linux_old1/fs/xfs/xfs_attr_leaf.c

3079 lines
87 KiB
C
Raw Normal View History

/*
* Copyright (c) 2000-2005 Silicon Graphics, Inc.
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it would be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "xfs.h"
#include "xfs_fs.h"
#include "xfs_types.h"
#include "xfs_bit.h"
#include "xfs_log.h"
#include "xfs_inum.h"
#include "xfs_trans.h"
#include "xfs_sb.h"
#include "xfs_ag.h"
#include "xfs_dir2.h"
#include "xfs_dmapi.h"
#include "xfs_mount.h"
#include "xfs_da_btree.h"
#include "xfs_bmap_btree.h"
#include "xfs_alloc_btree.h"
#include "xfs_ialloc_btree.h"
#include "xfs_alloc.h"
#include "xfs_btree.h"
#include "xfs_dir2_sf.h"
#include "xfs_attr_sf.h"
#include "xfs_dinode.h"
#include "xfs_inode.h"
#include "xfs_inode_item.h"
#include "xfs_bmap.h"
#include "xfs_attr.h"
#include "xfs_attr_leaf.h"
#include "xfs_error.h"
/*
* xfs_attr_leaf.c
*
* Routines to implement leaf blocks of attributes as Btrees of hashed names.
*/
/*========================================================================
* Function prototypes for the kernel.
*========================================================================*/
/*
* Routines used for growing the Btree.
*/
STATIC int xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t which_block,
xfs_dabuf_t **bpp);
STATIC int xfs_attr_leaf_add_work(xfs_dabuf_t *leaf_buffer, xfs_da_args_t *args,
int freemap_index);
STATIC void xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *leaf_buffer);
STATIC void xfs_attr_leaf_rebalance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2);
STATIC int xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *leaf_blk_1,
xfs_da_state_blk_t *leaf_blk_2,
int *number_entries_in_blk1,
int *number_usedbytes_in_blk1);
/*
* Routines used for shrinking the Btree.
*/
STATIC int xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dabuf_t *bp, int level);
STATIC int xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dabuf_t *bp);
STATIC int xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dablk_t blkno, int blkcnt);
/*
* Utility routines.
*/
STATIC void xfs_attr_leaf_moveents(xfs_attr_leafblock_t *src_leaf,
int src_start,
xfs_attr_leafblock_t *dst_leaf,
int dst_start, int move_count,
xfs_mount_t *mp);
STATIC int xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index);
/*========================================================================
* Namespace helper routines
*========================================================================*/
STATIC_INLINE attrnames_t *
xfs_attr_flags_namesp(int flags)
{
return ((flags & XFS_ATTR_SECURE) ? &attr_secure:
((flags & XFS_ATTR_ROOT) ? &attr_trusted : &attr_user));
}
/*
* If namespace bits don't match return 0.
* If all match then return 1.
*/
STATIC_INLINE int
xfs_attr_namesp_match(int arg_flags, int ondisk_flags)
{
return XFS_ATTR_NSP_ONDISK(ondisk_flags) == XFS_ATTR_NSP_ARGS_TO_ONDISK(arg_flags);
}
/*
* If namespace bits don't match and we don't have an override for it
* then return 0.
* If all match or are overridable then return 1.
*/
STATIC_INLINE int
xfs_attr_namesp_match_overrides(int arg_flags, int ondisk_flags)
{
if (((arg_flags & ATTR_SECURE) == 0) !=
((ondisk_flags & XFS_ATTR_SECURE) == 0) &&
!(arg_flags & ATTR_KERNORMALS))
return 0;
if (((arg_flags & ATTR_ROOT) == 0) !=
((ondisk_flags & XFS_ATTR_ROOT) == 0) &&
!(arg_flags & ATTR_KERNROOTLS))
return 0;
return 1;
}
/*========================================================================
* External routines when attribute fork size < XFS_LITINO(mp).
*========================================================================*/
/*
* Query whether the requested number of additional bytes of extended
* attribute space will be able to fit inline.
* Returns zero if not, else the di_forkoff fork offset to be used in the
* literal area for attribute data once the new bytes have been added.
*
* di_forkoff must be 8 byte aligned, hence is stored as a >>3 value;
* special case for dev/uuid inodes, they have fixed size data forks.
*/
int
xfs_attr_shortform_bytesfit(xfs_inode_t *dp, int bytes)
{
int offset;
int minforkoff; /* lower limit on valid forkoff locations */
int maxforkoff; /* upper limit on valid forkoff locations */
int dsize;
xfs_mount_t *mp = dp->i_mount;
offset = (XFS_LITINO(mp) - bytes) >> 3; /* rounded down */
switch (dp->i_d.di_format) {
case XFS_DINODE_FMT_DEV:
minforkoff = roundup(sizeof(xfs_dev_t), 8) >> 3;
return (offset >= minforkoff) ? minforkoff : 0;
case XFS_DINODE_FMT_UUID:
minforkoff = roundup(sizeof(uuid_t), 8) >> 3;
return (offset >= minforkoff) ? minforkoff : 0;
}
if (!(mp->m_flags & XFS_MOUNT_ATTR2)) {
if (bytes <= XFS_IFORK_ASIZE(dp))
return dp->i_d.di_forkoff;
return 0;
}
dsize = dp->i_df.if_bytes;
switch (dp->i_d.di_format) {
case XFS_DINODE_FMT_EXTENTS:
/*
* If there is no attr fork and the data fork is extents,
* determine if creating the default attr fork will result
* in the extents form migrating to btree. If so, the
* minimum offset only needs to be the space required for
* the btree root.
*/
if (!dp->i_d.di_forkoff && dp->i_df.if_bytes > mp->m_attroffset)
dsize = XFS_BMDR_SPACE_CALC(MINDBTPTRS);
break;
case XFS_DINODE_FMT_BTREE:
/*
* If have data btree then keep forkoff if we have one,
* otherwise we are adding a new attr, so then we set
* minforkoff to where the btree root can finish so we have
* plenty of room for attrs
*/
if (dp->i_d.di_forkoff) {
if (offset < dp->i_d.di_forkoff)
return 0;
else
return dp->i_d.di_forkoff;
} else
dsize = XFS_BMAP_BROOT_SPACE(dp->i_df.if_broot);
break;
}
/*
* A data fork btree root must have space for at least
* MINDBTPTRS key/ptr pairs if the data fork is small or empty.
*/
minforkoff = MAX(dsize, XFS_BMDR_SPACE_CALC(MINDBTPTRS));
minforkoff = roundup(minforkoff, 8) >> 3;
/* attr fork btree root can have at least this many key/ptr pairs */
maxforkoff = XFS_LITINO(mp) - XFS_BMDR_SPACE_CALC(MINABTPTRS);
maxforkoff = maxforkoff >> 3; /* rounded down */
if (offset >= minforkoff && offset < maxforkoff)
return offset;
if (offset >= maxforkoff)
return maxforkoff;
return 0;
}
/*
* Switch on the ATTR2 superblock bit (implies also FEATURES2)
*/
STATIC void
xfs_sbversion_add_attr2(xfs_mount_t *mp, xfs_trans_t *tp)
{
if ((mp->m_flags & XFS_MOUNT_ATTR2) &&
!(xfs_sb_version_hasattr2(&mp->m_sb))) {
spin_lock(&mp->m_sb_lock);
if (!xfs_sb_version_hasattr2(&mp->m_sb)) {
xfs_sb_version_addattr2(&mp->m_sb);
spin_unlock(&mp->m_sb_lock);
xfs_mod_sb(tp, XFS_SB_VERSIONNUM | XFS_SB_FEATURES2);
} else
spin_unlock(&mp->m_sb_lock);
}
}
/*
* Create the initial contents of a shortform attribute list.
*/
void
xfs_attr_shortform_create(xfs_da_args_t *args)
{
xfs_attr_sf_hdr_t *hdr;
xfs_inode_t *dp;
xfs_ifork_t *ifp;
dp = args->dp;
ASSERT(dp != NULL);
ifp = dp->i_afp;
ASSERT(ifp != NULL);
ASSERT(ifp->if_bytes == 0);
if (dp->i_d.di_aformat == XFS_DINODE_FMT_EXTENTS) {
ifp->if_flags &= ~XFS_IFEXTENTS; /* just in case */
dp->i_d.di_aformat = XFS_DINODE_FMT_LOCAL;
ifp->if_flags |= XFS_IFINLINE;
} else {
ASSERT(ifp->if_flags & XFS_IFINLINE);
}
xfs_idata_realloc(dp, sizeof(*hdr), XFS_ATTR_FORK);
hdr = (xfs_attr_sf_hdr_t *)ifp->if_u1.if_data;
hdr->count = 0;
hdr->totsize = cpu_to_be16(sizeof(*hdr));
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
/*
* Add a name/value pair to the shortform attribute list.
* Overflow from the inode has already been checked for.
*/
void
xfs_attr_shortform_add(xfs_da_args_t *args, int forkoff)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i, offset, size;
xfs_mount_t *mp;
xfs_inode_t *dp;
xfs_ifork_t *ifp;
dp = args->dp;
mp = dp->i_mount;
dp->i_d.di_forkoff = forkoff;
dp->i_df.if_ext_max =
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
dp->i_afp->if_ext_max =
XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
ifp = dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
#ifdef DEBUG
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
ASSERT(0);
#endif
}
offset = (char *)sfe - (char *)sf;
size = XFS_ATTR_SF_ENTSIZE_BYNAME(args->namelen, args->valuelen);
xfs_idata_realloc(dp, size, XFS_ATTR_FORK);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = (xfs_attr_sf_entry_t *)((char *)sf + offset);
sfe->namelen = args->namelen;
sfe->valuelen = args->valuelen;
sfe->flags = XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
memcpy(sfe->nameval, args->name, args->namelen);
memcpy(&sfe->nameval[args->namelen], args->value, args->valuelen);
sf->hdr.count++;
be16_add_cpu(&sf->hdr.totsize, size);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE | XFS_ILOG_ADATA);
xfs_sbversion_add_attr2(mp, args->trans);
}
/*
* Remove an attribute from the shortform attribute list structure.
*/
int
xfs_attr_shortform_remove(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int base, size=0, end, totsize, i;
xfs_mount_t *mp;
xfs_inode_t *dp;
dp = args->dp;
mp = dp->i_mount;
base = sizeof(xfs_attr_sf_hdr_t);
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
end = sf->hdr.count;
for (i = 0; i < end; sfe = XFS_ATTR_SF_NEXTENTRY(sfe),
base += size, i++) {
size = XFS_ATTR_SF_ENTSIZE(sfe);
if (sfe->namelen != args->namelen)
continue;
if (memcmp(sfe->nameval, args->name, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
break;
}
if (i == end)
return(XFS_ERROR(ENOATTR));
/*
* Fix up the attribute fork data, covering the hole
*/
end = base + size;
totsize = be16_to_cpu(sf->hdr.totsize);
if (end != totsize)
memmove(&((char *)sf)[base], &((char *)sf)[end], totsize - end);
sf->hdr.count--;
be16_add_cpu(&sf->hdr.totsize, -size);
/*
* Fix up the start offset of the attribute fork
*/
totsize -= size;
if (totsize == sizeof(xfs_attr_sf_hdr_t) && !args->addname &&
(mp->m_flags & XFS_MOUNT_ATTR2) &&
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE)) {
/*
* Last attribute now removed, revert to original
* inode format making all literal area available
* to the data fork once more.
*/
xfs_idestroy_fork(dp, XFS_ATTR_FORK);
dp->i_d.di_forkoff = 0;
dp->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
ASSERT(dp->i_d.di_anextents == 0);
ASSERT(dp->i_afp == NULL);
dp->i_df.if_ext_max =
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE);
} else {
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
dp->i_d.di_forkoff = xfs_attr_shortform_bytesfit(dp, totsize);
ASSERT(dp->i_d.di_forkoff);
ASSERT(totsize > sizeof(xfs_attr_sf_hdr_t) || args->addname ||
!(mp->m_flags & XFS_MOUNT_ATTR2) ||
dp->i_d.di_format == XFS_DINODE_FMT_BTREE);
dp->i_afp->if_ext_max =
XFS_IFORK_ASIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
dp->i_df.if_ext_max =
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
xfs_trans_log_inode(args->trans, dp,
XFS_ILOG_CORE | XFS_ILOG_ADATA);
}
xfs_sbversion_add_attr2(mp, args->trans);
return(0);
}
/*
* Look up a name in a shortform attribute list structure.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_lookup(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i;
xfs_ifork_t *ifp;
ifp = args->dp->i_afp;
ASSERT(ifp->if_flags & XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
return(XFS_ERROR(EEXIST));
}
return(XFS_ERROR(ENOATTR));
}
/*
* Look up a name in a shortform attribute list structure.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_getvalue(xfs_da_args_t *args)
{
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
int i;
ASSERT(args->dp->i_d.di_aformat == XFS_IFINLINE);
sf = (xfs_attr_shortform_t *)args->dp->i_afp->if_u1.if_data;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe), i++) {
if (sfe->namelen != args->namelen)
continue;
if (memcmp(args->name, sfe->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, sfe->flags))
continue;
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = sfe->valuelen;
return(XFS_ERROR(EEXIST));
}
if (args->valuelen < sfe->valuelen) {
args->valuelen = sfe->valuelen;
return(XFS_ERROR(ERANGE));
}
args->valuelen = sfe->valuelen;
memcpy(args->value, &sfe->nameval[args->namelen],
args->valuelen);
return(XFS_ERROR(EEXIST));
}
return(XFS_ERROR(ENOATTR));
}
/*
* Convert from using the shortform to the leaf.
*/
int
xfs_attr_shortform_to_leaf(xfs_da_args_t *args)
{
xfs_inode_t *dp;
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
xfs_da_args_t nargs;
char *tmpbuffer;
int error, i, size;
xfs_dablk_t blkno;
xfs_dabuf_t *bp;
xfs_ifork_t *ifp;
dp = args->dp;
ifp = dp->i_afp;
sf = (xfs_attr_shortform_t *)ifp->if_u1.if_data;
size = be16_to_cpu(sf->hdr.totsize);
tmpbuffer = kmem_alloc(size, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, ifp->if_u1.if_data, size);
sf = (xfs_attr_shortform_t *)tmpbuffer;
xfs_idata_realloc(dp, -size, XFS_ATTR_FORK);
bp = NULL;
error = xfs_da_grow_inode(args, &blkno);
if (error) {
/*
* If we hit an IO error middle of the transaction inside
* grow_inode(), we may have inconsistent data. Bail out.
*/
if (error == EIO)
goto out;
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
goto out;
}
ASSERT(blkno == 0);
error = xfs_attr_leaf_create(args, blkno, &bp);
if (error) {
error = xfs_da_shrink_inode(args, 0, bp);
bp = NULL;
if (error)
goto out;
xfs_idata_realloc(dp, size, XFS_ATTR_FORK); /* try to put */
memcpy(ifp->if_u1.if_data, tmpbuffer, size); /* it back */
goto out;
}
memset((char *)&nargs, 0, sizeof(nargs));
nargs.dp = dp;
nargs.firstblock = args->firstblock;
nargs.flist = args->flist;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.oknoent = 1;
sfe = &sf->list[0];
for (i = 0; i < sf->hdr.count; i++) {
nargs.name = (char *)sfe->nameval;
nargs.namelen = sfe->namelen;
nargs.value = (char *)&sfe->nameval[nargs.namelen];
nargs.valuelen = sfe->valuelen;
nargs.hashval = xfs_da_hashname((char *)sfe->nameval,
sfe->namelen);
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(sfe->flags);
error = xfs_attr_leaf_lookup_int(bp, &nargs); /* set a->index */
ASSERT(error == ENOATTR);
error = xfs_attr_leaf_add(bp, &nargs);
ASSERT(error != ENOSPC);
if (error)
goto out;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
}
error = 0;
out:
if(bp)
xfs_da_buf_done(bp);
kmem_free(tmpbuffer, size);
return(error);
}
STATIC int
xfs_attr_shortform_compare(const void *a, const void *b)
{
xfs_attr_sf_sort_t *sa, *sb;
sa = (xfs_attr_sf_sort_t *)a;
sb = (xfs_attr_sf_sort_t *)b;
if (sa->hash < sb->hash) {
return(-1);
} else if (sa->hash > sb->hash) {
return(1);
} else {
return(sa->entno - sb->entno);
}
}
#define XFS_ISRESET_CURSOR(cursor) \
(!((cursor)->initted) && !((cursor)->hashval) && \
!((cursor)->blkno) && !((cursor)->offset))
/*
* Copy out entries of shortform attribute lists for attr_list().
* Shortform attribute lists are not stored in hashval sorted order.
* If the output buffer is not large enough to hold them all, then we
* we have to calculate each entries' hashvalue and sort them before
* we can begin returning them to the user.
*/
/*ARGSUSED*/
int
xfs_attr_shortform_list(xfs_attr_list_context_t *context)
{
attrlist_cursor_kern_t *cursor;
xfs_attr_sf_sort_t *sbuf, *sbp;
xfs_attr_shortform_t *sf;
xfs_attr_sf_entry_t *sfe;
xfs_inode_t *dp;
int sbsize, nsbuf, count, i;
int error;
ASSERT(context != NULL);
dp = context->dp;
ASSERT(dp != NULL);
ASSERT(dp->i_afp != NULL);
sf = (xfs_attr_shortform_t *)dp->i_afp->if_u1.if_data;
ASSERT(sf != NULL);
if (!sf->hdr.count)
return(0);
cursor = context->cursor;
ASSERT(cursor != NULL);
xfs_attr_trace_l_c("sf start", context);
/*
* If the buffer is large enough and the cursor is at the start,
* do not bother with sorting since we will return everything in
* one buffer and another call using the cursor won't need to be
* made.
* Note the generous fudge factor of 16 overhead bytes per entry.
* If bufsize is zero then put_listent must be a search function
* and can just scan through what we have.
*/
if (context->bufsize == 0 ||
(XFS_ISRESET_CURSOR(cursor) &&
(dp->i_afp->if_bytes + sf->hdr.count * 16) < context->bufsize)) {
for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
attrnames_t *namesp;
if (!xfs_attr_namesp_match_overrides(context->flags, sfe->flags)) {
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
continue;
}
namesp = xfs_attr_flags_namesp(sfe->flags);
error = context->put_listent(context,
namesp,
(char *)sfe->nameval,
(int)sfe->namelen,
(int)sfe->valuelen,
(char*)&sfe->nameval[sfe->namelen]);
/*
* Either search callback finished early or
* didn't fit it all in the buffer after all.
*/
if (context->seen_enough)
break;
if (error)
return error;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
}
xfs_attr_trace_l_c("sf big-gulp", context);
return(0);
}
/* do no more for a search callback */
if (context->bufsize == 0)
return 0;
/*
* It didn't all fit, so we have to sort everything on hashval.
*/
sbsize = sf->hdr.count * sizeof(*sbuf);
sbp = sbuf = kmem_alloc(sbsize, KM_SLEEP);
/*
* Scan the attribute list for the rest of the entries, storing
* the relevant info from only those that match into a buffer.
*/
nsbuf = 0;
for (i = 0, sfe = &sf->list[0]; i < sf->hdr.count; i++) {
if (unlikely(
((char *)sfe < (char *)sf) ||
((char *)sfe >= ((char *)sf + dp->i_afp->if_bytes)))) {
XFS_CORRUPTION_ERROR("xfs_attr_shortform_list",
XFS_ERRLEVEL_LOW,
context->dp->i_mount, sfe);
xfs_attr_trace_l_c("sf corrupted", context);
kmem_free(sbuf, sbsize);
return XFS_ERROR(EFSCORRUPTED);
}
if (!xfs_attr_namesp_match_overrides(context->flags, sfe->flags)) {
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
continue;
}
sbp->entno = i;
sbp->hash = xfs_da_hashname((char *)sfe->nameval, sfe->namelen);
sbp->name = (char *)sfe->nameval;
sbp->namelen = sfe->namelen;
/* These are bytes, and both on-disk, don't endian-flip */
sbp->valuelen = sfe->valuelen;
sbp->flags = sfe->flags;
sfe = XFS_ATTR_SF_NEXTENTRY(sfe);
sbp++;
nsbuf++;
}
/*
* Sort the entries on hash then entno.
*/
xfs_sort(sbuf, nsbuf, sizeof(*sbuf), xfs_attr_shortform_compare);
/*
* Re-find our place IN THE SORTED LIST.
*/
count = 0;
cursor->initted = 1;
cursor->blkno = 0;
for (sbp = sbuf, i = 0; i < nsbuf; i++, sbp++) {
if (sbp->hash == cursor->hashval) {
if (cursor->offset == count) {
break;
}
count++;
} else if (sbp->hash > cursor->hashval) {
break;
}
}
if (i == nsbuf) {
kmem_free(sbuf, sbsize);
xfs_attr_trace_l_c("blk end", context);
return(0);
}
/*
* Loop putting entries into the user buffer.
*/
for ( ; i < nsbuf; i++, sbp++) {
attrnames_t *namesp;
namesp = xfs_attr_flags_namesp(sbp->flags);
if (cursor->hashval != sbp->hash) {
cursor->hashval = sbp->hash;
cursor->offset = 0;
}
error = context->put_listent(context,
namesp,
sbp->name,
sbp->namelen,
sbp->valuelen,
&sbp->name[sbp->namelen]);
if (error)
return error;
if (context->seen_enough)
break;
cursor->offset++;
}
kmem_free(sbuf, sbsize);
xfs_attr_trace_l_c("sf E-O-F", context);
return(0);
}
/*
* Check a leaf attribute block to see if all the entries would fit into
* a shortform attribute list.
*/
int
xfs_attr_shortform_allfit(xfs_dabuf_t *bp, xfs_inode_t *dp)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
int bytes, i;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
entry = &leaf->entries[0];
bytes = sizeof(struct xfs_attr_sf_hdr);
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!(entry->flags & XFS_ATTR_LOCAL))
return(0);
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
if (name_loc->namelen >= XFS_ATTR_SF_ENTSIZE_MAX)
return(0);
if (be16_to_cpu(name_loc->valuelen) >= XFS_ATTR_SF_ENTSIZE_MAX)
return(0);
bytes += sizeof(struct xfs_attr_sf_entry)-1
+ name_loc->namelen
+ be16_to_cpu(name_loc->valuelen);
}
if ((dp->i_mount->m_flags & XFS_MOUNT_ATTR2) &&
(dp->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
(bytes == sizeof(struct xfs_attr_sf_hdr)))
return(-1);
return(xfs_attr_shortform_bytesfit(dp, bytes));
}
/*
* Convert a leaf attribute list to shortform attribute list
*/
int
xfs_attr_leaf_to_shortform(xfs_dabuf_t *bp, xfs_da_args_t *args, int forkoff)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_da_args_t nargs;
xfs_inode_t *dp;
char *tmpbuffer;
int error, i;
dp = args->dp;
tmpbuffer = kmem_alloc(XFS_LBSIZE(dp->i_mount), KM_SLEEP);
ASSERT(tmpbuffer != NULL);
ASSERT(bp != NULL);
memcpy(tmpbuffer, bp->data, XFS_LBSIZE(dp->i_mount));
leaf = (xfs_attr_leafblock_t *)tmpbuffer;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
memset(bp->data, 0, XFS_LBSIZE(dp->i_mount));
/*
* Clean out the prior contents of the attribute list.
*/
error = xfs_da_shrink_inode(args, 0, bp);
if (error)
goto out;
if (forkoff == -1) {
ASSERT(dp->i_mount->m_flags & XFS_MOUNT_ATTR2);
ASSERT(dp->i_d.di_format != XFS_DINODE_FMT_BTREE);
/*
* Last attribute was removed, revert to original
* inode format making all literal area available
* to the data fork once more.
*/
xfs_idestroy_fork(dp, XFS_ATTR_FORK);
dp->i_d.di_forkoff = 0;
dp->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
ASSERT(dp->i_d.di_anextents == 0);
ASSERT(dp->i_afp == NULL);
dp->i_df.if_ext_max =
XFS_IFORK_DSIZE(dp) / (uint)sizeof(xfs_bmbt_rec_t);
xfs_trans_log_inode(args->trans, dp, XFS_ILOG_CORE);
goto out;
}
xfs_attr_shortform_create(args);
/*
* Copy the attributes
*/
memset((char *)&nargs, 0, sizeof(nargs));
nargs.dp = dp;
nargs.firstblock = args->firstblock;
nargs.flist = args->flist;
nargs.total = args->total;
nargs.whichfork = XFS_ATTR_FORK;
nargs.trans = args->trans;
nargs.oknoent = 1;
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* don't copy partial entries */
if (!entry->nameidx)
continue;
ASSERT(entry->flags & XFS_ATTR_LOCAL);
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
nargs.name = (char *)name_loc->nameval;
nargs.namelen = name_loc->namelen;
nargs.value = (char *)&name_loc->nameval[nargs.namelen];
nargs.valuelen = be16_to_cpu(name_loc->valuelen);
nargs.hashval = be32_to_cpu(entry->hashval);
nargs.flags = XFS_ATTR_NSP_ONDISK_TO_ARGS(entry->flags);
xfs_attr_shortform_add(&nargs, forkoff);
}
error = 0;
out:
kmem_free(tmpbuffer, XFS_LBSIZE(dp->i_mount));
return(error);
}
/*
* Convert from using a single leaf to a root node and a leaf.
*/
int
xfs_attr_leaf_to_node(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_da_intnode_t *node;
xfs_inode_t *dp;
xfs_dabuf_t *bp1, *bp2;
xfs_dablk_t blkno;
int error;
dp = args->dp;
bp1 = bp2 = NULL;
error = xfs_da_grow_inode(args, &blkno);
if (error)
goto out;
error = xfs_da_read_buf(args->trans, args->dp, 0, -1, &bp1,
XFS_ATTR_FORK);
if (error)
goto out;
ASSERT(bp1 != NULL);
bp2 = NULL;
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp2,
XFS_ATTR_FORK);
if (error)
goto out;
ASSERT(bp2 != NULL);
memcpy(bp2->data, bp1->data, XFS_LBSIZE(dp->i_mount));
xfs_da_buf_done(bp1);
bp1 = NULL;
xfs_da_log_buf(args->trans, bp2, 0, XFS_LBSIZE(dp->i_mount) - 1);
/*
* Set up the new root node.
*/
error = xfs_da_node_create(args, 0, 1, &bp1, XFS_ATTR_FORK);
if (error)
goto out;
node = bp1->data;
leaf = bp2->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
/* both on-disk, don't endian-flip twice */
node->btree[0].hashval =
leaf->entries[be16_to_cpu(leaf->hdr.count)-1 ].hashval;
node->btree[0].before = cpu_to_be32(blkno);
node->hdr.count = cpu_to_be16(1);
xfs_da_log_buf(args->trans, bp1, 0, XFS_LBSIZE(dp->i_mount) - 1);
error = 0;
out:
if (bp1)
xfs_da_buf_done(bp1);
if (bp2)
xfs_da_buf_done(bp2);
return(error);
}
/*========================================================================
* Routines used for growing the Btree.
*========================================================================*/
/*
* Create the initial contents of a leaf attribute list
* or a leaf in a node attribute list.
*/
STATIC int
xfs_attr_leaf_create(xfs_da_args_t *args, xfs_dablk_t blkno, xfs_dabuf_t **bpp)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_inode_t *dp;
xfs_dabuf_t *bp;
int error;
dp = args->dp;
ASSERT(dp != NULL);
error = xfs_da_get_buf(args->trans, args->dp, blkno, -1, &bp,
XFS_ATTR_FORK);
if (error)
return(error);
ASSERT(bp != NULL);
leaf = bp->data;
memset((char *)leaf, 0, XFS_LBSIZE(dp->i_mount));
hdr = &leaf->hdr;
hdr->info.magic = cpu_to_be16(XFS_ATTR_LEAF_MAGIC);
hdr->firstused = cpu_to_be16(XFS_LBSIZE(dp->i_mount));
if (!hdr->firstused) {
hdr->firstused = cpu_to_be16(
XFS_LBSIZE(dp->i_mount) - XFS_ATTR_LEAF_NAME_ALIGN);
}
hdr->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
hdr->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr->firstused) -
sizeof(xfs_attr_leaf_hdr_t));
xfs_da_log_buf(args->trans, bp, 0, XFS_LBSIZE(dp->i_mount) - 1);
*bpp = bp;
return(0);
}
/*
* Split the leaf node, rebalance, then add the new entry.
*/
int
xfs_attr_leaf_split(xfs_da_state_t *state, xfs_da_state_blk_t *oldblk,
xfs_da_state_blk_t *newblk)
{
xfs_dablk_t blkno;
int error;
/*
* Allocate space for a new leaf node.
*/
ASSERT(oldblk->magic == XFS_ATTR_LEAF_MAGIC);
error = xfs_da_grow_inode(state->args, &blkno);
if (error)
return(error);
error = xfs_attr_leaf_create(state->args, blkno, &newblk->bp);
if (error)
return(error);
newblk->blkno = blkno;
newblk->magic = XFS_ATTR_LEAF_MAGIC;
/*
* Rebalance the entries across the two leaves.
* NOTE: rebalance() currently depends on the 2nd block being empty.
*/
xfs_attr_leaf_rebalance(state, oldblk, newblk);
error = xfs_da_blk_link(state, oldblk, newblk);
if (error)
return(error);
/*
* Save info on "old" attribute for "atomic rename" ops, leaf_add()
* modifies the index/blkno/rmtblk/rmtblkcnt fields to show the
* "new" attrs info. Will need the "old" info to remove it later.
*
* Insert the "new" entry in the correct block.
*/
if (state->inleaf)
error = xfs_attr_leaf_add(oldblk->bp, state->args);
else
error = xfs_attr_leaf_add(newblk->bp, state->args);
/*
* Update last hashval in each block since we added the name.
*/
oldblk->hashval = xfs_attr_leaf_lasthash(oldblk->bp, NULL);
newblk->hashval = xfs_attr_leaf_lasthash(newblk->bp, NULL);
return(error);
}
/*
* Add a name to the leaf attribute list structure.
*/
int
xfs_attr_leaf_add(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_attr_leaf_map_t *map;
int tablesize, entsize, sum, tmp, i;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT((args->index >= 0)
&& (args->index <= be16_to_cpu(leaf->hdr.count)));
hdr = &leaf->hdr;
entsize = xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
args->trans->t_mountp->m_sb.sb_blocksize, NULL);
/*
* Search through freemap for first-fit on new name length.
* (may need to figure in size of entry struct too)
*/
tablesize = (be16_to_cpu(hdr->count) + 1)
* sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
map = &hdr->freemap[XFS_ATTR_LEAF_MAPSIZE-1];
for (sum = 0, i = XFS_ATTR_LEAF_MAPSIZE-1; i >= 0; map--, i--) {
if (tablesize > be16_to_cpu(hdr->firstused)) {
sum += be16_to_cpu(map->size);
continue;
}
if (!map->size)
continue; /* no space in this map */
tmp = entsize;
if (be16_to_cpu(map->base) < be16_to_cpu(hdr->firstused))
tmp += sizeof(xfs_attr_leaf_entry_t);
if (be16_to_cpu(map->size) >= tmp) {
tmp = xfs_attr_leaf_add_work(bp, args, i);
return(tmp);
}
sum += be16_to_cpu(map->size);
}
/*
* If there are no holes in the address space of the block,
* and we don't have enough freespace, then compaction will do us
* no good and we should just give up.
*/
if (!hdr->holes && (sum < entsize))
return(XFS_ERROR(ENOSPC));
/*
* Compact the entries to coalesce free space.
* This may change the hdr->count via dropping INCOMPLETE entries.
*/
xfs_attr_leaf_compact(args->trans, bp);
/*
* After compaction, the block is guaranteed to have only one
* free region, in freemap[0]. If it is not big enough, give up.
*/
if (be16_to_cpu(hdr->freemap[0].size)
< (entsize + sizeof(xfs_attr_leaf_entry_t)))
return(XFS_ERROR(ENOSPC));
return(xfs_attr_leaf_add_work(bp, args, 0));
}
/*
* Add a name to a leaf attribute list structure.
*/
STATIC int
xfs_attr_leaf_add_work(xfs_dabuf_t *bp, xfs_da_args_t *args, int mapindex)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_attr_leaf_map_t *map;
xfs_mount_t *mp;
int tmp, i;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
hdr = &leaf->hdr;
ASSERT((mapindex >= 0) && (mapindex < XFS_ATTR_LEAF_MAPSIZE));
ASSERT((args->index >= 0) && (args->index <= be16_to_cpu(hdr->count)));
/*
* Force open some space in the entry array and fill it in.
*/
entry = &leaf->entries[args->index];
if (args->index < be16_to_cpu(hdr->count)) {
tmp = be16_to_cpu(hdr->count) - args->index;
tmp *= sizeof(xfs_attr_leaf_entry_t);
memmove((char *)(entry+1), (char *)entry, tmp);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
}
be16_add_cpu(&hdr->count, 1);
/*
* Allocate space for the new string (at the end of the run).
*/
map = &hdr->freemap[mapindex];
mp = args->trans->t_mountp;
ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
ASSERT((be16_to_cpu(map->base) & 0x3) == 0);
ASSERT(be16_to_cpu(map->size) >=
xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
mp->m_sb.sb_blocksize, NULL));
ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
ASSERT((be16_to_cpu(map->size) & 0x3) == 0);
be16_add_cpu(&map->size,
-xfs_attr_leaf_newentsize(args->namelen, args->valuelen,
mp->m_sb.sb_blocksize, &tmp));
entry->nameidx = cpu_to_be16(be16_to_cpu(map->base) +
be16_to_cpu(map->size));
entry->hashval = cpu_to_be32(args->hashval);
entry->flags = tmp ? XFS_ATTR_LOCAL : 0;
entry->flags |= XFS_ATTR_NSP_ARGS_TO_ONDISK(args->flags);
if (args->rename) {
entry->flags |= XFS_ATTR_INCOMPLETE;
if ((args->blkno2 == args->blkno) &&
(args->index2 <= args->index)) {
args->index2++;
}
}
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
ASSERT((args->index == 0) ||
(be32_to_cpu(entry->hashval) >= be32_to_cpu((entry-1)->hashval)));
ASSERT((args->index == be16_to_cpu(hdr->count)-1) ||
(be32_to_cpu(entry->hashval) <= be32_to_cpu((entry+1)->hashval)));
/*
* Copy the attribute name and value into the new space.
*
* For "remote" attribute values, simply note that we need to
* allocate space for the "remote" value. We can't actually
* allocate the extents in this transaction, and we can't decide
* which blocks they should be as we might allocate more blocks
* as part of this transaction (a split operation for example).
*/
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
name_loc->namelen = args->namelen;
name_loc->valuelen = cpu_to_be16(args->valuelen);
memcpy((char *)name_loc->nameval, args->name, args->namelen);
memcpy((char *)&name_loc->nameval[args->namelen], args->value,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
name_rmt->namelen = args->namelen;
memcpy((char *)name_rmt->name, args->name, args->namelen);
entry->flags |= XFS_ATTR_INCOMPLETE;
/* just in case */
name_rmt->valuelen = 0;
name_rmt->valueblk = 0;
args->rmtblkno = 1;
args->rmtblkcnt = XFS_B_TO_FSB(mp, args->valuelen);
}
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index),
xfs_attr_leaf_entsize(leaf, args->index)));
/*
* Update the control info for this leaf node
*/
if (be16_to_cpu(entry->nameidx) < be16_to_cpu(hdr->firstused)) {
/* both on-disk, don't endian-flip twice */
hdr->firstused = entry->nameidx;
}
ASSERT(be16_to_cpu(hdr->firstused) >=
((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
tmp = (be16_to_cpu(hdr->count)-1) * sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
map = &hdr->freemap[0];
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
if (be16_to_cpu(map->base) == tmp) {
be16_add_cpu(&map->base, sizeof(xfs_attr_leaf_entry_t));
be16_add_cpu(&map->size,
-((int)sizeof(xfs_attr_leaf_entry_t)));
}
}
be16_add_cpu(&hdr->usedbytes, xfs_attr_leaf_entsize(leaf, args->index));
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
return(0);
}
/*
* Garbage collect a leaf attribute list block by copying it to a new buffer.
*/
STATIC void
xfs_attr_leaf_compact(xfs_trans_t *trans, xfs_dabuf_t *bp)
{
xfs_attr_leafblock_t *leaf_s, *leaf_d;
xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
xfs_mount_t *mp;
char *tmpbuffer;
mp = trans->t_mountp;
tmpbuffer = kmem_alloc(XFS_LBSIZE(mp), KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memcpy(tmpbuffer, bp->data, XFS_LBSIZE(mp));
memset(bp->data, 0, XFS_LBSIZE(mp));
/*
* Copy basic information
*/
leaf_s = (xfs_attr_leafblock_t *)tmpbuffer;
leaf_d = bp->data;
hdr_s = &leaf_s->hdr;
hdr_d = &leaf_d->hdr;
hdr_d->info = hdr_s->info; /* struct copy */
hdr_d->firstused = cpu_to_be16(XFS_LBSIZE(mp));
/* handle truncation gracefully */
if (!hdr_d->firstused) {
hdr_d->firstused = cpu_to_be16(
XFS_LBSIZE(mp) - XFS_ATTR_LEAF_NAME_ALIGN);
}
hdr_d->usedbytes = 0;
hdr_d->count = 0;
hdr_d->holes = 0;
hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused) -
sizeof(xfs_attr_leaf_hdr_t));
/*
* Copy all entry's in the same (sorted) order,
* but allocate name/value pairs packed and in sequence.
*/
xfs_attr_leaf_moveents(leaf_s, 0, leaf_d, 0,
be16_to_cpu(hdr_s->count), mp);
xfs_da_log_buf(trans, bp, 0, XFS_LBSIZE(mp) - 1);
kmem_free(tmpbuffer, XFS_LBSIZE(mp));
}
/*
* Redistribute the attribute list entries between two leaf nodes,
* taking into account the size of the new entry.
*
* NOTE: if new block is empty, then it will get the upper half of the
* old block. At present, all (one) callers pass in an empty second block.
*
* This code adjusts the args->index/blkno and args->index2/blkno2 fields
* to match what it is doing in splitting the attribute leaf block. Those
* values are used in "atomic rename" operations on attributes. Note that
* the "new" and "old" values can end up in different blocks.
*/
STATIC void
xfs_attr_leaf_rebalance(xfs_da_state_t *state, xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2)
{
xfs_da_args_t *args;
xfs_da_state_blk_t *tmp_blk;
xfs_attr_leafblock_t *leaf1, *leaf2;
xfs_attr_leaf_hdr_t *hdr1, *hdr2;
int count, totallen, max, space, swap;
/*
* Set up environment.
*/
ASSERT(blk1->magic == XFS_ATTR_LEAF_MAGIC);
ASSERT(blk2->magic == XFS_ATTR_LEAF_MAGIC);
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
args = state->args;
/*
* Check ordering of blocks, reverse if it makes things simpler.
*
* NOTE: Given that all (current) callers pass in an empty
* second block, this code should never set "swap".
*/
swap = 0;
if (xfs_attr_leaf_order(blk1->bp, blk2->bp)) {
tmp_blk = blk1;
blk1 = blk2;
blk2 = tmp_blk;
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
swap = 1;
}
hdr1 = &leaf1->hdr;
hdr2 = &leaf2->hdr;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum. Then get
* the direction to copy and the number of elements to move.
*
* "inleaf" is true if the new entry should be inserted into blk1.
* If "swap" is also true, then reverse the sense of "inleaf".
*/
state->inleaf = xfs_attr_leaf_figure_balance(state, blk1, blk2,
&count, &totallen);
if (swap)
state->inleaf = !state->inleaf;
/*
* Move any entries required from leaf to leaf:
*/
if (count < be16_to_cpu(hdr1->count)) {
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count = be16_to_cpu(hdr1->count) - count;
space = be16_to_cpu(hdr1->usedbytes) - totallen;
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf2 is the destination, compact it if it looks tight.
*/
max = be16_to_cpu(hdr2->firstused)
- sizeof(xfs_attr_leaf_hdr_t);
max -= be16_to_cpu(hdr2->count) * sizeof(xfs_attr_leaf_entry_t);
if (space > max) {
xfs_attr_leaf_compact(args->trans, blk2->bp);
}
/*
* Move high entries from leaf1 to low end of leaf2.
*/
xfs_attr_leaf_moveents(leaf1, be16_to_cpu(hdr1->count) - count,
leaf2, 0, count, state->mp);
xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
} else if (count > be16_to_cpu(hdr1->count)) {
/*
* I assert that since all callers pass in an empty
* second buffer, this code should never execute.
*/
/*
* Figure the total bytes to be added to the destination leaf.
*/
/* number entries being moved */
count -= be16_to_cpu(hdr1->count);
space = totallen - be16_to_cpu(hdr1->usedbytes);
space += count * sizeof(xfs_attr_leaf_entry_t);
/*
* leaf1 is the destination, compact it if it looks tight.
*/
max = be16_to_cpu(hdr1->firstused)
- sizeof(xfs_attr_leaf_hdr_t);
max -= be16_to_cpu(hdr1->count) * sizeof(xfs_attr_leaf_entry_t);
if (space > max) {
xfs_attr_leaf_compact(args->trans, blk1->bp);
}
/*
* Move low entries from leaf2 to high end of leaf1.
*/
xfs_attr_leaf_moveents(leaf2, 0, leaf1,
be16_to_cpu(hdr1->count), count, state->mp);
xfs_da_log_buf(args->trans, blk1->bp, 0, state->blocksize-1);
xfs_da_log_buf(args->trans, blk2->bp, 0, state->blocksize-1);
}
/*
* Copy out last hashval in each block for B-tree code.
*/
blk1->hashval = be32_to_cpu(
leaf1->entries[be16_to_cpu(leaf1->hdr.count)-1].hashval);
blk2->hashval = be32_to_cpu(
leaf2->entries[be16_to_cpu(leaf2->hdr.count)-1].hashval);
/*
* Adjust the expected index for insertion.
* NOTE: this code depends on the (current) situation that the
* second block was originally empty.
*
* If the insertion point moved to the 2nd block, we must adjust
* the index. We must also track the entry just following the
* new entry for use in an "atomic rename" operation, that entry
* is always the "old" entry and the "new" entry is what we are
* inserting. The index/blkno fields refer to the "old" entry,
* while the index2/blkno2 fields refer to the "new" entry.
*/
if (blk1->index > be16_to_cpu(leaf1->hdr.count)) {
ASSERT(state->inleaf == 0);
blk2->index = blk1->index - be16_to_cpu(leaf1->hdr.count);
args->index = args->index2 = blk2->index;
args->blkno = args->blkno2 = blk2->blkno;
} else if (blk1->index == be16_to_cpu(leaf1->hdr.count)) {
if (state->inleaf) {
args->index = blk1->index;
args->blkno = blk1->blkno;
args->index2 = 0;
args->blkno2 = blk2->blkno;
} else {
blk2->index = blk1->index
- be16_to_cpu(leaf1->hdr.count);
args->index = args->index2 = blk2->index;
args->blkno = args->blkno2 = blk2->blkno;
}
} else {
ASSERT(state->inleaf == 1);
args->index = args->index2 = blk1->index;
args->blkno = args->blkno2 = blk1->blkno;
}
}
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
* GROT: Is this really necessary? With other than a 512 byte blocksize,
* GROT: there will always be enough room in either block for a new entry.
* GROT: Do a double-split for this case?
*/
STATIC int
xfs_attr_leaf_figure_balance(xfs_da_state_t *state,
xfs_da_state_blk_t *blk1,
xfs_da_state_blk_t *blk2,
int *countarg, int *usedbytesarg)
{
xfs_attr_leafblock_t *leaf1, *leaf2;
xfs_attr_leaf_hdr_t *hdr1, *hdr2;
xfs_attr_leaf_entry_t *entry;
int count, max, index, totallen, half;
int lastdelta, foundit, tmp;
/*
* Set up environment.
*/
leaf1 = blk1->bp->data;
leaf2 = blk2->bp->data;
hdr1 = &leaf1->hdr;
hdr2 = &leaf2->hdr;
foundit = 0;
totallen = 0;
/*
* Examine entries until we reduce the absolute difference in
* byte usage between the two blocks to a minimum.
*/
max = be16_to_cpu(hdr1->count) + be16_to_cpu(hdr2->count);
half = (max+1) * sizeof(*entry);
half += be16_to_cpu(hdr1->usedbytes) +
be16_to_cpu(hdr2->usedbytes) +
xfs_attr_leaf_newentsize(
state->args->namelen,
state->args->valuelen,
state->blocksize, NULL);
half /= 2;
lastdelta = state->blocksize;
entry = &leaf1->entries[0];
for (count = index = 0; count < max; entry++, index++, count++) {
#define XFS_ATTR_ABS(A) (((A) < 0) ? -(A) : (A))
/*
* The new entry is in the first block, account for it.
*/
if (count == blk1->index) {
tmp = totallen + sizeof(*entry) +
xfs_attr_leaf_newentsize(
state->args->namelen,
state->args->valuelen,
state->blocksize, NULL);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
foundit = 1;
}
/*
* Wrap around into the second block if necessary.
*/
if (count == be16_to_cpu(hdr1->count)) {
leaf1 = leaf2;
entry = &leaf1->entries[0];
index = 0;
}
/*
* Figure out if next leaf entry would be too much.
*/
tmp = totallen + sizeof(*entry) + xfs_attr_leaf_entsize(leaf1,
index);
if (XFS_ATTR_ABS(half - tmp) > lastdelta)
break;
lastdelta = XFS_ATTR_ABS(half - tmp);
totallen = tmp;
#undef XFS_ATTR_ABS
}
/*
* Calculate the number of usedbytes that will end up in lower block.
* If new entry not in lower block, fix up the count.
*/
totallen -= count * sizeof(*entry);
if (foundit) {
totallen -= sizeof(*entry) +
xfs_attr_leaf_newentsize(
state->args->namelen,
state->args->valuelen,
state->blocksize, NULL);
}
*countarg = count;
*usedbytesarg = totallen;
return(foundit);
}
/*========================================================================
* Routines used for shrinking the Btree.
*========================================================================*/
/*
* Check a leaf block and its neighbors to see if the block should be
* collapsed into one or the other neighbor. Always keep the block
* with the smaller block number.
* If the current block is over 50% full, don't try to join it, return 0.
* If the block is empty, fill in the state structure and return 2.
* If it can be collapsed, fill in the state structure and return 1.
* If nothing can be done, return 0.
*
* GROT: allow for INCOMPLETE entries in calculation.
*/
int
xfs_attr_leaf_toosmall(xfs_da_state_t *state, int *action)
{
xfs_attr_leafblock_t *leaf;
xfs_da_state_blk_t *blk;
xfs_da_blkinfo_t *info;
int count, bytes, forward, error, retval, i;
xfs_dablk_t blkno;
xfs_dabuf_t *bp;
/*
* Check for the degenerate case of the block being over 50% full.
* If so, it's not worth even looking to see if we might be able
* to coalesce with a sibling.
*/
blk = &state->path.blk[ state->path.active-1 ];
info = blk->bp->data;
ASSERT(be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC);
leaf = (xfs_attr_leafblock_t *)info;
count = be16_to_cpu(leaf->hdr.count);
bytes = sizeof(xfs_attr_leaf_hdr_t) +
count * sizeof(xfs_attr_leaf_entry_t) +
be16_to_cpu(leaf->hdr.usedbytes);
if (bytes > (state->blocksize >> 1)) {
*action = 0; /* blk over 50%, don't try to join */
return(0);
}
/*
* Check for the degenerate case of the block being empty.
* If the block is empty, we'll simply delete it, no need to
* coalesce it with a sibling block. We choose (arbitrarily)
* to merge with the forward block unless it is NULL.
*/
if (count == 0) {
/*
* Make altpath point to the block we want to keep and
* path point to the block we want to drop (this one).
*/
forward = (info->forw != 0);
memcpy(&state->altpath, &state->path, sizeof(state->path));
error = xfs_da_path_shift(state, &state->altpath, forward,
0, &retval);
if (error)
return(error);
if (retval) {
*action = 0;
} else {
*action = 2;
}
return(0);
}
/*
* Examine each sibling block to see if we can coalesce with
* at least 25% free space to spare. We need to figure out
* whether to merge with the forward or the backward block.
* We prefer coalescing with the lower numbered sibling so as
* to shrink an attribute list over time.
*/
/* start with smaller blk num */
forward = (be32_to_cpu(info->forw) < be32_to_cpu(info->back));
for (i = 0; i < 2; forward = !forward, i++) {
if (forward)
blkno = be32_to_cpu(info->forw);
else
blkno = be32_to_cpu(info->back);
if (blkno == 0)
continue;
error = xfs_da_read_buf(state->args->trans, state->args->dp,
blkno, -1, &bp, XFS_ATTR_FORK);
if (error)
return(error);
ASSERT(bp != NULL);
leaf = (xfs_attr_leafblock_t *)info;
count = be16_to_cpu(leaf->hdr.count);
bytes = state->blocksize - (state->blocksize>>2);
bytes -= be16_to_cpu(leaf->hdr.usedbytes);
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
count += be16_to_cpu(leaf->hdr.count);
bytes -= be16_to_cpu(leaf->hdr.usedbytes);
bytes -= count * sizeof(xfs_attr_leaf_entry_t);
bytes -= sizeof(xfs_attr_leaf_hdr_t);
xfs_da_brelse(state->args->trans, bp);
if (bytes >= 0)
break; /* fits with at least 25% to spare */
}
if (i >= 2) {
*action = 0;
return(0);
}
/*
* Make altpath point to the block we want to keep (the lower
* numbered block) and path point to the block we want to drop.
*/
memcpy(&state->altpath, &state->path, sizeof(state->path));
if (blkno < blk->blkno) {
error = xfs_da_path_shift(state, &state->altpath, forward,
0, &retval);
} else {
error = xfs_da_path_shift(state, &state->path, forward,
0, &retval);
}
if (error)
return(error);
if (retval) {
*action = 0;
} else {
*action = 1;
}
return(0);
}
/*
* Remove a name from the leaf attribute list structure.
*
* Return 1 if leaf is less than 37% full, 0 if >= 37% full.
* If two leaves are 37% full, when combined they will leave 25% free.
*/
int
xfs_attr_leaf_remove(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_hdr_t *hdr;
xfs_attr_leaf_map_t *map;
xfs_attr_leaf_entry_t *entry;
int before, after, smallest, entsize;
int tablesize, tmp, i;
xfs_mount_t *mp;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
hdr = &leaf->hdr;
mp = args->trans->t_mountp;
ASSERT((be16_to_cpu(hdr->count) > 0)
&& (be16_to_cpu(hdr->count) < (XFS_LBSIZE(mp)/8)));
ASSERT((args->index >= 0)
&& (args->index < be16_to_cpu(hdr->count)));
ASSERT(be16_to_cpu(hdr->firstused) >=
((be16_to_cpu(hdr->count) * sizeof(*entry)) + sizeof(*hdr)));
entry = &leaf->entries[args->index];
ASSERT(be16_to_cpu(entry->nameidx) >= be16_to_cpu(hdr->firstused));
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
/*
* Scan through free region table:
* check for adjacency of free'd entry with an existing one,
* find smallest free region in case we need to replace it,
* adjust any map that borders the entry table,
*/
tablesize = be16_to_cpu(hdr->count) * sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
map = &hdr->freemap[0];
tmp = be16_to_cpu(map->size);
before = after = -1;
smallest = XFS_ATTR_LEAF_MAPSIZE - 1;
entsize = xfs_attr_leaf_entsize(leaf, args->index);
for (i = 0; i < XFS_ATTR_LEAF_MAPSIZE; map++, i++) {
ASSERT(be16_to_cpu(map->base) < XFS_LBSIZE(mp));
ASSERT(be16_to_cpu(map->size) < XFS_LBSIZE(mp));
if (be16_to_cpu(map->base) == tablesize) {
be16_add_cpu(&map->base,
-((int)sizeof(xfs_attr_leaf_entry_t)));
be16_add_cpu(&map->size, sizeof(xfs_attr_leaf_entry_t));
}
if ((be16_to_cpu(map->base) + be16_to_cpu(map->size))
== be16_to_cpu(entry->nameidx)) {
before = i;
} else if (be16_to_cpu(map->base)
== (be16_to_cpu(entry->nameidx) + entsize)) {
after = i;
} else if (be16_to_cpu(map->size) < tmp) {
tmp = be16_to_cpu(map->size);
smallest = i;
}
}
/*
* Coalesce adjacent freemap regions,
* or replace the smallest region.
*/
if ((before >= 0) || (after >= 0)) {
if ((before >= 0) && (after >= 0)) {
map = &hdr->freemap[before];
be16_add_cpu(&map->size, entsize);
be16_add_cpu(&map->size,
be16_to_cpu(hdr->freemap[after].size));
hdr->freemap[after].base = 0;
hdr->freemap[after].size = 0;
} else if (before >= 0) {
map = &hdr->freemap[before];
be16_add_cpu(&map->size, entsize);
} else {
map = &hdr->freemap[after];
/* both on-disk, don't endian flip twice */
map->base = entry->nameidx;
be16_add_cpu(&map->size, entsize);
}
} else {
/*
* Replace smallest region (if it is smaller than free'd entry)
*/
map = &hdr->freemap[smallest];
if (be16_to_cpu(map->size) < entsize) {
map->base = cpu_to_be16(be16_to_cpu(entry->nameidx));
map->size = cpu_to_be16(entsize);
}
}
/*
* Did we remove the first entry?
*/
if (be16_to_cpu(entry->nameidx) == be16_to_cpu(hdr->firstused))
smallest = 1;
else
smallest = 0;
/*
* Compress the remaining entries and zero out the removed stuff.
*/
memset(XFS_ATTR_LEAF_NAME(leaf, args->index), 0, entsize);
be16_add_cpu(&hdr->usedbytes, -entsize);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, XFS_ATTR_LEAF_NAME(leaf, args->index),
entsize));
tmp = (be16_to_cpu(hdr->count) - args->index)
* sizeof(xfs_attr_leaf_entry_t);
memmove((char *)entry, (char *)(entry+1), tmp);
be16_add_cpu(&hdr->count, -1);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, tmp + sizeof(*entry)));
entry = &leaf->entries[be16_to_cpu(hdr->count)];
memset((char *)entry, 0, sizeof(xfs_attr_leaf_entry_t));
/*
* If we removed the first entry, re-find the first used byte
* in the name area. Note that if the entry was the "firstused",
* then we don't have a "hole" in our block resulting from
* removing the name.
*/
if (smallest) {
tmp = XFS_LBSIZE(mp);
entry = &leaf->entries[0];
for (i = be16_to_cpu(hdr->count)-1; i >= 0; entry++, i--) {
ASSERT(be16_to_cpu(entry->nameidx) >=
be16_to_cpu(hdr->firstused));
ASSERT(be16_to_cpu(entry->nameidx) < XFS_LBSIZE(mp));
if (be16_to_cpu(entry->nameidx) < tmp)
tmp = be16_to_cpu(entry->nameidx);
}
hdr->firstused = cpu_to_be16(tmp);
if (!hdr->firstused) {
hdr->firstused = cpu_to_be16(
tmp - XFS_ATTR_LEAF_NAME_ALIGN);
}
} else {
hdr->holes = 1; /* mark as needing compaction */
}
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, hdr, sizeof(*hdr)));
/*
* Check if leaf is less than 50% full, caller may want to
* "join" the leaf with a sibling if so.
*/
tmp = sizeof(xfs_attr_leaf_hdr_t);
tmp += be16_to_cpu(leaf->hdr.count) * sizeof(xfs_attr_leaf_entry_t);
tmp += be16_to_cpu(leaf->hdr.usedbytes);
return(tmp < mp->m_attr_magicpct); /* leaf is < 37% full */
}
/*
* Move all the attribute list entries from drop_leaf into save_leaf.
*/
void
xfs_attr_leaf_unbalance(xfs_da_state_t *state, xfs_da_state_blk_t *drop_blk,
xfs_da_state_blk_t *save_blk)
{
xfs_attr_leafblock_t *drop_leaf, *save_leaf, *tmp_leaf;
xfs_attr_leaf_hdr_t *drop_hdr, *save_hdr, *tmp_hdr;
xfs_mount_t *mp;
char *tmpbuffer;
/*
* Set up environment.
*/
mp = state->mp;
ASSERT(drop_blk->magic == XFS_ATTR_LEAF_MAGIC);
ASSERT(save_blk->magic == XFS_ATTR_LEAF_MAGIC);
drop_leaf = drop_blk->bp->data;
save_leaf = save_blk->bp->data;
ASSERT(be16_to_cpu(drop_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(be16_to_cpu(save_leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
drop_hdr = &drop_leaf->hdr;
save_hdr = &save_leaf->hdr;
/*
* Save last hashval from dying block for later Btree fixup.
*/
drop_blk->hashval = be32_to_cpu(
drop_leaf->entries[be16_to_cpu(drop_leaf->hdr.count)-1].hashval);
/*
* Check if we need a temp buffer, or can we do it in place.
* Note that we don't check "leaf" for holes because we will
* always be dropping it, toosmall() decided that for us already.
*/
if (save_hdr->holes == 0) {
/*
* dest leaf has no holes, so we add there. May need
* to make some room in the entry array.
*/
if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf, 0,
be16_to_cpu(drop_hdr->count), mp);
} else {
xfs_attr_leaf_moveents(drop_leaf, 0, save_leaf,
be16_to_cpu(save_hdr->count),
be16_to_cpu(drop_hdr->count), mp);
}
} else {
/*
* Destination has holes, so we make a temporary copy
* of the leaf and add them both to that.
*/
tmpbuffer = kmem_alloc(state->blocksize, KM_SLEEP);
ASSERT(tmpbuffer != NULL);
memset(tmpbuffer, 0, state->blocksize);
tmp_leaf = (xfs_attr_leafblock_t *)tmpbuffer;
tmp_hdr = &tmp_leaf->hdr;
tmp_hdr->info = save_hdr->info; /* struct copy */
tmp_hdr->count = 0;
tmp_hdr->firstused = cpu_to_be16(state->blocksize);
if (!tmp_hdr->firstused) {
tmp_hdr->firstused = cpu_to_be16(
state->blocksize - XFS_ATTR_LEAF_NAME_ALIGN);
}
tmp_hdr->usedbytes = 0;
if (xfs_attr_leaf_order(save_blk->bp, drop_blk->bp)) {
xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf, 0,
be16_to_cpu(drop_hdr->count), mp);
xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf,
be16_to_cpu(tmp_leaf->hdr.count),
be16_to_cpu(save_hdr->count), mp);
} else {
xfs_attr_leaf_moveents(save_leaf, 0, tmp_leaf, 0,
be16_to_cpu(save_hdr->count), mp);
xfs_attr_leaf_moveents(drop_leaf, 0, tmp_leaf,
be16_to_cpu(tmp_leaf->hdr.count),
be16_to_cpu(drop_hdr->count), mp);
}
memcpy((char *)save_leaf, (char *)tmp_leaf, state->blocksize);
kmem_free(tmpbuffer, state->blocksize);
}
xfs_da_log_buf(state->args->trans, save_blk->bp, 0,
state->blocksize - 1);
/*
* Copy out last hashval in each block for B-tree code.
*/
save_blk->hashval = be32_to_cpu(
save_leaf->entries[be16_to_cpu(save_leaf->hdr.count)-1].hashval);
}
/*========================================================================
* Routines used for finding things in the Btree.
*========================================================================*/
/*
* Look up a name in a leaf attribute list structure.
* This is the internal routine, it uses the caller's buffer.
*
* Note that duplicate keys are allowed, but only check within the
* current leaf node. The Btree code must check in adjacent leaf nodes.
*
* Return in args->index the index into the entry[] array of either
* the found entry, or where the entry should have been (insert before
* that entry).
*
* Don't change the args->value unless we find the attribute.
*/
int
xfs_attr_leaf_lookup_int(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
int probe, span;
xfs_dahash_t hashval;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(be16_to_cpu(leaf->hdr.count)
< (XFS_LBSIZE(args->dp->i_mount)/8));
/*
* Binary search. (note: small blocks will skip this loop)
*/
hashval = args->hashval;
probe = span = be16_to_cpu(leaf->hdr.count) / 2;
for (entry = &leaf->entries[probe]; span > 4;
entry = &leaf->entries[probe]) {
span /= 2;
if (be32_to_cpu(entry->hashval) < hashval)
probe += span;
else if (be32_to_cpu(entry->hashval) > hashval)
probe -= span;
else
break;
}
ASSERT((probe >= 0) &&
(!leaf->hdr.count
|| (probe < be16_to_cpu(leaf->hdr.count))));
ASSERT((span <= 4) || (be32_to_cpu(entry->hashval) == hashval));
/*
* Since we may have duplicate hashval's, find the first matching
* hashval in the leaf.
*/
while ((probe > 0) && (be32_to_cpu(entry->hashval) >= hashval)) {
entry--;
probe--;
}
while ((probe < be16_to_cpu(leaf->hdr.count)) &&
(be32_to_cpu(entry->hashval) < hashval)) {
entry++;
probe++;
}
if ((probe == be16_to_cpu(leaf->hdr.count)) ||
(be32_to_cpu(entry->hashval) != hashval)) {
args->index = probe;
return(XFS_ERROR(ENOATTR));
}
/*
* Duplicate keys may be present, so search all of them for a match.
*/
for ( ; (probe < be16_to_cpu(leaf->hdr.count)) &&
(be32_to_cpu(entry->hashval) == hashval);
entry++, probe++) {
/*
* GROT: Add code to remove incomplete entries.
*/
/*
* If we are looking for INCOMPLETE entries, show only those.
* If we are looking for complete entries, show only those.
*/
if ((args->flags & XFS_ATTR_INCOMPLETE) !=
(entry->flags & XFS_ATTR_INCOMPLETE)) {
continue;
}
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, probe);
if (name_loc->namelen != args->namelen)
continue;
if (memcmp(args->name, (char *)name_loc->nameval, args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, entry->flags))
continue;
args->index = probe;
return(XFS_ERROR(EEXIST));
} else {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, probe);
if (name_rmt->namelen != args->namelen)
continue;
if (memcmp(args->name, (char *)name_rmt->name,
args->namelen) != 0)
continue;
if (!xfs_attr_namesp_match(args->flags, entry->flags))
continue;
args->index = probe;
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount,
be32_to_cpu(name_rmt->valuelen));
return(XFS_ERROR(EEXIST));
}
}
args->index = probe;
return(XFS_ERROR(ENOATTR));
}
/*
* Get the value associated with an attribute name from a leaf attribute
* list structure.
*/
int
xfs_attr_leaf_getvalue(xfs_dabuf_t *bp, xfs_da_args_t *args)
{
int valuelen;
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(be16_to_cpu(leaf->hdr.count)
< (XFS_LBSIZE(args->dp->i_mount)/8));
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
entry = &leaf->entries[args->index];
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
ASSERT(name_loc->namelen == args->namelen);
ASSERT(memcmp(args->name, name_loc->nameval, args->namelen) == 0);
valuelen = be16_to_cpu(name_loc->valuelen);
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = valuelen;
return(0);
}
if (args->valuelen < valuelen) {
args->valuelen = valuelen;
return(XFS_ERROR(ERANGE));
}
args->valuelen = valuelen;
memcpy(args->value, &name_loc->nameval[args->namelen], valuelen);
} else {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
ASSERT(name_rmt->namelen == args->namelen);
ASSERT(memcmp(args->name, name_rmt->name, args->namelen) == 0);
valuelen = be32_to_cpu(name_rmt->valuelen);
args->rmtblkno = be32_to_cpu(name_rmt->valueblk);
args->rmtblkcnt = XFS_B_TO_FSB(args->dp->i_mount, valuelen);
if (args->flags & ATTR_KERNOVAL) {
args->valuelen = valuelen;
return(0);
}
if (args->valuelen < valuelen) {
args->valuelen = valuelen;
return(XFS_ERROR(ERANGE));
}
args->valuelen = valuelen;
}
return(0);
}
/*========================================================================
* Utility routines.
*========================================================================*/
/*
* Move the indicated entries from one leaf to another.
* NOTE: this routine modifies both source and destination leaves.
*/
/*ARGSUSED*/
STATIC void
xfs_attr_leaf_moveents(xfs_attr_leafblock_t *leaf_s, int start_s,
xfs_attr_leafblock_t *leaf_d, int start_d,
int count, xfs_mount_t *mp)
{
xfs_attr_leaf_hdr_t *hdr_s, *hdr_d;
xfs_attr_leaf_entry_t *entry_s, *entry_d;
int desti, tmp, i;
/*
* Check for nothing to do.
*/
if (count == 0)
return;
/*
* Set up environment.
*/
ASSERT(be16_to_cpu(leaf_s->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(be16_to_cpu(leaf_d->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
hdr_s = &leaf_s->hdr;
hdr_d = &leaf_d->hdr;
ASSERT((be16_to_cpu(hdr_s->count) > 0) &&
(be16_to_cpu(hdr_s->count) < (XFS_LBSIZE(mp)/8)));
ASSERT(be16_to_cpu(hdr_s->firstused) >=
((be16_to_cpu(hdr_s->count)
* sizeof(*entry_s))+sizeof(*hdr_s)));
ASSERT(be16_to_cpu(hdr_d->count) < (XFS_LBSIZE(mp)/8));
ASSERT(be16_to_cpu(hdr_d->firstused) >=
((be16_to_cpu(hdr_d->count)
* sizeof(*entry_d))+sizeof(*hdr_d)));
ASSERT(start_s < be16_to_cpu(hdr_s->count));
ASSERT(start_d <= be16_to_cpu(hdr_d->count));
ASSERT(count <= be16_to_cpu(hdr_s->count));
/*
* Move the entries in the destination leaf up to make a hole?
*/
if (start_d < be16_to_cpu(hdr_d->count)) {
tmp = be16_to_cpu(hdr_d->count) - start_d;
tmp *= sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_d->entries[start_d];
entry_d = &leaf_d->entries[start_d + count];
memmove((char *)entry_d, (char *)entry_s, tmp);
}
/*
* Copy all entry's in the same (sorted) order,
* but allocate attribute info packed and in sequence.
*/
entry_s = &leaf_s->entries[start_s];
entry_d = &leaf_d->entries[start_d];
desti = start_d;
for (i = 0; i < count; entry_s++, entry_d++, desti++, i++) {
ASSERT(be16_to_cpu(entry_s->nameidx)
>= be16_to_cpu(hdr_s->firstused));
tmp = xfs_attr_leaf_entsize(leaf_s, start_s + i);
#ifdef GROT
/*
* Code to drop INCOMPLETE entries. Difficult to use as we
* may also need to change the insertion index. Code turned
* off for 6.2, should be revisited later.
*/
if (entry_s->flags & XFS_ATTR_INCOMPLETE) { /* skip partials? */
memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp);
be16_add_cpu(&hdr_s->usedbytes, -tmp);
be16_add_cpu(&hdr_s->count, -1);
entry_d--; /* to compensate for ++ in loop hdr */
desti--;
if ((start_s + i) < offset)
result++; /* insertion index adjustment */
} else {
#endif /* GROT */
be16_add_cpu(&hdr_d->firstused, -tmp);
/* both on-disk, don't endian flip twice */
entry_d->hashval = entry_s->hashval;
/* both on-disk, don't endian flip twice */
entry_d->nameidx = hdr_d->firstused;
entry_d->flags = entry_s->flags;
ASSERT(be16_to_cpu(entry_d->nameidx) + tmp
<= XFS_LBSIZE(mp));
memmove(XFS_ATTR_LEAF_NAME(leaf_d, desti),
XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), tmp);
ASSERT(be16_to_cpu(entry_s->nameidx) + tmp
<= XFS_LBSIZE(mp));
memset(XFS_ATTR_LEAF_NAME(leaf_s, start_s + i), 0, tmp);
be16_add_cpu(&hdr_s->usedbytes, -tmp);
be16_add_cpu(&hdr_d->usedbytes, tmp);
be16_add_cpu(&hdr_s->count, -1);
be16_add_cpu(&hdr_d->count, 1);
tmp = be16_to_cpu(hdr_d->count)
* sizeof(xfs_attr_leaf_entry_t)
+ sizeof(xfs_attr_leaf_hdr_t);
ASSERT(be16_to_cpu(hdr_d->firstused) >= tmp);
#ifdef GROT
}
#endif /* GROT */
}
/*
* Zero out the entries we just copied.
*/
if (start_s == be16_to_cpu(hdr_s->count)) {
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_s->entries[start_s];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + XFS_LBSIZE(mp)));
memset((char *)entry_s, 0, tmp);
} else {
/*
* Move the remaining entries down to fill the hole,
* then zero the entries at the top.
*/
tmp = be16_to_cpu(hdr_s->count) - count;
tmp *= sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_s->entries[start_s + count];
entry_d = &leaf_s->entries[start_s];
memmove((char *)entry_d, (char *)entry_s, tmp);
tmp = count * sizeof(xfs_attr_leaf_entry_t);
entry_s = &leaf_s->entries[be16_to_cpu(hdr_s->count)];
ASSERT(((char *)entry_s + tmp) <=
((char *)leaf_s + XFS_LBSIZE(mp)));
memset((char *)entry_s, 0, tmp);
}
/*
* Fill in the freemap information
*/
hdr_d->freemap[0].base = cpu_to_be16(sizeof(xfs_attr_leaf_hdr_t));
be16_add_cpu(&hdr_d->freemap[0].base, be16_to_cpu(hdr_d->count) *
sizeof(xfs_attr_leaf_entry_t));
hdr_d->freemap[0].size = cpu_to_be16(be16_to_cpu(hdr_d->firstused)
- be16_to_cpu(hdr_d->freemap[0].base));
hdr_d->freemap[1].base = 0;
hdr_d->freemap[2].base = 0;
hdr_d->freemap[1].size = 0;
hdr_d->freemap[2].size = 0;
hdr_s->holes = 1; /* leaf may not be compact */
}
/*
* Compare two leaf blocks "order".
* Return 0 unless leaf2 should go before leaf1.
*/
int
xfs_attr_leaf_order(xfs_dabuf_t *leaf1_bp, xfs_dabuf_t *leaf2_bp)
{
xfs_attr_leafblock_t *leaf1, *leaf2;
leaf1 = leaf1_bp->data;
leaf2 = leaf2_bp->data;
ASSERT((be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC) &&
(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC));
if ((be16_to_cpu(leaf1->hdr.count) > 0) &&
(be16_to_cpu(leaf2->hdr.count) > 0) &&
((be32_to_cpu(leaf2->entries[0].hashval) <
be32_to_cpu(leaf1->entries[0].hashval)) ||
(be32_to_cpu(leaf2->entries[
be16_to_cpu(leaf2->hdr.count)-1].hashval) <
be32_to_cpu(leaf1->entries[
be16_to_cpu(leaf1->hdr.count)-1].hashval)))) {
return(1);
}
return(0);
}
/*
* Pick up the last hashvalue from a leaf block.
*/
xfs_dahash_t
xfs_attr_leaf_lasthash(xfs_dabuf_t *bp, int *count)
{
xfs_attr_leafblock_t *leaf;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
if (count)
*count = be16_to_cpu(leaf->hdr.count);
if (!leaf->hdr.count)
return(0);
return be32_to_cpu(leaf->entries[be16_to_cpu(leaf->hdr.count)-1].hashval);
}
/*
* Calculate the number of bytes used to store the indicated attribute
* (whether local or remote only calculate bytes in this block).
*/
STATIC int
xfs_attr_leaf_entsize(xfs_attr_leafblock_t *leaf, int index)
{
xfs_attr_leaf_name_local_t *name_loc;
xfs_attr_leaf_name_remote_t *name_rmt;
int size;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
if (leaf->entries[index].flags & XFS_ATTR_LOCAL) {
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, index);
size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(name_loc->namelen,
be16_to_cpu(name_loc->valuelen));
} else {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, index);
size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(name_rmt->namelen);
}
return(size);
}
/*
* Calculate the number of bytes that would be required to store the new
* attribute (whether local or remote only calculate bytes in this block).
* This routine decides as a side effect whether the attribute will be
* a "local" or a "remote" attribute.
*/
int
xfs_attr_leaf_newentsize(int namelen, int valuelen, int blocksize, int *local)
{
int size;
size = XFS_ATTR_LEAF_ENTSIZE_LOCAL(namelen, valuelen);
if (size < XFS_ATTR_LEAF_ENTSIZE_LOCAL_MAX(blocksize)) {
if (local) {
*local = 1;
}
} else {
size = XFS_ATTR_LEAF_ENTSIZE_REMOTE(namelen);
if (local) {
*local = 0;
}
}
return(size);
}
/*
* Copy out attribute list entries for attr_list(), for leaf attribute lists.
*/
int
xfs_attr_leaf_list_int(xfs_dabuf_t *bp, xfs_attr_list_context_t *context)
{
attrlist_cursor_kern_t *cursor;
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
int retval, i;
ASSERT(bp != NULL);
leaf = bp->data;
cursor = context->cursor;
cursor->initted = 1;
xfs_attr_trace_l_cl("blk start", context, leaf);
/*
* Re-find our place in the leaf block if this is a new syscall.
*/
if (context->resynch) {
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (be32_to_cpu(entry->hashval) == cursor->hashval) {
if (cursor->offset == context->dupcnt) {
context->dupcnt = 0;
break;
}
context->dupcnt++;
} else if (be32_to_cpu(entry->hashval) >
cursor->hashval) {
context->dupcnt = 0;
break;
}
}
if (i == be16_to_cpu(leaf->hdr.count)) {
xfs_attr_trace_l_c("not found", context);
return(0);
}
} else {
entry = &leaf->entries[0];
i = 0;
}
context->resynch = 0;
/*
* We have found our place, start copying out the new attributes.
*/
retval = 0;
for ( ; (i < be16_to_cpu(leaf->hdr.count)); entry++, i++) {
attrnames_t *namesp;
if (be32_to_cpu(entry->hashval) != cursor->hashval) {
cursor->hashval = be32_to_cpu(entry->hashval);
cursor->offset = 0;
}
if (entry->flags & XFS_ATTR_INCOMPLETE)
continue; /* skip incomplete entries */
if (!xfs_attr_namesp_match_overrides(context->flags, entry->flags))
continue;
namesp = xfs_attr_flags_namesp(entry->flags);
if (entry->flags & XFS_ATTR_LOCAL) {
xfs_attr_leaf_name_local_t *name_loc =
XFS_ATTR_LEAF_NAME_LOCAL(leaf, i);
retval = context->put_listent(context,
namesp,
(char *)name_loc->nameval,
(int)name_loc->namelen,
be16_to_cpu(name_loc->valuelen),
(char *)&name_loc->nameval[name_loc->namelen]);
if (retval)
return retval;
} else {
xfs_attr_leaf_name_remote_t *name_rmt =
XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
int valuelen = be32_to_cpu(name_rmt->valuelen);
if (context->put_value) {
xfs_da_args_t args;
memset((char *)&args, 0, sizeof(args));
args.dp = context->dp;
args.whichfork = XFS_ATTR_FORK;
args.valuelen = valuelen;
args.value = kmem_alloc(valuelen, KM_SLEEP);
args.rmtblkno = be32_to_cpu(name_rmt->valueblk);
args.rmtblkcnt = XFS_B_TO_FSB(args.dp->i_mount, valuelen);
retval = xfs_attr_rmtval_get(&args);
if (retval)
return retval;
retval = context->put_listent(context,
namesp,
(char *)name_rmt->name,
(int)name_rmt->namelen,
valuelen,
(char*)args.value);
kmem_free(args.value, valuelen);
}
else {
retval = context->put_listent(context,
namesp,
(char *)name_rmt->name,
(int)name_rmt->namelen,
valuelen,
NULL);
}
if (retval)
return retval;
}
if (context->seen_enough)
break;
cursor->offset++;
}
xfs_attr_trace_l_cl("blk end", context, leaf);
return(retval);
}
/*========================================================================
* Manage the INCOMPLETE flag in a leaf entry
*========================================================================*/
/*
* Clear the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr_leaf_clearflag(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_dabuf_t *bp;
int error;
#ifdef DEBUG
xfs_attr_leaf_name_local_t *name_loc;
int namelen;
char *name;
#endif /* DEBUG */
/*
* Set up the operation.
*/
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp != NULL);
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
ASSERT(args->index >= 0);
entry = &leaf->entries[ args->index ];
ASSERT(entry->flags & XFS_ATTR_INCOMPLETE);
#ifdef DEBUG
if (entry->flags & XFS_ATTR_LOCAL) {
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf, args->index);
namelen = name_loc->namelen;
name = (char *)name_loc->nameval;
} else {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
namelen = name_rmt->namelen;
name = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry->hashval) == args->hashval);
ASSERT(namelen == args->namelen);
ASSERT(memcmp(name, args->name, namelen) == 0);
#endif /* DEBUG */
entry->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if (args->rmtblkno) {
ASSERT((entry->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->valuelen);
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
xfs_da_buf_done(bp);
/*
* Commit the flag value change and start the next trans in series.
*/
error = xfs_attr_rolltrans(&args->trans, args->dp);
return(error);
}
/*
* Set the INCOMPLETE flag on an entry in a leaf block.
*/
int
xfs_attr_leaf_setflag(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_dabuf_t *bp;
int error;
/*
* Set up the operation.
*/
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp,
XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp != NULL);
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(args->index < be16_to_cpu(leaf->hdr.count));
ASSERT(args->index >= 0);
entry = &leaf->entries[ args->index ];
ASSERT((entry->flags & XFS_ATTR_INCOMPLETE) == 0);
entry->flags |= XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, entry, sizeof(*entry)));
if ((entry->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, args->index);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_da_log_buf(args->trans, bp,
XFS_DA_LOGRANGE(leaf, name_rmt, sizeof(*name_rmt)));
}
xfs_da_buf_done(bp);
/*
* Commit the flag value change and start the next trans in series.
*/
error = xfs_attr_rolltrans(&args->trans, args->dp);
return(error);
}
/*
* In a single transaction, clear the INCOMPLETE flag on the leaf entry
* given by args->blkno/index and set the INCOMPLETE flag on the leaf
* entry given by args->blkno2/index2.
*
* Note that they could be in different blocks, or in the same block.
*/
int
xfs_attr_leaf_flipflags(xfs_da_args_t *args)
{
xfs_attr_leafblock_t *leaf1, *leaf2;
xfs_attr_leaf_entry_t *entry1, *entry2;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_dabuf_t *bp1, *bp2;
int error;
#ifdef DEBUG
xfs_attr_leaf_name_local_t *name_loc;
int namelen1, namelen2;
char *name1, *name2;
#endif /* DEBUG */
/*
* Read the block containing the "old" attr
*/
error = xfs_da_read_buf(args->trans, args->dp, args->blkno, -1, &bp1,
XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp1 != NULL);
/*
* Read the block containing the "new" attr, if it is different
*/
if (args->blkno2 != args->blkno) {
error = xfs_da_read_buf(args->trans, args->dp, args->blkno2,
-1, &bp2, XFS_ATTR_FORK);
if (error) {
return(error);
}
ASSERT(bp2 != NULL);
} else {
bp2 = bp1;
}
leaf1 = bp1->data;
ASSERT(be16_to_cpu(leaf1->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(args->index < be16_to_cpu(leaf1->hdr.count));
ASSERT(args->index >= 0);
entry1 = &leaf1->entries[ args->index ];
leaf2 = bp2->data;
ASSERT(be16_to_cpu(leaf2->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
ASSERT(args->index2 < be16_to_cpu(leaf2->hdr.count));
ASSERT(args->index2 >= 0);
entry2 = &leaf2->entries[ args->index2 ];
#ifdef DEBUG
if (entry1->flags & XFS_ATTR_LOCAL) {
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf1, args->index);
namelen1 = name_loc->namelen;
name1 = (char *)name_loc->nameval;
} else {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index);
namelen1 = name_rmt->namelen;
name1 = (char *)name_rmt->name;
}
if (entry2->flags & XFS_ATTR_LOCAL) {
name_loc = XFS_ATTR_LEAF_NAME_LOCAL(leaf2, args->index2);
namelen2 = name_loc->namelen;
name2 = (char *)name_loc->nameval;
} else {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2);
namelen2 = name_rmt->namelen;
name2 = (char *)name_rmt->name;
}
ASSERT(be32_to_cpu(entry1->hashval) == be32_to_cpu(entry2->hashval));
ASSERT(namelen1 == namelen2);
ASSERT(memcmp(name1, name2, namelen1) == 0);
#endif /* DEBUG */
ASSERT(entry1->flags & XFS_ATTR_INCOMPLETE);
ASSERT((entry2->flags & XFS_ATTR_INCOMPLETE) == 0);
entry1->flags &= ~XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, entry1, sizeof(*entry1)));
if (args->rmtblkno) {
ASSERT((entry1->flags & XFS_ATTR_LOCAL) == 0);
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf1, args->index);
name_rmt->valueblk = cpu_to_be32(args->rmtblkno);
name_rmt->valuelen = cpu_to_be32(args->valuelen);
xfs_da_log_buf(args->trans, bp1,
XFS_DA_LOGRANGE(leaf1, name_rmt, sizeof(*name_rmt)));
}
entry2->flags |= XFS_ATTR_INCOMPLETE;
xfs_da_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, entry2, sizeof(*entry2)));
if ((entry2->flags & XFS_ATTR_LOCAL) == 0) {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf2, args->index2);
name_rmt->valueblk = 0;
name_rmt->valuelen = 0;
xfs_da_log_buf(args->trans, bp2,
XFS_DA_LOGRANGE(leaf2, name_rmt, sizeof(*name_rmt)));
}
xfs_da_buf_done(bp1);
if (bp1 != bp2)
xfs_da_buf_done(bp2);
/*
* Commit the flag value change and start the next trans in series.
*/
error = xfs_attr_rolltrans(&args->trans, args->dp);
return(error);
}
/*========================================================================
* Indiscriminately delete the entire attribute fork
*========================================================================*/
/*
* Recurse (gasp!) through the attribute nodes until we find leaves.
* We're doing a depth-first traversal in order to invalidate everything.
*/
int
xfs_attr_root_inactive(xfs_trans_t **trans, xfs_inode_t *dp)
{
xfs_da_blkinfo_t *info;
xfs_daddr_t blkno;
xfs_dabuf_t *bp;
int error;
/*
* Read block 0 to see what we have to work with.
* We only get here if we have extents, since we remove
* the extents in reverse order the extent containing
* block 0 must still be there.
*/
error = xfs_da_read_buf(*trans, dp, 0, -1, &bp, XFS_ATTR_FORK);
if (error)
return(error);
blkno = xfs_da_blkno(bp);
/*
* Invalidate the tree, even if the "tree" is only a single leaf block.
* This is a depth-first traversal!
*/
info = bp->data;
if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) {
error = xfs_attr_node_inactive(trans, dp, bp, 1);
} else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) {
error = xfs_attr_leaf_inactive(trans, dp, bp);
} else {
error = XFS_ERROR(EIO);
xfs_da_brelse(*trans, bp);
}
if (error)
return(error);
/*
* Invalidate the incore copy of the root block.
*/
error = xfs_da_get_buf(*trans, dp, 0, blkno, &bp, XFS_ATTR_FORK);
if (error)
return(error);
xfs_da_binval(*trans, bp); /* remove from cache */
/*
* Commit the invalidate and start the next transaction.
*/
error = xfs_attr_rolltrans(trans, dp);
return (error);
}
/*
* Recurse (gasp!) through the attribute nodes until we find leaves.
* We're doing a depth-first traversal in order to invalidate everything.
*/
STATIC int
xfs_attr_node_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp,
int level)
{
xfs_da_blkinfo_t *info;
xfs_da_intnode_t *node;
xfs_dablk_t child_fsb;
xfs_daddr_t parent_blkno, child_blkno;
int error, count, i;
xfs_dabuf_t *child_bp;
/*
* Since this code is recursive (gasp!) we must protect ourselves.
*/
if (level > XFS_DA_NODE_MAXDEPTH) {
xfs_da_brelse(*trans, bp); /* no locks for later trans */
return(XFS_ERROR(EIO));
}
node = bp->data;
ASSERT(be16_to_cpu(node->hdr.info.magic) == XFS_DA_NODE_MAGIC);
parent_blkno = xfs_da_blkno(bp); /* save for re-read later */
count = be16_to_cpu(node->hdr.count);
if (!count) {
xfs_da_brelse(*trans, bp);
return(0);
}
child_fsb = be32_to_cpu(node->btree[0].before);
xfs_da_brelse(*trans, bp); /* no locks for later trans */
/*
* If this is the node level just above the leaves, simply loop
* over the leaves removing all of them. If this is higher up
* in the tree, recurse downward.
*/
for (i = 0; i < count; i++) {
/*
* Read the subsidiary block to see what we have to work with.
* Don't do this in a transaction. This is a depth-first
* traversal of the tree so we may deal with many blocks
* before we come back to this one.
*/
error = xfs_da_read_buf(*trans, dp, child_fsb, -2, &child_bp,
XFS_ATTR_FORK);
if (error)
return(error);
if (child_bp) {
/* save for re-read later */
child_blkno = xfs_da_blkno(child_bp);
/*
* Invalidate the subtree, however we have to.
*/
info = child_bp->data;
if (be16_to_cpu(info->magic) == XFS_DA_NODE_MAGIC) {
error = xfs_attr_node_inactive(trans, dp,
child_bp, level+1);
} else if (be16_to_cpu(info->magic) == XFS_ATTR_LEAF_MAGIC) {
error = xfs_attr_leaf_inactive(trans, dp,
child_bp);
} else {
error = XFS_ERROR(EIO);
xfs_da_brelse(*trans, child_bp);
}
if (error)
return(error);
/*
* Remove the subsidiary block from the cache
* and from the log.
*/
error = xfs_da_get_buf(*trans, dp, 0, child_blkno,
&child_bp, XFS_ATTR_FORK);
if (error)
return(error);
xfs_da_binval(*trans, child_bp);
}
/*
* If we're not done, re-read the parent to get the next
* child block number.
*/
if ((i+1) < count) {
error = xfs_da_read_buf(*trans, dp, 0, parent_blkno,
&bp, XFS_ATTR_FORK);
if (error)
return(error);
child_fsb = be32_to_cpu(node->btree[i+1].before);
xfs_da_brelse(*trans, bp);
}
/*
* Atomically commit the whole invalidate stuff.
*/
if ((error = xfs_attr_rolltrans(trans, dp)))
return (error);
}
return(0);
}
/*
* Invalidate all of the "remote" value regions pointed to by a particular
* leaf block.
* Note that we must release the lock on the buffer so that we are not
* caught holding something that the logging code wants to flush to disk.
*/
STATIC int
xfs_attr_leaf_inactive(xfs_trans_t **trans, xfs_inode_t *dp, xfs_dabuf_t *bp)
{
xfs_attr_leafblock_t *leaf;
xfs_attr_leaf_entry_t *entry;
xfs_attr_leaf_name_remote_t *name_rmt;
xfs_attr_inactive_list_t *list, *lp;
int error, count, size, tmp, i;
leaf = bp->data;
ASSERT(be16_to_cpu(leaf->hdr.info.magic) == XFS_ATTR_LEAF_MAGIC);
/*
* Count the number of "remote" value extents.
*/
count = 0;
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (be16_to_cpu(entry->nameidx) &&
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
if (name_rmt->valueblk)
count++;
}
}
/*
* If there are no "remote" values, we're done.
*/
if (count == 0) {
xfs_da_brelse(*trans, bp);
return(0);
}
/*
* Allocate storage for a list of all the "remote" value extents.
*/
size = count * sizeof(xfs_attr_inactive_list_t);
list = (xfs_attr_inactive_list_t *)kmem_alloc(size, KM_SLEEP);
/*
* Identify each of the "remote" value extents.
*/
lp = list;
entry = &leaf->entries[0];
for (i = 0; i < be16_to_cpu(leaf->hdr.count); entry++, i++) {
if (be16_to_cpu(entry->nameidx) &&
((entry->flags & XFS_ATTR_LOCAL) == 0)) {
name_rmt = XFS_ATTR_LEAF_NAME_REMOTE(leaf, i);
if (name_rmt->valueblk) {
lp->valueblk = be32_to_cpu(name_rmt->valueblk);
lp->valuelen = XFS_B_TO_FSB(dp->i_mount,
be32_to_cpu(name_rmt->valuelen));
lp++;
}
}
}
xfs_da_brelse(*trans, bp); /* unlock for trans. in freextent() */
/*
* Invalidate each of the "remote" value extents.
*/
error = 0;
for (lp = list, i = 0; i < count; i++, lp++) {
tmp = xfs_attr_leaf_freextent(trans, dp,
lp->valueblk, lp->valuelen);
if (error == 0)
error = tmp; /* save only the 1st errno */
}
kmem_free((xfs_caddr_t)list, size);
return(error);
}
/*
* Look at all the extents for this logical region,
* invalidate any buffers that are incore/in transactions.
*/
STATIC int
xfs_attr_leaf_freextent(xfs_trans_t **trans, xfs_inode_t *dp,
xfs_dablk_t blkno, int blkcnt)
{
xfs_bmbt_irec_t map;
xfs_dablk_t tblkno;
int tblkcnt, dblkcnt, nmap, error;
xfs_daddr_t dblkno;
xfs_buf_t *bp;
/*
* Roll through the "value", invalidating the attribute value's
* blocks.
*/
tblkno = blkno;
tblkcnt = blkcnt;
while (tblkcnt > 0) {
/*
* Try to remember where we decided to put the value.
*/
nmap = 1;
error = xfs_bmapi(*trans, dp, (xfs_fileoff_t)tblkno, tblkcnt,
XFS_BMAPI_ATTRFORK | XFS_BMAPI_METADATA,
NULL, 0, &map, &nmap, NULL, NULL);
if (error) {
return(error);
}
ASSERT(nmap == 1);
ASSERT(map.br_startblock != DELAYSTARTBLOCK);
/*
* If it's a hole, these are already unmapped
* so there's nothing to invalidate.
*/
if (map.br_startblock != HOLESTARTBLOCK) {
dblkno = XFS_FSB_TO_DADDR(dp->i_mount,
map.br_startblock);
dblkcnt = XFS_FSB_TO_BB(dp->i_mount,
map.br_blockcount);
bp = xfs_trans_get_buf(*trans,
dp->i_mount->m_ddev_targp,
dblkno, dblkcnt, XFS_BUF_LOCK);
xfs_trans_binval(*trans, bp);
/*
* Roll to next transaction.
*/
if ((error = xfs_attr_rolltrans(trans, dp)))
return (error);
}
tblkno += map.br_blockcount;
tblkcnt -= map.br_blockcount;
}
return(0);
}
/*
* Roll from one trans in the sequence of PERMANENT transactions to the next.
*/
int
xfs_attr_rolltrans(xfs_trans_t **transp, xfs_inode_t *dp)
{
xfs_trans_t *trans;
unsigned int logres, count;
int error;
/*
* Ensure that the inode is always logged.
*/
trans = *transp;
xfs_trans_log_inode(trans, dp, XFS_ILOG_CORE);
/*
* Copy the critical parameters from one trans to the next.
*/
logres = trans->t_log_res;
count = trans->t_log_count;
*transp = xfs_trans_dup(trans);
/*
* Commit the current transaction.
* If this commit failed, then it'd just unlock those items that
* are not marked ihold. That also means that a filesystem shutdown
* is in progress. The caller takes the responsibility to cancel
* the duplicate transaction that gets returned.
*/
if ((error = xfs_trans_commit(trans, 0)))
return (error);
trans = *transp;
/*
* Reserve space in the log for th next transaction.
* This also pushes items in the "AIL", the list of logged items,
* out to disk if they are taking up space at the tail of the log
* that we want to use. This requires that either nothing be locked
* across this call, or that anything that is locked be logged in
* the prior and the next transactions.
*/
error = xfs_trans_reserve(trans, 0, logres, 0,
XFS_TRANS_PERM_LOG_RES, count);
/*
* Ensure that the inode is in the new transaction and locked.
*/
if (!error) {
xfs_trans_ijoin(trans, dp, XFS_ILOCK_EXCL);
xfs_trans_ihold(trans, dp);
}
return (error);
}