270 lines
7.8 KiB
C
270 lines
7.8 KiB
C
|
/*
|
||
|
* Flexible array managed in PAGE_SIZE parts
|
||
|
*
|
||
|
* This program is free software; you can redistribute it and/or modify
|
||
|
* it under the terms of the GNU General Public License as published by
|
||
|
* the Free Software Foundation; either version 2 of the License, or
|
||
|
* (at your option) any later version.
|
||
|
*
|
||
|
* This program is distributed in the hope that it will be useful,
|
||
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||
|
* GNU General Public License for more details.
|
||
|
*
|
||
|
* You should have received a copy of the GNU General Public License
|
||
|
* along with this program; if not, write to the Free Software
|
||
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
|
||
|
*
|
||
|
* Copyright IBM Corporation, 2009
|
||
|
*
|
||
|
* Author: Dave Hansen <dave@linux.vnet.ibm.com>
|
||
|
*/
|
||
|
|
||
|
#include <linux/flex_array.h>
|
||
|
#include <linux/slab.h>
|
||
|
#include <linux/stddef.h>
|
||
|
|
||
|
struct flex_array_part {
|
||
|
char elements[FLEX_ARRAY_PART_SIZE];
|
||
|
};
|
||
|
|
||
|
static inline int __elements_per_part(int element_size)
|
||
|
{
|
||
|
return FLEX_ARRAY_PART_SIZE / element_size;
|
||
|
}
|
||
|
|
||
|
static inline int bytes_left_in_base(void)
|
||
|
{
|
||
|
int element_offset = offsetof(struct flex_array, parts);
|
||
|
int bytes_left = FLEX_ARRAY_BASE_SIZE - element_offset;
|
||
|
return bytes_left;
|
||
|
}
|
||
|
|
||
|
static inline int nr_base_part_ptrs(void)
|
||
|
{
|
||
|
return bytes_left_in_base() / sizeof(struct flex_array_part *);
|
||
|
}
|
||
|
|
||
|
/*
|
||
|
* If a user requests an allocation which is small
|
||
|
* enough, we may simply use the space in the
|
||
|
* flex_array->parts[] array to store the user
|
||
|
* data.
|
||
|
*/
|
||
|
static inline int elements_fit_in_base(struct flex_array *fa)
|
||
|
{
|
||
|
int data_size = fa->element_size * fa->total_nr_elements;
|
||
|
if (data_size <= bytes_left_in_base())
|
||
|
return 1;
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* flex_array_alloc - allocate a new flexible array
|
||
|
* @element_size: the size of individual elements in the array
|
||
|
* @total: total number of elements that this should hold
|
||
|
*
|
||
|
* Note: all locking must be provided by the caller.
|
||
|
*
|
||
|
* @total is used to size internal structures. If the user ever
|
||
|
* accesses any array indexes >=@total, it will produce errors.
|
||
|
*
|
||
|
* The maximum number of elements is defined as: the number of
|
||
|
* elements that can be stored in a page times the number of
|
||
|
* page pointers that we can fit in the base structure or (using
|
||
|
* integer math):
|
||
|
*
|
||
|
* (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
|
||
|
*
|
||
|
* Here's a table showing example capacities. Note that the maximum
|
||
|
* index that the get/put() functions is just nr_objects-1. This
|
||
|
* basically means that you get 4MB of storage on 32-bit and 2MB on
|
||
|
* 64-bit.
|
||
|
*
|
||
|
*
|
||
|
* Element size | Objects | Objects |
|
||
|
* PAGE_SIZE=4k | 32-bit | 64-bit |
|
||
|
* ---------------------------------|
|
||
|
* 1 bytes | 4186112 | 2093056 |
|
||
|
* 2 bytes | 2093056 | 1046528 |
|
||
|
* 3 bytes | 1395030 | 697515 |
|
||
|
* 4 bytes | 1046528 | 523264 |
|
||
|
* 32 bytes | 130816 | 65408 |
|
||
|
* 33 bytes | 126728 | 63364 |
|
||
|
* 2048 bytes | 2044 | 1022 |
|
||
|
* 2049 bytes | 1022 | 511 |
|
||
|
* void * | 1046528 | 261632 |
|
||
|
*
|
||
|
* Since 64-bit pointers are twice the size, we lose half the
|
||
|
* capacity in the base structure. Also note that no effort is made
|
||
|
* to efficiently pack objects across page boundaries.
|
||
|
*/
|
||
|
struct flex_array *flex_array_alloc(int element_size, int total, gfp_t flags)
|
||
|
{
|
||
|
struct flex_array *ret;
|
||
|
int max_size = nr_base_part_ptrs() * __elements_per_part(element_size);
|
||
|
|
||
|
/* max_size will end up 0 if element_size > PAGE_SIZE */
|
||
|
if (total > max_size)
|
||
|
return NULL;
|
||
|
ret = kzalloc(sizeof(struct flex_array), flags);
|
||
|
if (!ret)
|
||
|
return NULL;
|
||
|
ret->element_size = element_size;
|
||
|
ret->total_nr_elements = total;
|
||
|
return ret;
|
||
|
}
|
||
|
|
||
|
static int fa_element_to_part_nr(struct flex_array *fa, int element_nr)
|
||
|
{
|
||
|
return element_nr / __elements_per_part(fa->element_size);
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* flex_array_free_parts - just free the second-level pages
|
||
|
* @src: address of data to copy into the array
|
||
|
* @element_nr: index of the position in which to insert
|
||
|
* the new element.
|
||
|
*
|
||
|
* This is to be used in cases where the base 'struct flex_array'
|
||
|
* has been statically allocated and should not be free.
|
||
|
*/
|
||
|
void flex_array_free_parts(struct flex_array *fa)
|
||
|
{
|
||
|
int part_nr;
|
||
|
int max_part = nr_base_part_ptrs();
|
||
|
|
||
|
if (elements_fit_in_base(fa))
|
||
|
return;
|
||
|
for (part_nr = 0; part_nr < max_part; part_nr++)
|
||
|
kfree(fa->parts[part_nr]);
|
||
|
}
|
||
|
|
||
|
void flex_array_free(struct flex_array *fa)
|
||
|
{
|
||
|
flex_array_free_parts(fa);
|
||
|
kfree(fa);
|
||
|
}
|
||
|
|
||
|
static int fa_index_inside_part(struct flex_array *fa, int element_nr)
|
||
|
{
|
||
|
return element_nr % __elements_per_part(fa->element_size);
|
||
|
}
|
||
|
|
||
|
static int index_inside_part(struct flex_array *fa, int element_nr)
|
||
|
{
|
||
|
int part_offset = fa_index_inside_part(fa, element_nr);
|
||
|
return part_offset * fa->element_size;
|
||
|
}
|
||
|
|
||
|
static struct flex_array_part *
|
||
|
__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
|
||
|
{
|
||
|
struct flex_array_part *part = fa->parts[part_nr];
|
||
|
if (!part) {
|
||
|
/*
|
||
|
* This leaves the part pages uninitialized
|
||
|
* and with potentially random data, just
|
||
|
* as if the user had kmalloc()'d the whole.
|
||
|
* __GFP_ZERO can be used to zero it.
|
||
|
*/
|
||
|
part = kmalloc(FLEX_ARRAY_PART_SIZE, flags);
|
||
|
if (!part)
|
||
|
return NULL;
|
||
|
fa->parts[part_nr] = part;
|
||
|
}
|
||
|
return part;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* flex_array_put - copy data into the array at @element_nr
|
||
|
* @src: address of data to copy into the array
|
||
|
* @element_nr: index of the position in which to insert
|
||
|
* the new element.
|
||
|
*
|
||
|
* Note that this *copies* the contents of @src into
|
||
|
* the array. If you are trying to store an array of
|
||
|
* pointers, make sure to pass in &ptr instead of ptr.
|
||
|
*
|
||
|
* Locking must be provided by the caller.
|
||
|
*/
|
||
|
int flex_array_put(struct flex_array *fa, int element_nr, void *src, gfp_t flags)
|
||
|
{
|
||
|
int part_nr = fa_element_to_part_nr(fa, element_nr);
|
||
|
struct flex_array_part *part;
|
||
|
void *dst;
|
||
|
|
||
|
if (element_nr >= fa->total_nr_elements)
|
||
|
return -ENOSPC;
|
||
|
if (elements_fit_in_base(fa))
|
||
|
part = (struct flex_array_part *)&fa->parts[0];
|
||
|
else
|
||
|
part = __fa_get_part(fa, part_nr, flags);
|
||
|
if (!part)
|
||
|
return -ENOMEM;
|
||
|
dst = &part->elements[index_inside_part(fa, element_nr)];
|
||
|
memcpy(dst, src, fa->element_size);
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* flex_array_prealloc - guarantee that array space exists
|
||
|
* @start: index of first array element for which space is allocated
|
||
|
* @end: index of last (inclusive) element for which space is allocated
|
||
|
*
|
||
|
* This will guarantee that no future calls to flex_array_put()
|
||
|
* will allocate memory. It can be used if you are expecting to
|
||
|
* be holding a lock or in some atomic context while writing
|
||
|
* data into the array.
|
||
|
*
|
||
|
* Locking must be provided by the caller.
|
||
|
*/
|
||
|
int flex_array_prealloc(struct flex_array *fa, int start, int end, gfp_t flags)
|
||
|
{
|
||
|
int start_part;
|
||
|
int end_part;
|
||
|
int part_nr;
|
||
|
struct flex_array_part *part;
|
||
|
|
||
|
if (start >= fa->total_nr_elements || end >= fa->total_nr_elements)
|
||
|
return -ENOSPC;
|
||
|
if (elements_fit_in_base(fa))
|
||
|
return 0;
|
||
|
start_part = fa_element_to_part_nr(fa, start);
|
||
|
end_part = fa_element_to_part_nr(fa, end);
|
||
|
for (part_nr = start_part; part_nr <= end_part; part_nr++) {
|
||
|
part = __fa_get_part(fa, part_nr, flags);
|
||
|
if (!part)
|
||
|
return -ENOMEM;
|
||
|
}
|
||
|
return 0;
|
||
|
}
|
||
|
|
||
|
/**
|
||
|
* flex_array_get - pull data back out of the array
|
||
|
* @element_nr: index of the element to fetch from the array
|
||
|
*
|
||
|
* Returns a pointer to the data at index @element_nr. Note
|
||
|
* that this is a copy of the data that was passed in. If you
|
||
|
* are using this to store pointers, you'll get back &ptr.
|
||
|
*
|
||
|
* Locking must be provided by the caller.
|
||
|
*/
|
||
|
void *flex_array_get(struct flex_array *fa, int element_nr)
|
||
|
{
|
||
|
int part_nr = fa_element_to_part_nr(fa, element_nr);
|
||
|
struct flex_array_part *part;
|
||
|
int index;
|
||
|
|
||
|
if (element_nr >= fa->total_nr_elements)
|
||
|
return NULL;
|
||
|
if (!fa->parts[part_nr])
|
||
|
return NULL;
|
||
|
if (elements_fit_in_base(fa))
|
||
|
part = (struct flex_array_part *)&fa->parts[0];
|
||
|
else
|
||
|
part = fa->parts[part_nr];
|
||
|
index = index_inside_part(fa, element_nr);
|
||
|
return &part->elements[index_inside_part(fa, element_nr)];
|
||
|
}
|