmap_extent_mft_record(ctx->ntfs_ino);
ntfs_attr_init_search_ctx(ctx, ctx->base_ntfs_ino, ctx->base_mrec);
return;
}
/**
* ntfs_attr_get_search_ctx - allocate/initialize a new attribute search context
* @ni: ntfs inode with which to initialize the search context
* @mrec: mft record with which to initialize the search context
*
* Allocate a new attribute search context, initialize it with @ni and @mrec,
* and return it. Return NULL if allocation failed.
*/
ntfs_attr_search_ctx *ntfs_attr_get_search_ctx(ntfs_inode *ni, MFT_RECORD *mrec)
{
ntfs_attr_search_ctx *ctx;
ctx = kmem_cache_alloc(ntfs_attr_ctx_cache, GFP_NOFS);
if (ctx)
ntfs_attr_init_search_ctx(ctx, ni, mrec);
return ctx;
}
/**
* ntfs_attr_put_search_ctx - release an attribute search context
* @ctx: attribute search context to free
*
* Release the attribute search context @ctx, unmapping an associated extent
* mft record if present.
*/
void ntfs_attr_put_search_ctx(ntfs_attr_search_ctx *ctx)
{
if (ctx->base_ntfs_ino && ctx->ntfs_ino != ctx->base_ntfs_ino)
unmap_extent_mft_record(ctx->ntfs_ino);
kmem_cache_free(ntfs_attr_ctx_cache, ctx);
return;
}
#ifdef NTFS_RW
/**
* ntfs_attr_find_in_attrdef - find an attribute in the $AttrDef system file
* @vol: ntfs volume to which the attribute belongs
* @type: attribute type which to find
*
* Search for the attribute definition record corresponding to the attribute
* @type in the $AttrDef system file.
*
* Return the attribute type definition record if found and NULL if not found.
*/
static ATTR_DEF *ntfs_attr_find_in_attrdef(const ntfs_volume *vol,
const ATTR_TYPE type)
{
ATTR_DEF *ad;
BUG_ON(!vol->attrdef);
BUG_ON(!type);
for (ad = vol->attrdef; (u8*)ad - (u8*)vol->attrdef <
vol->attrdef_size && ad->type; ++ad) {
/* We have not found it yet, carry on searching. */
if (likely(le32_to_cpu(ad->type) < le32_to_cpu(type)))
continue;
/* We found the attribute; return it. */
if (likely(ad->type == type))
return ad;
/* We have gone too far already. No point in continuing. */
break;
}
/* Attribute not found. */
ntfs_debug("Attribute type 0x%x not found in $AttrDef.",
le32_to_cpu(type));
return NULL;
}
/**
* ntfs_attr_size_bounds_check - check a size of an attribute type for validity
* @vol: ntfs volume to which the attribute belongs
* @type: attribute type which to check
* @size: size which to check
*
* Check whether the @size in bytes is valid for an attribute of @type on the
* ntfs volume @vol. This information is obtained from $AttrDef system file.
*
* Return 0 if valid, -ERANGE if not valid, or -ENOENT if the attribute is not
* listed in $AttrDef.
*/
int ntfs_attr_size_bounds_check(const ntfs_volume *vol, const ATTR_TYPE type,
const s64 size)
{
ATTR_DEF *ad;
BUG_ON(size < 0);
/*
* $ATTRIBUTE_LIST has a maximum size of 256kiB, but this is not
* listed in $AttrDef.
*/
if (unlikely(type == AT_ATTRIBUTE_LIST && size > 256 * 1024))
return -ERANGE;
/* Get the $AttrDef entry for the attribute @type. */
ad = ntfs_attr_find_in_attrdef(vol, type);
if (unlikely(!ad))
return -ENOENT;
/* Do the bounds check. */
if (((sle64_to_cpu(ad->min_size) > 0) &&
size < sle64_to_cpu(ad->min_size)) ||
((sle64_to_cpu(ad->max_size) > 0) && size >
sle64_to_cpu(ad->max_size)))
return -ERANGE;
return 0;
}
/**
* ntfs_attr_can_be_non_resident - check if an attribute can be non-resident
* @vol: ntfs volume to which the attribute belongs
* @type: attribute type which to check
*
* Check whether the attribute of @type on the ntfs volume @vol is allowed to
* be non-resident. This information is obtained from $AttrDef system file.
*
* Return 0 if the attribute is allowed to be non-resident, -EPERM if not, and
* -ENOENT if the attribute is not listed in $AttrDef.
*/
int ntfs_attr_can_be_non_resident(const ntfs_volume *vol, const ATTR_TYPE type)
{
ATTR_DEF *ad;
/* Find the attribute definition record in $AttrDef. */
ad = ntfs_attr_find_in_attrdef(vol, type);
if (unlikely(!ad))
return -ENOENT;
/* Check the flags and return the result. */
if (ad->flags & ATTR_DEF_RESIDENT)
return -EPERM;
return 0;
}
/**
* ntfs_attr_can_be_resident - check if an attribute can be resident
* @vol: ntfs volume to which the attribute belongs
* @type: attribute type which to check
*
* Check whether the attribute of @type on the ntfs volume @vol is allowed to
* be resident. This information is derived from our ntfs knowledge and may
* not be completely accurate, especially when user defined attributes are
* present. Basically we allow everything to be resident except for index
* allocation and $EA attributes.
*
* Return 0 if the attribute is allowed to be non-resident and -EPERM if not.
*
* Warning: In the system file $MFT the attribute $Bitmap must be non-resident
* otherwise windows will not boot (blue screen of death)! We cannot
* check for this here as we do not know which inode's $Bitmap is
* being asked about so the caller needs to special case this.
*/
int ntfs_attr_can_be_resident(const ntfs_volume *vol, const ATTR_TYPE type)
{
if (type == AT_INDEX_ALLOCATION)
return -EPERM;
return 0;
}
/**
* ntfs_attr_record_resize - resize an attribute record
* @m: mft record containing attribute record
* @a: attribute record to resize
* @new_size: new size in bytes to which to resize the attribute record @a
*
* Resize the attribute record @a, i.e. the resident part of the attribute, in
* the mft record @m to @new_size bytes.
*
* Return 0 on success and -errno on error. The following error codes are
* defined:
* -ENOSPC - Not enough space in the mft record @m to perform the resize.
*
* Note: On error, no modifications have been performed whatsoever.
*
* Warning: If you make a record smaller without having copied all the data you
* are interested in the data may be overwritten.
*/
int ntfs_attr_record_resize(MFT_RECORD *m, ATTR_RECORD *a, u32 new_size)
{
ntfs_debug("Entering for new_size %u.", new_size);
/* Align to 8 bytes if it is not already done. */
if (new_size & 7)
new_size = (new_size + 7) & ~7;
/* If the actual attribute length has changed, move things around. */
if (new_size != le32_to_cpu(a->length)) {
u32 new_muse = le32_to_cpu(m->bytes_in_use) -
le32_to_cpu(a->length) + new_size;
/* Not enough space in this mft record. */
if (new_muse > le32_to_cpu(m->bytes_allocated))
return -ENOSPC;
/* Move attributes following @a to their new location. */
memmove((u8*)a + new_size, (u8*)a + le32_to_cpu(a->length),
le32_to_cpu(m->bytes_in_use) - ((u8*)a -
(u8*)m) - le32_to_cpu(a->length));
/* Adjust @m to reflect the change in used space. */
m->bytes_in_use = cpu_to_le32(new_muse);
/* Adjust @a to reflect the new size. */
if (new_size >= offsetof(ATTR_REC, length) + sizeof(a->length))
a->length = cpu_to_le32(new_size);
}
return 0;
}
/**
* ntfs_resident_attr_value_resize - resize the value of a resident attribute
* @m: mft record containing attribute record
* @a: attribute record whose value to resize
* @new_size: new size in bytes to which to resize the attribute value of @a
*
* Resize the value of the attribute @a in the mft record @m to @new_size bytes.
* If the value is made bigger, the newly allocated space is cleared.
*
* Return 0 on success and -errno on error. The following error codes are
* defined:
* -ENOSPC - Not enough space in the mft record @m to perform the resize.
*
* Note: On error, no modifications have been performed whatsoever.
*
* Warning: If you make a record smaller without having copied all the data you
* are interested in the data may be overwritten.
*/
int ntfs_resident_attr_value_resize(MFT_RECORD *m, ATTR_RECORD *a,
const u32 new_size)
{
u32 old_size;
/* Resize the resident part of the attribute record. */
if (ntfs_attr_record_resize(m, a,
le16_to_cpu(a->data.resident.value_offset) + new_size))
return -ENOSPC;
/*
* The resize succeeded! If we made the attribute value bigger, clear
* the area between the old size and @new_size.
*/
old_size = le32_to_cpu(a->data.resident.value_length);
if (new_size > old_size)
memset((u8*)a + le16_to_cpu(a->data.resident.value_offset) +
old_size, 0, new_size - old_size);
/* Finally update the length of the attribute value. */
a->data.resident.value_length = cpu_to_le32(new_size);
return 0;
}
/**
* ntfs_attr_make_non_resident - convert a resident to a non-resident attribute
* @ni: ntfs inode describing the attribute to convert
* @data_size: size of the resident data to copy to the non-resident attribute
*
* Convert the resident ntfs attribute described by the ntfs inode @ni to a
* non-resident one.
*
* @data_size must be equal to the attribute value size. This is needed since
* we need to know the size before we can map the mft record and our callers
* always know it. The reason we cannot simply read the size from the vfs
* inode i_size is that this is not necessarily uptodate. This happens when
* ntfs_attr_make_non_resident() is called in the ->truncate call path(s).
*
* Return 0 on success and -errno on error. The following error return codes
* are defined:
* -EPERM - The attribute is not allowed to be non-resident.
* -ENOMEM - Not enough memory.
* -ENOSPC - Not enough disk space.
* -EINVAL - Attribute not defined on the volume.
* -EIO - I/o error or other error.
* Note that -ENOSPC is also returned in the case that there is not enough
* space in the mft record to do the conversion. This can happen when the mft
* record is already very full. The caller is responsible for trying to make
* space in the mft record and trying again. FIXME: Do we need a separate
* error return code for this kind of -ENOSPC or is it always worth trying
* again in case the attribute may then fit in a resident state so no need to
* make it non-resident at all? Ho-hum... (AIA)
*
* NOTE to self: No changes in the attribute list are required to move from
* a resident to a non-resident attribute.
*
* Locking: - The caller must hold i_mutex on the inode.
*/
int ntfs_attr_make_non_resident(ntfs_inode *ni, const u32 data_size)
{
s64 new_size;
struct inode *vi = VFS_I(ni);
ntfs_volume *vol = ni->vol;
ntfs_inode *base_ni;
MFT_RECORD *m;
ATTR_RECORD *a;
ntfs_attr_search_ctx *ctx;
struct page *page;
runlist_element *rl;
u8 *kaddr;
unsigned long flags;
int mp_size, mp_ofs, name_ofs, arec_size, err, err2;
u32 attr_size;
u8 old_res_attr_flags;
/* Check that the attribute is allowed to be non-resident. */
err = ntfs_attr_can_be_non_resident(vol, ni->type);
if (unlikely(err)) {
if (err == -EPERM)
ntfs_debug("Attribute is not allowed to be "
"non-resident.");
else
ntfs_debug("Attribute not defined on the NTFS "
"volume!");
return err;
}
/*
* FIXME: Compressed and encrypted attributes are not supported when
* writing and we should never have gotten here for them.
*/
BUG_ON(NInoCompressed(ni));
BUG_ON(NInoEncrypted(ni));
/*
* The size needs to be aligned to a cluster boundary for allocation
* purposes.
*/
new_size = (data_size + vol->cluster_size - 1) &
~(vol->cluster_size - 1);
if (new_size > 0) {
/*
* Will need the page later and since the page lock nests
* outside all ntfs locks, we need to get the page now.
*/
page = find_or_create_page(vi->i_mapping, 0,
mapping_gfp_mask(vi->i_mapping));
if (unlikely(!page))
return -ENOMEM;
/* Start by allocating clusters to hold the attribute value. */
rl = ntfs_cluster_alloc(vol, 0, new_size >>
vol->cluster_size_bits, -1, DATA_ZONE, true);
if (IS_ERR(rl)) {
err = PTR_ERR(rl);
ntfs_debug("Failed to allocate cluster%s, error code "
"%i.", (new_size >>
vol->cluster_size_bits) > 1 ? "s" : "",
err);
goto page_err_out;
}
} else {
rl = NULL;
page = NULL;
}
/* Determine the size of the mapping pairs array. */
mp_size = ntfs_get_size_for_mapping_pairs(vol, rl, 0, -1);
if (unlikely(mp_size < 0)) {
err = mp_size;
ntfs_debug("Failed to get size for mapping pairs array, error "
"code %i.", err);
goto rl_err_out;
}
down_write(&ni->runlist.lock);
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
m = NULL;
ctx = NULL;
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
m = ctx->mrec;
a = ctx->attr;
BUG_ON(NInoNonResident(ni));
BUG_ON(a->non_resident);
/*
* Calculate new offsets for the name and the mapping pairs array.
*/
if (NInoSparse(ni) || NInoCompressed(ni))
name_ofs = (offsetof(ATTR_REC,
data.non_resident.compressed_size) +
sizeof(a->data.non_resident.compressed_size) +
7) & ~7;
else
name_ofs = (offsetof(ATTR_REC,
data.non_resident.compressed_size) + 7) & ~7;
mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
/*
* Determine the size of the resident part of the now non-resident
* attribute record.
*/
arec_size = (mp_ofs + mp_size + 7) & ~7;
/*
* If the page is not uptodate bring it uptodate by copying from the
* attribute value.
*/
attr_size = le32_to_cpu(a->data.resident.value_length);
BUG_ON(attr_size != data_size);
if (page && !PageUptodate(page)) {
kaddr = kmap_atomic(page, KM_USER0);
memcpy(kaddr, (u8*)a +
le16_to_cpu(a->data.resident.value_offset),
attr_size);
memset(kaddr + attr_size, 0, PAGE_CACHE_SIZE - attr_size);
kunmap_atomic(kaddr, KM_USER0);
flush_dcache_page(page);
SetPageUptodate(page);
}
/* Backup the attribute flag. */
old_res_attr_flags = a->data.resident.flags;
/* Resize the resident part of the attribute record. */
err = ntfs_attr_record_resize(m, a, arec_size);
if (unlikely(err))
goto err_out;
/*
* Convert the resident part of the attribute record to describe a
* non-resident attribute.
*/
a->non_resident = 1;
/* Move the attribute name if it exists and update the offset. */
if (a->name_length)
memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
a->name_length * sizeof(ntfschar));
a->name_offset = cpu_to_le16(name_ofs);
/* Setup the fields specific to non-resident attributes. */
a->data.non_resident.lowest_vcn = 0;
a->data.non_resident.highest_vcn = cpu_to_sle64((new_size - 1) >>
vol->cluster_size_bits);
a->data.non_resident.mapping_pairs_offset = cpu_to_le16(mp_ofs);
memset(&a->data.non_resident.reserved, 0,
sizeof(a->data.non_resident.reserved));
a->data.non_resident.allocated_size = cpu_to_sle64(new_size);
a->data.non_resident.data_size =
a->data.non_resident.initialized_size =
cpu_to_sle64(attr_size);
if (NInoSparse(ni) || NInoCompressed(ni)) {
a->data.non_resident.compression_unit = 0;
if (NInoCompressed(ni) || vol->major_ver < 3)
a->data.non_resident.compression_unit = 4;
a->data.non_resident.compressed_size =
a->data.non_resident.allocated_size;
} else
a->data.non_resident.compression_unit = 0;
/* Generate the mapping pairs array into the attribute record. */
err = ntfs_mapping_pairs_build(vol, (u8*)a + mp_ofs,
arec_size - mp_ofs, rl, 0, -1, NULL);
if (unlikely(err)) {
ntfs_debug("Failed to build mapping pairs, error code %i.",
err);
goto undo_err_out;
}
/* Setup the in-memory attribute structure to be non-resident. */
ni->runlist.rl = rl;
write_lock_irqsave(&ni->size_lock, flags);
ni->allocated_size = new_size;
if (NInoSparse(ni) || NInoCompressed(ni)) {
ni->itype.compressed.size = ni->allocated_size;
if (a->data.non_resident.compression_unit) {
ni->itype.compressed.block_size = 1U << (a->data.
non_resident.compression_unit +
vol->cluster_size_bits);
ni->itype.compressed.block_size_bits =
ffs(ni->itype.compressed.block_size) -
1;
ni->itype.compressed.block_clusters = 1U <<
a->data.non_resident.compression_unit;
} else {
ni->itype.compressed.block_size = 0;
ni->itype.compressed.block_size_bits = 0;
ni->itype.compressed.block_clusters = 0;
}
vi->i_blocks = ni->itype.compressed.size >> 9;
} else
vi->i_blocks = ni->allocated_size >> 9;
write_unlock_irqrestore(&ni->size_lock, flags);
/*
* This needs to be last since the address space operations ->readpage
* and ->writepage can run concurrently with us as they are not
* serialized on i_mutex. Note, we are not allowed to fail once we flip
* this switch, which is another reason to do this last.
*/
NInoSetNonResident(ni);
/* Mark the mft record dirty, so it gets written back. */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
if (page) {
set_page_dirty(page);
unlock_page(page);
mark_page_accessed(page);
page_cache_release(page);
}
ntfs_debug("Done.");
return 0;
undo_err_out:
/* Convert the attribute back into a resident attribute. */
a->non_resident = 0;
/* Move the attribute name if it exists and update the offset. */
name_ofs = (offsetof(ATTR_RECORD, data.resident.reserved) +
sizeof(a->data.resident.reserved) + 7) & ~7;
if (a->name_length)
memmove((u8*)a + name_ofs, (u8*)a + le16_to_cpu(a->name_offset),
a->name_length * sizeof(ntfschar));
mp_ofs = (name_ofs + a->name_length * sizeof(ntfschar) + 7) & ~7;
a->name_offset = cpu_to_le16(name_ofs);
arec_size = (mp_ofs + attr_size + 7) & ~7;
/* Resize the resident part of the attribute record. */
err2 = ntfs_attr_record_resize(m, a, arec_size);
if (unlikely(err2)) {
/*
* This cannot happen (well if memory corruption is at work it
* could happen in theory), but deal with it as well as we can.
* If the old size is too small, truncate the attribute,
* otherwise simply give it a larger allocated size.
* FIXME: Should check whether chkdsk complains when the
* allocated size is much bigger than the resident value size.
*/
arec_size = le32_to_cpu(a->length);
if ((mp_ofs + attr_size) > arec_size) {
err2 = attr_size;
attr_size = arec_size - mp_ofs;
ntfs_error(vol->sb, "Failed to undo partial resident "
"to non-resident attribute "
"conversion. Truncating inode 0x%lx, "
"attribute type 0x%x from %i bytes to "
"%i bytes to maintain metadata "
"consistency. THIS MEANS YOU ARE "
"LOSING %i BYTES DATA FROM THIS %s.",
vi->i_ino,
(unsigned)le32_to_cpu(ni->type),
err2, attr_size, err2 - attr_size,
((ni->type == AT_DATA) &&
!ni->name_len) ? "FILE": "ATTRIBUTE");
write_lock_irqsave(&ni->size_lock, flags);
ni->initialized_size = attr_size;
i_size_write(vi, attr_size);
write_unlock_irqrestore(&ni->size_lock, flags);
}
}
/* Setup the fields specific to resident attributes. */
a->data.resident.value_length = cpu_to_le32(attr_size);
a->data.resident.value_offset = cpu_to_le16(mp_ofs);
a->data.resident.flags = old_res_attr_flags;
memset(&a->data.resident.reserved, 0,
sizeof(a->data.resident.reserved));
/* Copy the data from the page back to the attribute value. */
if (page) {
kaddr = kmap_atomic(page, KM_USER0);
memcpy((u8*)a + mp_ofs, kaddr, attr_size);
kunmap_atomic(kaddr, KM_USER0);
}
/* Setup the allocated size in the ntfs inode in case it changed. */
write_lock_irqsave(&ni->size_lock, flags);
ni->allocated_size = arec_size - mp_ofs;
write_unlock_irqrestore(&ni->size_lock, flags);
/* Mark the mft record dirty, so it gets written back. */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
ni->runlist.rl = NULL;
up_write(&ni->runlist.lock);
rl_err_out:
if (rl) {
if (ntfs_cluster_free_from_rl(vol, rl) < 0) {
ntfs_error(vol->sb, "Failed to release allocated "
"cluster(s) in error code path. Run "
"chkdsk to recover the lost "
"cluster(s).");
NVolSetErrors(vol);
}
ntfs_free(rl);
page_err_out:
unlock_page(page);
page_cache_release(page);
}
if (err == -EINVAL)
err = -EIO;
return err;
}
/**
* ntfs_attr_extend_allocation - extend the allocated space of an attribute
* @ni: ntfs inode of the attribute whose allocation to extend
* @new_alloc_size: new size in bytes to which to extend the allocation to
* @new_data_size: new size in bytes to which to extend the data to
* @data_start: beginning of region which is required to be non-sparse
*
* Extend the allocated space of an attribute described by the ntfs inode @ni
* to @new_alloc_size bytes. If @data_start is -1, the whole extension may be
* implemented as a hole in the file (as long as both the volume and the ntfs
* inode @ni have sparse support enabled). If @data_start is >= 0, then the
* region between the old allocated size and @data_start - 1 may be made sparse
* but the regions between @data_start and @new_alloc_size must be backed by
* actual clusters.
*
* If @new_data_size is -1, it is ignored. If it is >= 0, then the data size
* of the attribute is extended to @new_data_size. Note that the i_size of the
* vfs inode is not updated. Only the data size in the base attribute record
* is updated. The caller has to update i_size separately if this is required.
* WARNING: It is a BUG() for @new_data_size to be smaller than the old data
* size as well as for @new_data_size to be greater than @new_alloc_size.
*
* For resident attributes this involves resizing the attribute record and if
* necessary moving it and/or other attributes into extent mft records and/or
* converting the attribute to a non-resident attribute which in turn involves
* extending the allocation of a non-resident attribute as described below.
*
* For non-resident attributes this involves allocating clusters in the data
* zone on the volume (except for regions that are being made sparse) and
* extending the run list to describe the allocated clusters as well as
* updating the mapping pairs array of the attribute. This in turn involves
* resizing the attribute record and if necessary moving it and/or other
* attributes into extent mft records and/or splitting the attribute record
* into multiple extent attribute records.
*
* Also, the attribute list attribute is updated if present and in some of the
* above cases (the ones where extent mft records/attributes come into play),
* an attribute list attribute is created if not already present.
*
* Return the new allocated size on success and -errno on error. In the case
* that an error is encountered but a partial extension at least up to
* @data_start (if present) is possible, the allocation is partially extended
* and this is returned. This means the caller must check the returned size to
* determine if the extension was partial. If @data_start is -1 then partial
* allocations are not performed.
*
* WARNING: Do not call ntfs_attr_extend_allocation() for $MFT/$DATA.
*
* Locking: This function takes the runlist lock of @ni for writing as well as
* locking the mft record of the base ntfs inode. These locks are maintained
* throughout execution of the function. These locks are required so that the
* attribute can be resized safely and so that it can for example be converted
* from resident to non-resident safely.
*
* TODO: At present attribute list attribute handling is not implemented.
*
* TODO: At present it is not safe to call this function for anything other
* than the $DATA attribute(s) of an uncompressed and unencrypted file.
*/
s64 ntfs_attr_extend_allocation(ntfs_inode *ni, s64 new_alloc_size,
const s64 new_data_size, const s64 data_start)
{
VCN vcn;
s64 ll, allocated_size, start = data_start;
struct inode *vi = VFS_I(ni);
ntfs_volume *vol = ni->vol;
ntfs_inode *base_ni;
MFT_RECORD *m;
ATTR_RECORD *a;
ntfs_attr_search_ctx *ctx;
runlist_element *rl, *rl2;
unsigned long flags;
int err, mp_size;
u32 attr_len = 0; /* Silence stupid gcc warning. */
bool mp_rebuilt;
#ifdef DEBUG
read_lock_irqsave(&ni->size_lock, flags);
allocated_size = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
ntfs_debug("Entering for i_ino 0x%lx, attribute type 0x%x, "
"old_allocated_size 0x%llx, "
"new_allocated_size 0x%llx, new_data_size 0x%llx, "
"data_start 0x%llx.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type),
(unsigned long long)allocated_size,
(unsigned long long)new_alloc_size,
(unsigned long long)new_data_size,
(unsigned long long)start);
#endif
retry_extend:
/*
* For non-resident attributes, @start and @new_size need to be aligned
* to cluster boundaries for allocation purposes.
*/
if (NInoNonResident(ni)) {
if (start > 0)
start &= ~(s64)vol->cluster_size_mask;
new_alloc_size = (new_alloc_size + vol->cluster_size - 1) &
~(s64)vol->cluster_size_mask;
}
BUG_ON(new_data_size >= 0 && new_data_size > new_alloc_size);
/* Check if new size is allowed in $AttrDef. */
err = ntfs_attr_size_bounds_check(vol, ni->type, new_alloc_size);
if (unlikely(err)) {
/* Only emit errors when the write will fail completely. */
read_lock_irqsave(&ni->size_lock, flags);
allocated_size = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (start < 0 || start >= allocated_size) {
if (err == -ERANGE) {
ntfs_error(vol->sb, "Cannot extend allocation "
"of inode 0x%lx, attribute "
"type 0x%x, because the new "
"allocation would exceed the "
"maximum allowed size for "
"this attribute type.",
vi->i_ino, (unsigned)
le32_to_cpu(ni->type));
} else {
ntfs_error(vol->sb, "Cannot extend allocation "
"of inode 0x%lx, attribute "
"type 0x%x, because this "
"attribute type is not "
"defined on the NTFS volume. "
"Possible corruption! You "
"should run chkdsk!",
vi->i_ino, (unsigned)
le32_to_cpu(ni->type));
}
}
/* Translate error code to be POSIX conformant for write(2). */
if (err == -ERANGE)
err = -EFBIG;
else
err = -EIO;
return err;
}
if (!NInoAttr(ni))
base_ni = ni;
else
base_ni = ni->ext.base_ntfs_ino;
/*
* We will be modifying both the runlist (if non-resident) and the mft
* record so lock them both down.
*/
down_write(&ni->runlist.lock);
m = map_mft_record(base_ni);
if (IS_ERR(m)) {
err = PTR_ERR(m);
m = NULL;
ctx = NULL;
goto err_out;
}
ctx = ntfs_attr_get_search_ctx(base_ni, m);
if (unlikely(!ctx)) {
err = -ENOMEM;
goto err_out;
}
read_lock_irqsave(&ni->size_lock, flags);
allocated_size = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
/*
* If non-resident, seek to the last extent. If resident, there is
* only one extent, so seek to that.
*/
vcn = NInoNonResident(ni) ? allocated_size >> vol->cluster_size_bits :
0;
/*
* Abort if someone did the work whilst we waited for the locks. If we
* just converted the attribute from resident to non-resident it is
* likely that exactly this has happened already. We cannot quite
* abort if we need to update the data size.
*/
if (unlikely(new_alloc_size <= allocated_size)) {
ntfs_debug("Allocated size already exceeds requested size.");
new_alloc_size = allocated_size;
if (new_data_size < 0)
goto done;
/*
* We want the first attribute extent so that we can update the
* data size.
*/
vcn = 0;
}
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, vcn, NULL, 0, ctx);
if (unlikely(err)) {
if (err == -ENOENT)
err = -EIO;
goto err_out;
}
m = ctx->mrec;
a = ctx->attr;
/* Use goto to reduce indentation. */
if (a->non_resident)
goto do_non_resident_extend;
BUG_ON(NInoNonResident(ni));
/* The total length of the attribute value. */
attr_len = le32_to_cpu(a->data.resident.value_length);
/*
* Extend the attribute record to be able to store the new attribute
* size. ntfs_attr_record_resize() will not do anything if the size is
* not changing.
*/
if (new_alloc_size < vol->mft_record_size &&
!ntfs_attr_record_resize(m, a,
le16_to_cpu(a->data.resident.value_offset) +
new_alloc_size)) {
/* The resize succeeded! */
write_lock_irqsave(&ni->size_lock, flags);
ni->allocated_size = le32_to_cpu(a->length) -
le16_to_cpu(a->data.resident.value_offset);
write_unlock_irqrestore(&ni->size_lock, flags);
if (new_data_size >= 0) {
BUG_ON(new_data_size < attr_len);
a->data.resident.value_length =
cpu_to_le32((u32)new_data_size);
}
goto flush_done;
}
/*
* We have to drop all the locks so we can call
* ntfs_attr_make_non_resident(). This could be optimised by try-
* locking the first page cache page and only if that fails dropping
* the locks, locking the page, and redoing all the locking and
* lookups. While this would be a huge optimisation, it is not worth
* it as this is definitely a slow code path.
*/
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
/*
* Not enough space in the mft record, try to make the attribute
* non-resident and if successful restart the extension process.
*/
err = ntfs_attr_make_non_resident(ni, attr_len);
if (likely(!err))
goto retry_extend;
/*
* Could not make non-resident. If this is due to this not being
* permitted for this attribute type or there not being enough space,
* try to make other attributes non-resident. Otherwise fail.
*/
if (unlikely(err != -EPERM && err != -ENOSPC)) {
/* Only emit errors when the write will fail completely. */
read_lock_irqsave(&ni->size_lock, flags);
allocated_size = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Cannot extend allocation of "
"inode 0x%lx, attribute type 0x%x, "
"because the conversion from resident "
"to non-resident attribute failed "
"with error code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
if (err != -ENOMEM)
err = -EIO;
goto conv_err_out;
}
/* TODO: Not implemented from here, abort. */
read_lock_irqsave(&ni->size_lock, flags);
allocated_size = ni->allocated_size;
read_unlock_irqrestore(&ni->size_lock, flags);
if (start < 0 || start >= allocated_size) {
if (err == -ENOSPC)
ntfs_error(vol->sb, "Not enough space in the mft "
"record/on disk for the non-resident "
"attribute value. This case is not "
"implemented yet.");
else /* if (err == -EPERM) */
ntfs_error(vol->sb, "This attribute type may not be "
"non-resident. This case is not "
"implemented yet.");
}
err = -EOPNOTSUPP;
goto conv_err_out;
#if 0
// TODO: Attempt to make other attributes non-resident.
if (!err)
goto do_resident_extend;
/*
* Both the attribute list attribute and the standard information
* attribute must remain in the base inode. Thus, if this is one of
* these attributes, we have to try to move other attributes out into
* extent mft records instead.
*/
if (ni->type == AT_ATTRIBUTE_LIST ||
ni->type == AT_STANDARD_INFORMATION) {
// TODO: Attempt to move other attributes into extent mft
// records.
err = -EOPNOTSUPP;
if (!err)
goto do_resident_extend;
goto err_out;
}
// TODO: Attempt to move this attribute to an extent mft record, but
// only if it is not already the only attribute in an mft record in
// which case there would be nothing to gain.
err = -EOPNOTSUPP;
if (!err)
goto do_resident_extend;
/* There is nothing we can do to make enough space. )-: */
goto err_out;
#endif
do_non_resident_extend:
BUG_ON(!NInoNonResident(ni));
if (new_alloc_size == allocated_size) {
BUG_ON(vcn);
goto alloc_done;
}
/*
* If the data starts after the end of the old allocation, this is a
* $DATA attribute and sparse attributes are enabled on the volume and
* for this inode, then create a sparse region between the old
* allocated size and the start of the data. Otherwise simply proceed
* with filling the whole space between the old allocated size and the
* new allocated size with clusters.
*/
if ((start >= 0 && start <= allocated_size) || ni->type != AT_DATA ||
!NVolSparseEnabled(vol) || NInoSparseDisabled(ni))
goto skip_sparse;
// TODO: This is not implemented yet. We just fill in with real
// clusters for now...
ntfs_debug("Inserting holes is not-implemented yet. Falling back to "
"allocating real clusters instead.");
skip_sparse:
rl = ni->runlist.rl;
if (likely(rl)) {
/* Seek to the end of the runlist. */
while (rl->length)
rl++;
}
/* If this attribute extent is not mapped, map it now. */
if (unlikely(!rl || rl->lcn == LCN_RL_NOT_MAPPED ||
(rl->lcn == LCN_ENOENT && rl > ni->runlist.rl &&
(rl-1)->lcn == LCN_RL_NOT_MAPPED))) {
if (!rl && !allocated_size)
goto first_alloc;
rl = ntfs_mapping_pairs_decompress(vol, a, ni->runlist.rl);
if (IS_ERR(rl)) {
err = PTR_ERR(rl);
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Cannot extend allocation "
"of inode 0x%lx, attribute "
"type 0x%x, because the "
"mapping of a runlist "
"fragment failed with error "
"code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type),
err);
if (err != -ENOMEM)
err = -EIO;
goto err_out;
}
ni->runlist.rl = rl;
/* Seek to the end of the runlist. */
while (rl->length)
rl++;
}
/*
* We now know the runlist of the last extent is mapped and @rl is at
* the end of the runlist. We want to begin allocating clusters
* starting at the last allocated cluster to reduce fragmentation. If
* there are no valid LCNs in the attribute we let the cluster
* allocator choose the starting cluster.
*/
/* If the last LCN is a hole or simillar seek back to last real LCN. */
while (rl->lcn < 0 && rl > ni->runlist.rl)
rl--;
first_alloc:
// FIXME: Need to implement partial allocations so at least part of the
// write can be performed when start >= 0. (Needed for POSIX write(2)
// conformance.)
rl2 = ntfs_cluster_alloc(vol, allocated_size >> vol->cluster_size_bits,
(new_alloc_size - allocated_size) >>
vol->cluster_size_bits, (rl && (rl->lcn >= 0)) ?
rl->lcn + rl->length : -1, DATA_ZONE, true);
if (IS_ERR(rl2)) {
err = PTR_ERR(rl2);
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Cannot extend allocation of "
"inode 0x%lx, attribute type 0x%x, "
"because the allocation of clusters "
"failed with error code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
if (err != -ENOMEM && err != -ENOSPC)
err = -EIO;
goto err_out;
}
rl = ntfs_runlists_merge(ni->runlist.rl, rl2);
if (IS_ERR(rl)) {
err = PTR_ERR(rl);
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Cannot extend allocation of "
"inode 0x%lx, attribute type 0x%x, "
"because the runlist merge failed "
"with error code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
if (err != -ENOMEM)
err = -EIO;
if (ntfs_cluster_free_from_rl(vol, rl2)) {
ntfs_error(vol->sb, "Failed to release allocated "
"cluster(s) in error code path. Run "
"chkdsk to recover the lost "
"cluster(s).");
NVolSetErrors(vol);
}
ntfs_free(rl2);
goto err_out;
}
ni->runlist.rl = rl;
ntfs_debug("Allocated 0x%llx clusters.", (long long)(new_alloc_size -
allocated_size) >> vol->cluster_size_bits);
/* Find the runlist element with which the attribute extent starts. */
ll = sle64_to_cpu(a->data.non_resident.lowest_vcn);
rl2 = ntfs_rl_find_vcn_nolock(rl, ll);
BUG_ON(!rl2);
BUG_ON(!rl2->length);
BUG_ON(rl2->lcn < LCN_HOLE);
mp_rebuilt = false;
/* Get the size for the new mapping pairs array for this extent. */
mp_size = ntfs_get_size_for_mapping_pairs(vol, rl2, ll, -1);
if (unlikely(mp_size <= 0)) {
err = mp_size;
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Cannot extend allocation of "
"inode 0x%lx, attribute type 0x%x, "
"because determining the size for the "
"mapping pairs failed with error code "
"%i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
err = -EIO;
goto undo_alloc;
}
/* Extend the attribute record to fit the bigger mapping pairs array. */
attr_len = le32_to_cpu(a->length);
err = ntfs_attr_record_resize(m, a, mp_size +
le16_to_cpu(a->data.non_resident.mapping_pairs_offset));
if (unlikely(err)) {
BUG_ON(err != -ENOSPC);
// TODO: Deal with this by moving this extent to a new mft
// record or by starting a new extent in a new mft record,
// possibly by extending this extent partially and filling it
// and creating a new extent for the remainder, or by making
// other attributes non-resident and/or by moving other
// attributes out of this mft record.
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Not enough space in the mft "
"record for the extended attribute "
"record. This case is not "
"implemented yet.");
err = -EOPNOTSUPP;
goto undo_alloc;
}
mp_rebuilt = true;
/* Generate the mapping pairs array directly into the attr record. */
err = ntfs_mapping_pairs_build(vol, (u8*)a +
le16_to_cpu(a->data.non_resident.mapping_pairs_offset),
mp_size, rl2, ll, -1, NULL);
if (unlikely(err)) {
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Cannot extend allocation of "
"inode 0x%lx, attribute type 0x%x, "
"because building the mapping pairs "
"failed with error code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
err = -EIO;
goto undo_alloc;
}
/* Update the highest_vcn. */
a->data.non_resident.highest_vcn = cpu_to_sle64((new_alloc_size >>
vol->cluster_size_bits) - 1);
/*
* We now have extended the allocated size of the attribute. Reflect
* this in the ntfs_inode structure and the attribute record.
*/
if (a->data.non_resident.lowest_vcn) {
/*
* We are not in the first attribute extent, switch to it, but
* first ensure the changes will make it to disk later.
*/
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
ntfs_attr_reinit_search_ctx(ctx);
err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
CASE_SENSITIVE, 0, NULL, 0, ctx);
if (unlikely(err))
goto restore_undo_alloc;
/* @m is not used any more so no need to set it. */
a = ctx->attr;
}
write_lock_irqsave(&ni->size_lock, flags);
ni->allocated_size = new_alloc_size;
a->data.non_resident.allocated_size = cpu_to_sle64(new_alloc_size);
/*
* FIXME: This would fail if @ni is a directory, $MFT, or an index,
* since those can have sparse/compressed set. For example can be
* set compressed even though it is not compressed itself and in that
* case the bit means that files are to be created compressed in the
* directory... At present this is ok as this code is only called for
* regular files, and only for their $DATA attribute(s).
* FIXME: The calculation is wrong if we created a hole above. For now
* it does not matter as we never create holes.
*/
if (NInoSparse(ni) || NInoCompressed(ni)) {
ni->itype.compressed.size += new_alloc_size - allocated_size;
a->data.non_resident.compressed_size =
cpu_to_sle64(ni->itype.compressed.size);
vi->i_blocks = ni->itype.compressed.size >> 9;
} else
vi->i_blocks = new_alloc_size >> 9;
write_unlock_irqrestore(&ni->size_lock, flags);
alloc_done:
if (new_data_size >= 0) {
BUG_ON(new_data_size <
sle64_to_cpu(a->data.non_resident.data_size));
a->data.non_resident.data_size = cpu_to_sle64(new_data_size);
}
flush_done:
/* Ensure the changes make it to disk. */
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
done:
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
ntfs_debug("Done, new_allocated_size 0x%llx.",
(unsigned long long)new_alloc_size);
return new_alloc_size;
restore_undo_alloc:
if (start < 0 || start >= allocated_size)
ntfs_error(vol->sb, "Cannot complete extension of allocation "
"of inode 0x%lx, attribute type 0x%x, because "
"lookup of first attribute extent failed with "
"error code %i.", vi->i_ino,
(unsigned)le32_to_cpu(ni->type), err);
if (err == -ENOENT)
err = -EIO;
ntfs_attr_reinit_search_ctx(ctx);
if (ntfs_attr_lookup(ni->type, ni->name, ni->name_len, CASE_SENSITIVE,
allocated_size >> vol->cluster_size_bits, NULL, 0,
ctx)) {
ntfs_error(vol->sb, "Failed to find last attribute extent of "
"attribute in error code path. Run chkdsk to "
"recover.");
write_lock_irqsave(&ni->size_lock, flags);
ni->allocated_size = new_alloc_size;
/*
* FIXME: This would fail if @ni is a directory... See above.
* FIXME: The calculation is wrong if we created a hole above.
* For now it does not matter as we never create holes.
*/
if (NInoSparse(ni) || NInoCompressed(ni)) {
ni->itype.compressed.size += new_alloc_size -
allocated_size;
vi->i_blocks = ni->itype.compressed.size >> 9;
} else
vi->i_blocks = new_alloc_size >> 9;
write_unlock_irqrestore(&ni->size_lock, flags);
ntfs_attr_put_search_ctx(ctx);
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
/*
* The only thing that is now wrong is the allocated size of the
* base attribute extent which chkdsk should be able to fix.
*/
NVolSetErrors(vol);
return err;
}
ctx->attr->data.non_resident.highest_vcn = cpu_to_sle64(
(allocated_size >> vol->cluster_size_bits) - 1);
undo_alloc:
ll = allocated_size >> vol->cluster_size_bits;
if (ntfs_cluster_free(ni, ll, -1, ctx) < 0) {
ntfs_error(vol->sb, "Failed to release allocated cluster(s) "
"in error code path. Run chkdsk to recover "
"the lost cluster(s).");
NVolSetErrors(vol);
}
m = ctx->mrec;
a = ctx->attr;
/*
* If the runlist truncation fails and/or the search context is no
* longer valid, we cannot resize the attribute record or build the
* mapping pairs array thus we mark the inode bad so that no access to
* the freed clusters can happen.
*/
if (ntfs_rl_truncate_nolock(vol, &ni->runlist, ll) || IS_ERR(m)) {
ntfs_error(vol->sb, "Failed to %s in error code path. Run "
"chkdsk to recover.", IS_ERR(m) ?
"restore attribute search context" :
"truncate attribute runlist");
NVolSetErrors(vol);
} else if (mp_rebuilt) {
if (ntfs_attr_record_resize(m, a, attr_len)) {
ntfs_error(vol->sb, "Failed to restore attribute "
"record in error code path. Run "
"chkdsk to recover.");
NVolSetErrors(vol);
} else /* if (success) */ {
if (ntfs_mapping_pairs_build(vol, (u8*)a + le16_to_cpu(
a->data.non_resident.
mapping_pairs_offset), attr_len -
le16_to_cpu(a->data.non_resident.
mapping_pairs_offset), rl2, ll, -1,
NULL)) {
ntfs_error(vol->sb, "Failed to restore "
"mapping pairs array in error "
"code path. Run chkdsk to "
"recover.");
NVolSetErrors(vol);
}
flush_dcache_mft_record_page(ctx->ntfs_ino);
mark_mft_record_dirty(ctx->ntfs_ino);
}
}
err_out:
if (ctx)
ntfs_attr_put_search_ctx(ctx);
if (m)
unmap_mft_record(base_ni);
up_write(&ni->runlist.lock);
conv_err_out:
ntfs_debug("Failed. Returning error code %i.", err);
return err;
}
/**
* ntfs_attr_set - fill (a part of) an attribute with a byte
* @ni: ntfs inode describing the attribute to fill
* @ofs: offset inside the attribute at which to start to fill
* @cnt: number of bytes to fill
* @val: the unsigned 8-bit value with which to fill the attribute
*
* Fill @cnt bytes of the attribute described by the ntfs inode @ni starting at
* byte offset @ofs inside the attribute with the constant byte @val.
*
* This function is effectively like memset() applied to an ntfs attribute.
* Note thie function actually only operates on the page cache pages belonging
* to the ntfs attribute and it marks them dirty after doing the memset().
* Thus it relies on the vm dirty page write code paths to cause the modified
* pages to be written to the mft record/disk.
*
* Return 0 on success and -errno on error. An error code of -ESPIPE means
* that @ofs + @cnt were outside the end of the attribute and no write was
* performed.
*/
int ntfs_attr_set(ntfs_inode *ni, const s64 ofs, const s64 cnt, const u8 val)
{
ntfs_volume *vol = ni->vol;
struct address_space *mapping;
struct page *page;
u8 *kaddr;
pgoff_t idx, end;
unsigned int start_ofs, end_ofs, size;
ntfs_debug("Entering for ofs 0x%llx, cnt 0x%llx, val 0x%hx.",
(long long)ofs, (long long)cnt, val);
BUG_ON(ofs < 0);
BUG_ON(cnt < 0);
if (!cnt)
goto done;
/*
* FIXME: Compressed and encrypted attributes are not supported when
* writing and we should never have gotten here for them.
*/
BUG_ON(NInoCompressed(ni));
BUG_ON(NInoEncrypted(ni));
mapping = VFS_I(ni)->i_mapping;
/* Work out the starting index and page offset. */
idx = ofs >> PAGE_CACHE_SHIFT;
start_ofs = ofs & ~PAGE_CACHE_MASK;
/* Work out the ending index and page offset. */
end = ofs + cnt;
end_ofs = end & ~PAGE_CACHE_MASK;
/* If the end is outside the inode size return -ESPIPE. */
if (unlikely(end > i_size_read(VFS_I(ni)))) {
ntfs_error(vol->sb, "Request exceeds end of attribute.");
return -ESPIPE;
}
end >>= PAGE_CACHE_SHIFT;
/* If there is a first partial page, need to do it the slow way. */
if (start_ofs) {
page = read_mapping_page(mapping, idx, NULL);
if (IS_ERR(page)) {
ntfs_error(vol->sb, "Failed to read first partial "
"page (error, index 0x%lx).", idx);
return PTR_ERR(page);
}
/*
* If the last page is the same as the first page, need to
* limit the write to the end offset.
*/
size = PAGE_CACHE_SIZE;
if (idx == end)
size = end_ofs;
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr + start_ofs, val, size - start_ofs);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
set_page_dirty(page);
page_cache_release(page);
if (idx == end)
goto done;
idx++;
}
/* Do the whole pages the fast way. */
for (; idx < end; idx++) {
/* Find or create the current page. (The page is locked.) */
page = grab_cache_page(mapping, idx);
if (unlikely(!page)) {
ntfs_error(vol->sb, "Insufficient memory to grab "
"page (index 0x%lx).", idx);
return -ENOMEM;
}
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr, val, PAGE_CACHE_SIZE);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
/*
* If the page has buffers, mark them uptodate since buffer
* state and not page state is definitive in 2.6 kernels.
*/
if (page_has_buffers(page)) {
struct buffer_head *bh, *head;
bh = head = page_buffers(page);
do {
set_buffer_uptodate(bh);
} while ((bh = bh->b_this_page) != head);
}
/* Now that buffers are uptodate, set the page uptodate, too. */
SetPageUptodate(page);
/*
* Set the page and all its buffers dirty and mark the inode
* dirty, too. The VM will write the page later on.
*/
set_page_dirty(page);
/* Finally unlock and release the page. */
unlock_page(page);
page_cache_release(page);
balance_dirty_pages_ratelimited(mapping);
cond_resched();
}
/* If there is a last partial page, need to do it the slow way. */
if (end_ofs) {
page = read_mapping_page(mapping, idx, NULL);
if (IS_ERR(page)) {
ntfs_error(vol->sb, "Failed to read last partial page "
"(error, index 0x%lx).", idx);
return PTR_ERR(page);
}
kaddr = kmap_atomic(page, KM_USER0);
memset(kaddr, val, end_ofs);
flush_dcache_page(page);
kunmap_atomic(kaddr, KM_USER0);
set_page_dirty(page);
page_cache_release(page);
}
done:
ntfs_debug("Done.");
return 0;
}
#endif /* NTFS_RW */