linux_old1/scripts/kconfig/symbol.c

1311 lines
27 KiB
C
Raw Normal View History

/*
* Copyright (C) 2002 Roman Zippel <zippel@linux-m68k.org>
* Released under the terms of the GNU GPL v2.0.
*/
#include <ctype.h>
#include <stdlib.h>
#include <string.h>
#include <regex.h>
#include <sys/utsname.h>
#include "lkc.h"
struct symbol symbol_yes = {
.name = "y",
.curr = { "y", yes },
.flags = SYMBOL_CONST|SYMBOL_VALID,
}, symbol_mod = {
.name = "m",
.curr = { "m", mod },
.flags = SYMBOL_CONST|SYMBOL_VALID,
}, symbol_no = {
.name = "n",
.curr = { "n", no },
.flags = SYMBOL_CONST|SYMBOL_VALID,
}, symbol_empty = {
.name = "",
.curr = { "", no },
.flags = SYMBOL_VALID,
};
struct symbol *sym_defconfig_list;
struct symbol *modules_sym;
tristate modules_val;
struct expr *sym_env_list;
static void sym_add_default(struct symbol *sym, const char *def)
{
struct property *prop = prop_alloc(P_DEFAULT, sym);
prop->expr = expr_alloc_symbol(sym_lookup(def, SYMBOL_CONST));
}
void sym_init(void)
{
struct symbol *sym;
struct utsname uts;
static bool inited = false;
if (inited)
return;
inited = true;
uname(&uts);
sym = sym_lookup("UNAME_RELEASE", 0);
sym->type = S_STRING;
sym->flags |= SYMBOL_AUTO;
sym_add_default(sym, uts.release);
}
enum symbol_type sym_get_type(struct symbol *sym)
{
enum symbol_type type = sym->type;
if (type == S_TRISTATE) {
if (sym_is_choice_value(sym) && sym->visible == yes)
type = S_BOOLEAN;
else if (modules_val == no)
type = S_BOOLEAN;
}
return type;
}
const char *sym_type_name(enum symbol_type type)
{
switch (type) {
case S_BOOLEAN:
return "boolean";
case S_TRISTATE:
return "tristate";
case S_INT:
return "integer";
case S_HEX:
return "hex";
case S_STRING:
return "string";
case S_UNKNOWN:
return "unknown";
case S_OTHER:
break;
}
return "???";
}
struct property *sym_get_choice_prop(struct symbol *sym)
{
struct property *prop;
for_all_choices(sym, prop)
return prop;
return NULL;
}
struct property *sym_get_env_prop(struct symbol *sym)
{
struct property *prop;
for_all_properties(sym, prop, P_ENV)
return prop;
return NULL;
}
struct property *sym_get_default_prop(struct symbol *sym)
{
struct property *prop;
for_all_defaults(sym, prop) {
prop->visible.tri = expr_calc_value(prop->visible.expr);
if (prop->visible.tri != no)
return prop;
}
return NULL;
}
static struct property *sym_get_range_prop(struct symbol *sym)
{
struct property *prop;
for_all_properties(sym, prop, P_RANGE) {
prop->visible.tri = expr_calc_value(prop->visible.expr);
if (prop->visible.tri != no)
return prop;
}
return NULL;
}
static int sym_get_range_val(struct symbol *sym, int base)
{
sym_calc_value(sym);
switch (sym->type) {
case S_INT:
base = 10;
break;
case S_HEX:
base = 16;
break;
default:
break;
}
return strtol(sym->curr.val, NULL, base);
}
static void sym_validate_range(struct symbol *sym)
{
struct property *prop;
int base, val, val2;
char str[64];
switch (sym->type) {
case S_INT:
base = 10;
break;
case S_HEX:
base = 16;
break;
default:
return;
}
prop = sym_get_range_prop(sym);
if (!prop)
return;
val = strtol(sym->curr.val, NULL, base);
val2 = sym_get_range_val(prop->expr->left.sym, base);
if (val >= val2) {
val2 = sym_get_range_val(prop->expr->right.sym, base);
if (val <= val2)
return;
}
if (sym->type == S_INT)
sprintf(str, "%d", val2);
else
sprintf(str, "0x%x", val2);
sym->curr.val = strdup(str);
}
static void sym_calc_visibility(struct symbol *sym)
{
struct property *prop;
tristate tri;
/* any prompt visible? */
tri = no;
for_all_prompts(sym, prop) {
prop->visible.tri = expr_calc_value(prop->visible.expr);
tri = EXPR_OR(tri, prop->visible.tri);
}
if (tri == mod && (sym->type != S_TRISTATE || modules_val == no))
tri = yes;
if (sym->visible != tri) {
sym->visible = tri;
sym_set_changed(sym);
}
if (sym_is_choice_value(sym))
return;
/* defaulting to "yes" if no explicit "depends on" are given */
tri = yes;
if (sym->dir_dep.expr)
tri = expr_calc_value(sym->dir_dep.expr);
if (tri == mod)
tri = yes;
if (sym->dir_dep.tri != tri) {
sym->dir_dep.tri = tri;
sym_set_changed(sym);
}
tri = no;
if (sym->rev_dep.expr)
tri = expr_calc_value(sym->rev_dep.expr);
if (tri == mod && sym_get_type(sym) == S_BOOLEAN)
tri = yes;
if (sym->rev_dep.tri != tri) {
sym->rev_dep.tri = tri;
sym_set_changed(sym);
}
}
/*
* Find the default symbol for a choice.
* First try the default values for the choice symbol
* Next locate the first visible choice value
* Return NULL if none was found
*/
struct symbol *sym_choice_default(struct symbol *sym)
{
struct symbol *def_sym;
struct property *prop;
struct expr *e;
/* any of the defaults visible? */
for_all_defaults(sym, prop) {
prop->visible.tri = expr_calc_value(prop->visible.expr);
if (prop->visible.tri == no)
continue;
def_sym = prop_get_symbol(prop);
if (def_sym->visible != no)
return def_sym;
}
/* just get the first visible value */
prop = sym_get_choice_prop(sym);
expr_list_for_each_sym(prop->expr, e, def_sym)
if (def_sym->visible != no)
return def_sym;
/* failed to locate any defaults */
return NULL;
}
static struct symbol *sym_calc_choice(struct symbol *sym)
{
struct symbol *def_sym;
struct property *prop;
struct expr *e;
int flags;
/* first calculate all choice values' visibilities */
flags = sym->flags;
prop = sym_get_choice_prop(sym);
expr_list_for_each_sym(prop->expr, e, def_sym) {
sym_calc_visibility(def_sym);
if (def_sym->visible != no)
flags &= def_sym->flags;
}
sym->flags &= flags | ~SYMBOL_DEF_USER;
/* is the user choice visible? */
def_sym = sym->def[S_DEF_USER].val;
if (def_sym && def_sym->visible != no)
return def_sym;
def_sym = sym_choice_default(sym);
if (def_sym == NULL)
/* no choice? reset tristate value */
sym->curr.tri = no;
return def_sym;
}
void sym_calc_value(struct symbol *sym)
{
struct symbol_value newval, oldval;
struct property *prop;
struct expr *e;
if (!sym)
return;
if (sym->flags & SYMBOL_VALID)
return;
sym->flags |= SYMBOL_VALID;
oldval = sym->curr;
switch (sym->type) {
case S_INT:
case S_HEX:
case S_STRING:
newval = symbol_empty.curr;
break;
case S_BOOLEAN:
case S_TRISTATE:
newval = symbol_no.curr;
break;
default:
sym->curr.val = sym->name;
sym->curr.tri = no;
return;
}
if (!sym_is_choice_value(sym))
sym->flags &= ~SYMBOL_WRITE;
sym_calc_visibility(sym);
/* set default if recursively called */
sym->curr = newval;
switch (sym_get_type(sym)) {
case S_BOOLEAN:
case S_TRISTATE:
if (sym_is_choice_value(sym) && sym->visible == yes) {
prop = sym_get_choice_prop(sym);
newval.tri = (prop_get_symbol(prop)->curr.val == sym) ? yes : no;
} else {
if (sym->visible != no) {
/* if the symbol is visible use the user value
* if available, otherwise try the default value
*/
sym->flags |= SYMBOL_WRITE;
if (sym_has_value(sym)) {
newval.tri = EXPR_AND(sym->def[S_DEF_USER].tri,
sym->visible);
goto calc_newval;
}
}
if (sym->rev_dep.tri != no)
sym->flags |= SYMBOL_WRITE;
if (!sym_is_choice(sym)) {
prop = sym_get_default_prop(sym);
if (prop) {
sym->flags |= SYMBOL_WRITE;
newval.tri = EXPR_AND(expr_calc_value(prop->expr),
prop->visible.tri);
}
}
calc_newval:
if (sym->dir_dep.tri == no && sym->rev_dep.tri != no) {
struct expr *e;
e = expr_simplify_unmet_dep(sym->rev_dep.expr,
sym->dir_dep.expr);
fprintf(stderr, "warning: (");
expr_fprint(e, stderr);
fprintf(stderr, ") selects %s which has unmet direct dependencies (",
sym->name);
expr_fprint(sym->dir_dep.expr, stderr);
fprintf(stderr, ")\n");
expr_free(e);
}
newval.tri = EXPR_OR(newval.tri, sym->rev_dep.tri);
}
if (newval.tri == mod && sym_get_type(sym) == S_BOOLEAN)
newval.tri = yes;
break;
case S_STRING:
case S_HEX:
case S_INT:
if (sym->visible != no) {
sym->flags |= SYMBOL_WRITE;
if (sym_has_value(sym)) {
newval.val = sym->def[S_DEF_USER].val;
break;
}
}
prop = sym_get_default_prop(sym);
if (prop) {
struct symbol *ds = prop_get_symbol(prop);
if (ds) {
sym->flags |= SYMBOL_WRITE;
sym_calc_value(ds);
newval.val = ds->curr.val;
}
}
break;
default:
;
}
sym->curr = newval;
if (sym_is_choice(sym) && newval.tri == yes)
sym->curr.val = sym_calc_choice(sym);
sym_validate_range(sym);
if (memcmp(&oldval, &sym->curr, sizeof(oldval))) {
sym_set_changed(sym);
if (modules_sym == sym) {
sym_set_all_changed();
modules_val = modules_sym->curr.tri;
}
}
if (sym_is_choice(sym)) {
struct symbol *choice_sym;
prop = sym_get_choice_prop(sym);
expr_list_for_each_sym(prop->expr, e, choice_sym) {
if ((sym->flags & SYMBOL_WRITE) &&
choice_sym->visible != no)
choice_sym->flags |= SYMBOL_WRITE;
if (sym->flags & SYMBOL_CHANGED)
sym_set_changed(choice_sym);
}
}
if (sym->flags & SYMBOL_AUTO)
sym->flags &= ~SYMBOL_WRITE;
}
void sym_clear_all_valid(void)
{
struct symbol *sym;
int i;
for_all_symbols(i, sym)
sym->flags &= ~SYMBOL_VALID;
sym_add_change_count(1);
if (modules_sym)
sym_calc_value(modules_sym);
}
void sym_set_changed(struct symbol *sym)
{
struct property *prop;
sym->flags |= SYMBOL_CHANGED;
for (prop = sym->prop; prop; prop = prop->next) {
if (prop->menu)
prop->menu->flags |= MENU_CHANGED;
}
}
void sym_set_all_changed(void)
{
struct symbol *sym;
int i;
for_all_symbols(i, sym)
sym_set_changed(sym);
}
bool sym_tristate_within_range(struct symbol *sym, tristate val)
{
int type = sym_get_type(sym);
if (sym->visible == no)
return false;
if (type != S_BOOLEAN && type != S_TRISTATE)
return false;
if (type == S_BOOLEAN && val == mod)
return false;
if (sym->visible <= sym->rev_dep.tri)
return false;
if (sym_is_choice_value(sym) && sym->visible == yes)
return val == yes;
return val >= sym->rev_dep.tri && val <= sym->visible;
}
bool sym_set_tristate_value(struct symbol *sym, tristate val)
{
tristate oldval = sym_get_tristate_value(sym);
if (oldval != val && !sym_tristate_within_range(sym, val))
return false;
if (!(sym->flags & SYMBOL_DEF_USER)) {
sym->flags |= SYMBOL_DEF_USER;
sym_set_changed(sym);
}
/*
* setting a choice value also resets the new flag of the choice
* symbol and all other choice values.
*/
if (sym_is_choice_value(sym) && val == yes) {
struct symbol *cs = prop_get_symbol(sym_get_choice_prop(sym));
struct property *prop;
struct expr *e;
cs->def[S_DEF_USER].val = sym;
cs->flags |= SYMBOL_DEF_USER;
prop = sym_get_choice_prop(cs);
for (e = prop->expr; e; e = e->left.expr) {
if (e->right.sym->visible != no)
e->right.sym->flags |= SYMBOL_DEF_USER;
}
}
sym->def[S_DEF_USER].tri = val;
if (oldval != val)
sym_clear_all_valid();
return true;
}
tristate sym_toggle_tristate_value(struct symbol *sym)
{
tristate oldval, newval;
oldval = newval = sym_get_tristate_value(sym);
do {
switch (newval) {
case no:
newval = mod;
break;
case mod:
newval = yes;
break;
case yes:
newval = no;
break;
}
if (sym_set_tristate_value(sym, newval))
break;
} while (oldval != newval);
return newval;
}
bool sym_string_valid(struct symbol *sym, const char *str)
{
signed char ch;
switch (sym->type) {
case S_STRING:
return true;
case S_INT:
ch = *str++;
if (ch == '-')
ch = *str++;
if (!isdigit(ch))
return false;
if (ch == '0' && *str != 0)
return false;
while ((ch = *str++)) {
if (!isdigit(ch))
return false;
}
return true;
case S_HEX:
if (str[0] == '0' && (str[1] == 'x' || str[1] == 'X'))
str += 2;
ch = *str++;
do {
if (!isxdigit(ch))
return false;
} while ((ch = *str++));
return true;
case S_BOOLEAN:
case S_TRISTATE:
switch (str[0]) {
case 'y': case 'Y':
case 'm': case 'M':
case 'n': case 'N':
return true;
}
return false;
default:
return false;
}
}
bool sym_string_within_range(struct symbol *sym, const char *str)
{
struct property *prop;
int val;
switch (sym->type) {
case S_STRING:
return sym_string_valid(sym, str);
case S_INT:
if (!sym_string_valid(sym, str))
return false;
prop = sym_get_range_prop(sym);
if (!prop)
return true;
val = strtol(str, NULL, 10);
return val >= sym_get_range_val(prop->expr->left.sym, 10) &&
val <= sym_get_range_val(prop->expr->right.sym, 10);
case S_HEX:
if (!sym_string_valid(sym, str))
return false;
prop = sym_get_range_prop(sym);
if (!prop)
return true;
val = strtol(str, NULL, 16);
return val >= sym_get_range_val(prop->expr->left.sym, 16) &&
val <= sym_get_range_val(prop->expr->right.sym, 16);
case S_BOOLEAN:
case S_TRISTATE:
switch (str[0]) {
case 'y': case 'Y':
return sym_tristate_within_range(sym, yes);
case 'm': case 'M':
return sym_tristate_within_range(sym, mod);
case 'n': case 'N':
return sym_tristate_within_range(sym, no);
}
return false;
default:
return false;
}
}
bool sym_set_string_value(struct symbol *sym, const char *newval)
{
const char *oldval;
char *val;
int size;
switch (sym->type) {
case S_BOOLEAN:
case S_TRISTATE:
switch (newval[0]) {
case 'y': case 'Y':
return sym_set_tristate_value(sym, yes);
case 'm': case 'M':
return sym_set_tristate_value(sym, mod);
case 'n': case 'N':
return sym_set_tristate_value(sym, no);
}
return false;
default:
;
}
if (!sym_string_within_range(sym, newval))
return false;
if (!(sym->flags & SYMBOL_DEF_USER)) {
sym->flags |= SYMBOL_DEF_USER;
sym_set_changed(sym);
}
oldval = sym->def[S_DEF_USER].val;
size = strlen(newval) + 1;
if (sym->type == S_HEX && (newval[0] != '0' || (newval[1] != 'x' && newval[1] != 'X'))) {
size += 2;
sym->def[S_DEF_USER].val = val = xmalloc(size);
*val++ = '0';
*val++ = 'x';
} else if (!oldval || strcmp(oldval, newval))
sym->def[S_DEF_USER].val = val = xmalloc(size);
else
return true;
strcpy(val, newval);
free((void *)oldval);
sym_clear_all_valid();
return true;
}
/*
* Find the default value associated to a symbol.
* For tristate symbol handle the modules=n case
* in which case "m" becomes "y".
* If the symbol does not have any default then fallback
* to the fixed default values.
*/
const char *sym_get_string_default(struct symbol *sym)
{
struct property *prop;
struct symbol *ds;
const char *str;
tristate val;
sym_calc_visibility(sym);
sym_calc_value(modules_sym);
val = symbol_no.curr.tri;
str = symbol_empty.curr.val;
/* If symbol has a default value look it up */
prop = sym_get_default_prop(sym);
if (prop != NULL) {
switch (sym->type) {
case S_BOOLEAN:
case S_TRISTATE:
/* The visibility may limit the value from yes => mod */
val = EXPR_AND(expr_calc_value(prop->expr), prop->visible.tri);
break;
default:
/*
* The following fails to handle the situation
* where a default value is further limited by
* the valid range.
*/
ds = prop_get_symbol(prop);
if (ds != NULL) {
sym_calc_value(ds);
str = (const char *)ds->curr.val;
}
}
}
/* Handle select statements */
val = EXPR_OR(val, sym->rev_dep.tri);
/* transpose mod to yes if modules are not enabled */
if (val == mod)
if (!sym_is_choice_value(sym) && modules_sym->curr.tri == no)
val = yes;
/* transpose mod to yes if type is bool */
if (sym->type == S_BOOLEAN && val == mod)
val = yes;
switch (sym->type) {
case S_BOOLEAN:
case S_TRISTATE:
switch (val) {
case no: return "n";
case mod: return "m";
case yes: return "y";
}
case S_INT:
case S_HEX:
return str;
case S_STRING:
return str;
case S_OTHER:
case S_UNKNOWN:
break;
}
return "";
}
const char *sym_get_string_value(struct symbol *sym)
{
tristate val;
switch (sym->type) {
case S_BOOLEAN:
case S_TRISTATE:
val = sym_get_tristate_value(sym);
switch (val) {
case no:
return "n";
case mod:
sym_calc_value(modules_sym);
return (modules_sym->curr.tri == no) ? "n" : "m";
case yes:
return "y";
}
break;
default:
;
}
return (const char *)sym->curr.val;
}
bool sym_is_changable(struct symbol *sym)
{
return sym->visible > sym->rev_dep.tri;
}
Improve kconfig symbol hashing While looking for something else I noticed that the symbol hash function used by kconfig is quite poor. It doesn't use any of the standard hash techniques but simply adds up the string and then uses power of two masking, which is both known to perform poorly. The current x86 kconfig has over 7000 symbols. When I instrumented it showed that the minimum hash chain length was 16 and a significant number of them was over 30. It didn't help that the hash table size was only 256 buckets. This patch increases the hash table size to a larger prime and switches to a FNV32 hash. I played around with a couple of hash functions, but that one seemed to perform best with reasonable hash table sizes. Increasing the hash table size even further didn't seem like a good idea, because there are a couple of global walks which walk the complete hash table. I also moved the unnamed bucket to 0. It's still the longest of all the buckets (44 entries), but hopefully it's not often hit except for the global walk which doesn't care. The result is a much nicer distribution: (first column bucket length, second number of buckets with that length) 1: 3505 2: 1236 3: 294 4: 52 5: 3 47: 1 <--- this is the unnamed symbols bucket There are still some 5+ buckets, but increasing the hash table even more would be likely not worth it. This also cleans up the code slightly by removing hard coded magic numbers. I didn't notice a big performance difference either way on my Nehalem system, but I presume it'll help somewhat on slower systems. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-01-14 00:02:44 +08:00
static unsigned strhash(const char *s)
{
/* fnv32 hash */
unsigned hash = 2166136261U;
for (; *s; s++)
hash = (hash ^ *s) * 0x01000193;
return hash;
}
struct symbol *sym_lookup(const char *name, int flags)
{
struct symbol *symbol;
char *new_name;
Improve kconfig symbol hashing While looking for something else I noticed that the symbol hash function used by kconfig is quite poor. It doesn't use any of the standard hash techniques but simply adds up the string and then uses power of two masking, which is both known to perform poorly. The current x86 kconfig has over 7000 symbols. When I instrumented it showed that the minimum hash chain length was 16 and a significant number of them was over 30. It didn't help that the hash table size was only 256 buckets. This patch increases the hash table size to a larger prime and switches to a FNV32 hash. I played around with a couple of hash functions, but that one seemed to perform best with reasonable hash table sizes. Increasing the hash table size even further didn't seem like a good idea, because there are a couple of global walks which walk the complete hash table. I also moved the unnamed bucket to 0. It's still the longest of all the buckets (44 entries), but hopefully it's not often hit except for the global walk which doesn't care. The result is a much nicer distribution: (first column bucket length, second number of buckets with that length) 1: 3505 2: 1236 3: 294 4: 52 5: 3 47: 1 <--- this is the unnamed symbols bucket There are still some 5+ buckets, but increasing the hash table even more would be likely not worth it. This also cleans up the code slightly by removing hard coded magic numbers. I didn't notice a big performance difference either way on my Nehalem system, but I presume it'll help somewhat on slower systems. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-01-14 00:02:44 +08:00
int hash;
if (name) {
if (name[0] && !name[1]) {
switch (name[0]) {
case 'y': return &symbol_yes;
case 'm': return &symbol_mod;
case 'n': return &symbol_no;
}
}
Improve kconfig symbol hashing While looking for something else I noticed that the symbol hash function used by kconfig is quite poor. It doesn't use any of the standard hash techniques but simply adds up the string and then uses power of two masking, which is both known to perform poorly. The current x86 kconfig has over 7000 symbols. When I instrumented it showed that the minimum hash chain length was 16 and a significant number of them was over 30. It didn't help that the hash table size was only 256 buckets. This patch increases the hash table size to a larger prime and switches to a FNV32 hash. I played around with a couple of hash functions, but that one seemed to perform best with reasonable hash table sizes. Increasing the hash table size even further didn't seem like a good idea, because there are a couple of global walks which walk the complete hash table. I also moved the unnamed bucket to 0. It's still the longest of all the buckets (44 entries), but hopefully it's not often hit except for the global walk which doesn't care. The result is a much nicer distribution: (first column bucket length, second number of buckets with that length) 1: 3505 2: 1236 3: 294 4: 52 5: 3 47: 1 <--- this is the unnamed symbols bucket There are still some 5+ buckets, but increasing the hash table even more would be likely not worth it. This also cleans up the code slightly by removing hard coded magic numbers. I didn't notice a big performance difference either way on my Nehalem system, but I presume it'll help somewhat on slower systems. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-01-14 00:02:44 +08:00
hash = strhash(name) % SYMBOL_HASHSIZE;
for (symbol = symbol_hash[hash]; symbol; symbol = symbol->next) {
Improve kconfig symbol hashing While looking for something else I noticed that the symbol hash function used by kconfig is quite poor. It doesn't use any of the standard hash techniques but simply adds up the string and then uses power of two masking, which is both known to perform poorly. The current x86 kconfig has over 7000 symbols. When I instrumented it showed that the minimum hash chain length was 16 and a significant number of them was over 30. It didn't help that the hash table size was only 256 buckets. This patch increases the hash table size to a larger prime and switches to a FNV32 hash. I played around with a couple of hash functions, but that one seemed to perform best with reasonable hash table sizes. Increasing the hash table size even further didn't seem like a good idea, because there are a couple of global walks which walk the complete hash table. I also moved the unnamed bucket to 0. It's still the longest of all the buckets (44 entries), but hopefully it's not often hit except for the global walk which doesn't care. The result is a much nicer distribution: (first column bucket length, second number of buckets with that length) 1: 3505 2: 1236 3: 294 4: 52 5: 3 47: 1 <--- this is the unnamed symbols bucket There are still some 5+ buckets, but increasing the hash table even more would be likely not worth it. This also cleans up the code slightly by removing hard coded magic numbers. I didn't notice a big performance difference either way on my Nehalem system, but I presume it'll help somewhat on slower systems. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-01-14 00:02:44 +08:00
if (symbol->name &&
!strcmp(symbol->name, name) &&
(flags ? symbol->flags & flags
: !(symbol->flags & (SYMBOL_CONST|SYMBOL_CHOICE))))
return symbol;
}
new_name = strdup(name);
} else {
new_name = NULL;
Improve kconfig symbol hashing While looking for something else I noticed that the symbol hash function used by kconfig is quite poor. It doesn't use any of the standard hash techniques but simply adds up the string and then uses power of two masking, which is both known to perform poorly. The current x86 kconfig has over 7000 symbols. When I instrumented it showed that the minimum hash chain length was 16 and a significant number of them was over 30. It didn't help that the hash table size was only 256 buckets. This patch increases the hash table size to a larger prime and switches to a FNV32 hash. I played around with a couple of hash functions, but that one seemed to perform best with reasonable hash table sizes. Increasing the hash table size even further didn't seem like a good idea, because there are a couple of global walks which walk the complete hash table. I also moved the unnamed bucket to 0. It's still the longest of all the buckets (44 entries), but hopefully it's not often hit except for the global walk which doesn't care. The result is a much nicer distribution: (first column bucket length, second number of buckets with that length) 1: 3505 2: 1236 3: 294 4: 52 5: 3 47: 1 <--- this is the unnamed symbols bucket There are still some 5+ buckets, but increasing the hash table even more would be likely not worth it. This also cleans up the code slightly by removing hard coded magic numbers. I didn't notice a big performance difference either way on my Nehalem system, but I presume it'll help somewhat on slower systems. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-01-14 00:02:44 +08:00
hash = 0;
}
symbol = xmalloc(sizeof(*symbol));
memset(symbol, 0, sizeof(*symbol));
symbol->name = new_name;
symbol->type = S_UNKNOWN;
symbol->flags |= flags;
symbol->next = symbol_hash[hash];
symbol_hash[hash] = symbol;
return symbol;
}
struct symbol *sym_find(const char *name)
{
struct symbol *symbol = NULL;
int hash = 0;
if (!name)
return NULL;
if (name[0] && !name[1]) {
switch (name[0]) {
case 'y': return &symbol_yes;
case 'm': return &symbol_mod;
case 'n': return &symbol_no;
}
}
Improve kconfig symbol hashing While looking for something else I noticed that the symbol hash function used by kconfig is quite poor. It doesn't use any of the standard hash techniques but simply adds up the string and then uses power of two masking, which is both known to perform poorly. The current x86 kconfig has over 7000 symbols. When I instrumented it showed that the minimum hash chain length was 16 and a significant number of them was over 30. It didn't help that the hash table size was only 256 buckets. This patch increases the hash table size to a larger prime and switches to a FNV32 hash. I played around with a couple of hash functions, but that one seemed to perform best with reasonable hash table sizes. Increasing the hash table size even further didn't seem like a good idea, because there are a couple of global walks which walk the complete hash table. I also moved the unnamed bucket to 0. It's still the longest of all the buckets (44 entries), but hopefully it's not often hit except for the global walk which doesn't care. The result is a much nicer distribution: (first column bucket length, second number of buckets with that length) 1: 3505 2: 1236 3: 294 4: 52 5: 3 47: 1 <--- this is the unnamed symbols bucket There are still some 5+ buckets, but increasing the hash table even more would be likely not worth it. This also cleans up the code slightly by removing hard coded magic numbers. I didn't notice a big performance difference either way on my Nehalem system, but I presume it'll help somewhat on slower systems. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-01-14 00:02:44 +08:00
hash = strhash(name) % SYMBOL_HASHSIZE;
for (symbol = symbol_hash[hash]; symbol; symbol = symbol->next) {
Improve kconfig symbol hashing While looking for something else I noticed that the symbol hash function used by kconfig is quite poor. It doesn't use any of the standard hash techniques but simply adds up the string and then uses power of two masking, which is both known to perform poorly. The current x86 kconfig has over 7000 symbols. When I instrumented it showed that the minimum hash chain length was 16 and a significant number of them was over 30. It didn't help that the hash table size was only 256 buckets. This patch increases the hash table size to a larger prime and switches to a FNV32 hash. I played around with a couple of hash functions, but that one seemed to perform best with reasonable hash table sizes. Increasing the hash table size even further didn't seem like a good idea, because there are a couple of global walks which walk the complete hash table. I also moved the unnamed bucket to 0. It's still the longest of all the buckets (44 entries), but hopefully it's not often hit except for the global walk which doesn't care. The result is a much nicer distribution: (first column bucket length, second number of buckets with that length) 1: 3505 2: 1236 3: 294 4: 52 5: 3 47: 1 <--- this is the unnamed symbols bucket There are still some 5+ buckets, but increasing the hash table even more would be likely not worth it. This also cleans up the code slightly by removing hard coded magic numbers. I didn't notice a big performance difference either way on my Nehalem system, but I presume it'll help somewhat on slower systems. Signed-off-by: Andi Kleen <ak@linux.intel.com> Signed-off-by: Michal Marek <mmarek@suse.cz>
2010-01-14 00:02:44 +08:00
if (symbol->name &&
!strcmp(symbol->name, name) &&
!(symbol->flags & SYMBOL_CONST))
break;
}
return symbol;
}
/*
* Expand symbol's names embedded in the string given in argument. Symbols'
* name to be expanded shall be prefixed by a '$'. Unknown symbol expands to
* the empty string.
*/
const char *sym_expand_string_value(const char *in)
{
const char *src;
char *res;
size_t reslen;
reslen = strlen(in) + 1;
res = xmalloc(reslen);
res[0] = '\0';
while ((src = strchr(in, '$'))) {
char *p, name[SYMBOL_MAXLENGTH];
const char *symval = "";
struct symbol *sym;
size_t newlen;
strncat(res, in, src - in);
src++;
p = name;
while (isalnum(*src) || *src == '_')
*p++ = *src++;
*p = '\0';
sym = sym_find(name);
if (sym != NULL) {
sym_calc_value(sym);
symval = sym_get_string_value(sym);
}
newlen = strlen(res) + strlen(symval) + strlen(src) + 1;
if (newlen > reslen) {
reslen = newlen;
res = realloc(res, reslen);
}
strcat(res, symval);
in = src;
}
strcat(res, in);
return res;
}
const char *sym_escape_string_value(const char *in)
{
const char *p;
size_t reslen;
char *res;
size_t l;
reslen = strlen(in) + strlen("\"\"") + 1;
p = in;
for (;;) {
l = strcspn(p, "\"\\");
p += l;
if (p[0] == '\0')
break;
reslen++;
p++;
}
res = xmalloc(reslen);
res[0] = '\0';
strcat(res, "\"");
p = in;
for (;;) {
l = strcspn(p, "\"\\");
strncat(res, p, l);
p += l;
if (p[0] == '\0')
break;
strcat(res, "\\");
strncat(res, p++, 1);
}
strcat(res, "\"");
return res;
}
struct symbol **sym_re_search(const char *pattern)
{
struct symbol *sym, **sym_arr = NULL;
int i, cnt, size;
regex_t re;
cnt = size = 0;
/* Skip if empty */
if (strlen(pattern) == 0)
return NULL;
if (regcomp(&re, pattern, REG_EXTENDED|REG_NOSUB|REG_ICASE))
return NULL;
for_all_symbols(i, sym) {
if (sym->flags & SYMBOL_CONST || !sym->name)
continue;
if (regexec(&re, sym->name, 0, NULL, 0))
continue;
if (cnt + 1 >= size) {
void *tmp = sym_arr;
size += 16;
sym_arr = realloc(sym_arr, size * sizeof(struct symbol *));
if (!sym_arr) {
free(tmp);
return NULL;
}
}
sym_calc_value(sym);
sym_arr[cnt++] = sym;
}
if (sym_arr)
sym_arr[cnt] = NULL;
regfree(&re);
return sym_arr;
}
/*
* When we check for recursive dependencies we use a stack to save
* current state so we can print out relevant info to user.
* The entries are located on the call stack so no need to free memory.
* Note inser() remove() must always match to properly clear the stack.
*/
static struct dep_stack {
struct dep_stack *prev, *next;
struct symbol *sym;
struct property *prop;
struct expr *expr;
} *check_top;
static void dep_stack_insert(struct dep_stack *stack, struct symbol *sym)
{
memset(stack, 0, sizeof(*stack));
if (check_top)
check_top->next = stack;
stack->prev = check_top;
stack->sym = sym;
check_top = stack;
}
static void dep_stack_remove(void)
{
check_top = check_top->prev;
if (check_top)
check_top->next = NULL;
}
/*
* Called when we have detected a recursive dependency.
* check_top point to the top of the stact so we use
* the ->prev pointer to locate the bottom of the stack.
*/
static void sym_check_print_recursive(struct symbol *last_sym)
{
struct dep_stack *stack;
struct symbol *sym, *next_sym;
struct menu *menu = NULL;
struct property *prop;
struct dep_stack cv_stack;
if (sym_is_choice_value(last_sym)) {
dep_stack_insert(&cv_stack, last_sym);
last_sym = prop_get_symbol(sym_get_choice_prop(last_sym));
}
for (stack = check_top; stack != NULL; stack = stack->prev)
if (stack->sym == last_sym)
break;
if (!stack) {
fprintf(stderr, "unexpected recursive dependency error\n");
return;
}
for (; stack; stack = stack->next) {
sym = stack->sym;
next_sym = stack->next ? stack->next->sym : last_sym;
prop = stack->prop;
if (prop == NULL)
prop = stack->sym->prop;
/* for choice values find the menu entry (used below) */
if (sym_is_choice(sym) || sym_is_choice_value(sym)) {
for (prop = sym->prop; prop; prop = prop->next) {
menu = prop->menu;
if (prop->menu)
break;
}
}
if (stack->sym == last_sym)
fprintf(stderr, "%s:%d:error: recursive dependency detected!\n",
prop->file->name, prop->lineno);
if (stack->expr) {
fprintf(stderr, "%s:%d:\tsymbol %s %s value contains %s\n",
prop->file->name, prop->lineno,
sym->name ? sym->name : "<choice>",
prop_get_type_name(prop->type),
next_sym->name ? next_sym->name : "<choice>");
} else if (stack->prop) {
fprintf(stderr, "%s:%d:\tsymbol %s depends on %s\n",
prop->file->name, prop->lineno,
sym->name ? sym->name : "<choice>",
next_sym->name ? next_sym->name : "<choice>");
} else if (sym_is_choice(sym)) {
fprintf(stderr, "%s:%d:\tchoice %s contains symbol %s\n",
menu->file->name, menu->lineno,
sym->name ? sym->name : "<choice>",
next_sym->name ? next_sym->name : "<choice>");
} else if (sym_is_choice_value(sym)) {
fprintf(stderr, "%s:%d:\tsymbol %s is part of choice %s\n",
menu->file->name, menu->lineno,
sym->name ? sym->name : "<choice>",
next_sym->name ? next_sym->name : "<choice>");
} else {
fprintf(stderr, "%s:%d:\tsymbol %s is selected by %s\n",
prop->file->name, prop->lineno,
sym->name ? sym->name : "<choice>",
next_sym->name ? next_sym->name : "<choice>");
}
}
if (check_top == &cv_stack)
dep_stack_remove();
}
static struct symbol *sym_check_expr_deps(struct expr *e)
{
struct symbol *sym;
if (!e)
return NULL;
switch (e->type) {
case E_OR:
case E_AND:
sym = sym_check_expr_deps(e->left.expr);
if (sym)
return sym;
return sym_check_expr_deps(e->right.expr);
case E_NOT:
return sym_check_expr_deps(e->left.expr);
case E_EQUAL:
case E_UNEQUAL:
sym = sym_check_deps(e->left.sym);
if (sym)
return sym;
return sym_check_deps(e->right.sym);
case E_SYMBOL:
return sym_check_deps(e->left.sym);
default:
break;
}
printf("Oops! How to check %d?\n", e->type);
return NULL;
}
/* return NULL when dependencies are OK */
static struct symbol *sym_check_sym_deps(struct symbol *sym)
{
struct symbol *sym2;
struct property *prop;
struct dep_stack stack;
dep_stack_insert(&stack, sym);
sym2 = sym_check_expr_deps(sym->rev_dep.expr);
if (sym2)
goto out;
for (prop = sym->prop; prop; prop = prop->next) {
if (prop->type == P_CHOICE || prop->type == P_SELECT)
continue;
stack.prop = prop;
sym2 = sym_check_expr_deps(prop->visible.expr);
if (sym2)
break;
if (prop->type != P_DEFAULT || sym_is_choice(sym))
continue;
stack.expr = prop->expr;
sym2 = sym_check_expr_deps(prop->expr);
if (sym2)
break;
stack.expr = NULL;
}
out:
dep_stack_remove();
return sym2;
}
static struct symbol *sym_check_choice_deps(struct symbol *choice)
{
struct symbol *sym, *sym2;
struct property *prop;
struct expr *e;
struct dep_stack stack;
dep_stack_insert(&stack, choice);
prop = sym_get_choice_prop(choice);
expr_list_for_each_sym(prop->expr, e, sym)
sym->flags |= (SYMBOL_CHECK | SYMBOL_CHECKED);
choice->flags |= (SYMBOL_CHECK | SYMBOL_CHECKED);
sym2 = sym_check_sym_deps(choice);
choice->flags &= ~SYMBOL_CHECK;
if (sym2)
goto out;
expr_list_for_each_sym(prop->expr, e, sym) {
sym2 = sym_check_sym_deps(sym);
if (sym2)
break;
}
out:
expr_list_for_each_sym(prop->expr, e, sym)
sym->flags &= ~SYMBOL_CHECK;
if (sym2 && sym_is_choice_value(sym2) &&
prop_get_symbol(sym_get_choice_prop(sym2)) == choice)
sym2 = choice;
dep_stack_remove();
return sym2;
}
struct symbol *sym_check_deps(struct symbol *sym)
{
struct symbol *sym2;
struct property *prop;
if (sym->flags & SYMBOL_CHECK) {
sym_check_print_recursive(sym);
return sym;
}
if (sym->flags & SYMBOL_CHECKED)
return NULL;
if (sym_is_choice_value(sym)) {
struct dep_stack stack;
/* for choice groups start the check with main choice symbol */
dep_stack_insert(&stack, sym);
prop = sym_get_choice_prop(sym);
sym2 = sym_check_deps(prop_get_symbol(prop));
dep_stack_remove();
} else if (sym_is_choice(sym)) {
sym2 = sym_check_choice_deps(sym);
} else {
sym->flags |= (SYMBOL_CHECK | SYMBOL_CHECKED);
sym2 = sym_check_sym_deps(sym);
sym->flags &= ~SYMBOL_CHECK;
}
if (sym2 && sym2 == sym)
sym2 = NULL;
return sym2;
}
struct property *prop_alloc(enum prop_type type, struct symbol *sym)
{
struct property *prop;
struct property **propp;
prop = xmalloc(sizeof(*prop));
memset(prop, 0, sizeof(*prop));
prop->type = type;
prop->sym = sym;
prop->file = current_file;
prop->lineno = zconf_lineno();
/* append property to the prop list of symbol */
if (sym) {
for (propp = &sym->prop; *propp; propp = &(*propp)->next)
;
*propp = prop;
}
return prop;
}
struct symbol *prop_get_symbol(struct property *prop)
{
if (prop->expr && (prop->expr->type == E_SYMBOL ||
prop->expr->type == E_LIST))
return prop->expr->left.sym;
return NULL;
}
const char *prop_get_type_name(enum prop_type type)
{
switch (type) {
case P_PROMPT:
return "prompt";
case P_ENV:
return "env";
case P_COMMENT:
return "comment";
case P_MENU:
return "menu";
case P_DEFAULT:
return "default";
case P_CHOICE:
return "choice";
case P_SELECT:
return "select";
case P_RANGE:
return "range";
case P_SYMBOL:
return "symbol";
case P_UNKNOWN:
break;
}
return "unknown";
}
static void prop_add_env(const char *env)
{
struct symbol *sym, *sym2;
struct property *prop;
char *p;
sym = current_entry->sym;
sym->flags |= SYMBOL_AUTO;
for_all_properties(sym, prop, P_ENV) {
sym2 = prop_get_symbol(prop);
if (strcmp(sym2->name, env))
menu_warn(current_entry, "redefining environment symbol from %s",
sym2->name);
return;
}
prop = prop_alloc(P_ENV, sym);
prop->expr = expr_alloc_symbol(sym_lookup(env, SYMBOL_CONST));
sym_env_list = expr_alloc_one(E_LIST, sym_env_list);
sym_env_list->right.sym = sym;
p = getenv(env);
if (p)
sym_add_default(sym, p);
else
menu_warn(current_entry, "environment variable %s undefined", env);
}