linux_old1/arch/mn10300/unit-asb2305/pci.c

546 lines
14 KiB
C
Raw Normal View History

/* ASB2305 PCI support
*
* Copyright (C) 2007 Red Hat, Inc. All Rights Reserved.
* Written by David Howells (dhowells@redhat.com)
* Derived from arch/i386/kernel/pci-pc.c
* (c) 1999--2000 Martin Mares <mj@suse.cz>
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public Licence
* as published by the Free Software Foundation; either version
* 2 of the Licence, or (at your option) any later version.
*/
#include <linux/types.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/pci.h>
#include <linux/init.h>
#include <linux/ioport.h>
#include <linux/delay.h>
#include <asm/io.h>
#include "pci-asb2305.h"
unsigned int pci_probe = 1;
int pcibios_last_bus = -1;
struct pci_bus *pci_root_bus;
struct pci_ops *pci_root_ops;
/*
* Functions for accessing PCI configuration space
*/
#define CONFIG_CMD(bus, devfn, where) \
(0x80000000 | (bus->number << 16) | (devfn << 8) | (where & ~3))
#define MEM_PAGING_REG (*(volatile __u32 *) 0xBFFFFFF4)
#define CONFIG_ADDRESS (*(volatile __u32 *) 0xBFFFFFF8)
#define CONFIG_DATAL(X) (*(volatile __u32 *) 0xBFFFFFFC)
#define CONFIG_DATAW(X) (*(volatile __u16 *) (0xBFFFFFFC + ((X) & 2)))
#define CONFIG_DATAB(X) (*(volatile __u8 *) (0xBFFFFFFC + ((X) & 3)))
#define BRIDGEREGB(X) (*(volatile __u8 *) (0xBE040000 + (X)))
#define BRIDGEREGW(X) (*(volatile __u16 *) (0xBE040000 + (X)))
#define BRIDGEREGL(X) (*(volatile __u32 *) (0xBE040000 + (X)))
static inline int __query(const struct pci_bus *bus, unsigned int devfn)
{
#if 0
return bus->number == 0 && (devfn == PCI_DEVFN(0, 0));
return bus->number == 1;
return bus->number == 0 &&
(devfn == PCI_DEVFN(2, 0) || devfn == PCI_DEVFN(3, 0));
#endif
return 1;
}
/*
* translate Linuxcentric addresses to PCI bus addresses
*/
void pcibios_resource_to_bus(struct pci_dev *dev, struct pci_bus_region *region,
struct resource *res)
{
if (res->flags & IORESOURCE_IO) {
region->start = (res->start & 0x00ffffff);
region->end = (res->end & 0x00ffffff);
}
if (res->flags & IORESOURCE_MEM) {
region->start = (res->start & 0x03ffffff) | MEM_PAGING_REG;
region->end = (res->end & 0x03ffffff) | MEM_PAGING_REG;
}
#if 0
printk(KERN_DEBUG "RES->BUS: %lx-%lx => %lx-%lx\n",
res->start, res->end, region->start, region->end);
#endif
}
EXPORT_SYMBOL(pcibios_resource_to_bus);
/*
* translate PCI bus addresses to Linuxcentric addresses
*/
void pcibios_bus_to_resource(struct pci_dev *dev, struct resource *res,
struct pci_bus_region *region)
{
if (res->flags & IORESOURCE_IO) {
res->start = (region->start & 0x00ffffff) | 0xbe000000;
res->end = (region->end & 0x00ffffff) | 0xbe000000;
}
if (res->flags & IORESOURCE_MEM) {
res->start = (region->start & 0x03ffffff) | 0xb8000000;
res->end = (region->end & 0x03ffffff) | 0xb8000000;
}
#if 0
printk(KERN_INFO "BUS->RES: %lx-%lx => %lx-%lx\n",
region->start, region->end, res->start, res->end);
#endif
}
EXPORT_SYMBOL(pcibios_bus_to_resource);
/*
*
*/
static int pci_ampci_read_config_byte(struct pci_bus *bus, unsigned int devfn,
int where, u32 *_value)
{
u32 rawval, value;
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
value = BRIDGEREGB(where);
__pcbdebug("=> %02hx", &BRIDGEREGL(where), value);
} else {
CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
rawval = CONFIG_ADDRESS;
value = CONFIG_DATAB(where);
if (__query(bus, devfn))
__pcidebug("=> %02hx", bus, devfn, where, value);
}
*_value = value;
return PCIBIOS_SUCCESSFUL;
}
static int pci_ampci_read_config_word(struct pci_bus *bus, unsigned int devfn,
int where, u32 *_value)
{
u32 rawval, value;
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
value = BRIDGEREGW(where);
__pcbdebug("=> %04hx", &BRIDGEREGL(where), value);
} else {
CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
rawval = CONFIG_ADDRESS;
value = CONFIG_DATAW(where);
if (__query(bus, devfn))
__pcidebug("=> %04hx", bus, devfn, where, value);
}
*_value = value;
return PCIBIOS_SUCCESSFUL;
}
static int pci_ampci_read_config_dword(struct pci_bus *bus, unsigned int devfn,
int where, u32 *_value)
{
u32 rawval, value;
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
value = BRIDGEREGL(where);
__pcbdebug("=> %08x", &BRIDGEREGL(where), value);
} else {
CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
rawval = CONFIG_ADDRESS;
value = CONFIG_DATAL(where);
if (__query(bus, devfn))
__pcidebug("=> %08x", bus, devfn, where, value);
}
*_value = value;
return PCIBIOS_SUCCESSFUL;
}
static int pci_ampci_write_config_byte(struct pci_bus *bus, unsigned int devfn,
int where, u8 value)
{
u32 rawval;
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
__pcbdebug("<= %02x", &BRIDGEREGB(where), value);
BRIDGEREGB(where) = value;
} else {
if (bus->number == 0 &&
(devfn == PCI_DEVFN(2, 0) || devfn == PCI_DEVFN(3, 0))
)
__pcidebug("<= %02x", bus, devfn, where, value);
CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
rawval = CONFIG_ADDRESS;
CONFIG_DATAB(where) = value;
}
return PCIBIOS_SUCCESSFUL;
}
static int pci_ampci_write_config_word(struct pci_bus *bus, unsigned int devfn,
int where, u16 value)
{
u32 rawval;
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
__pcbdebug("<= %04hx", &BRIDGEREGW(where), value);
BRIDGEREGW(where) = value;
} else {
if (__query(bus, devfn))
__pcidebug("<= %04hx", bus, devfn, where, value);
CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
rawval = CONFIG_ADDRESS;
CONFIG_DATAW(where) = value;
}
return PCIBIOS_SUCCESSFUL;
}
static int pci_ampci_write_config_dword(struct pci_bus *bus, unsigned int devfn,
int where, u32 value)
{
u32 rawval;
if (bus->number == 0 && devfn == PCI_DEVFN(0, 0)) {
__pcbdebug("<= %08x", &BRIDGEREGL(where), value);
BRIDGEREGL(where) = value;
} else {
if (__query(bus, devfn))
__pcidebug("<= %08x", bus, devfn, where, value);
CONFIG_ADDRESS = CONFIG_CMD(bus, devfn, where);
rawval = CONFIG_ADDRESS;
CONFIG_DATAL(where) = value;
}
return PCIBIOS_SUCCESSFUL;
}
static int pci_ampci_read_config(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 *val)
{
switch (size) {
case 1:
return pci_ampci_read_config_byte(bus, devfn, where, val);
case 2:
return pci_ampci_read_config_word(bus, devfn, where, val);
case 4:
return pci_ampci_read_config_dword(bus, devfn, where, val);
default:
BUG();
return -EOPNOTSUPP;
}
}
static int pci_ampci_write_config(struct pci_bus *bus, unsigned int devfn,
int where, int size, u32 val)
{
switch (size) {
case 1:
return pci_ampci_write_config_byte(bus, devfn, where, val);
case 2:
return pci_ampci_write_config_word(bus, devfn, where, val);
case 4:
return pci_ampci_write_config_dword(bus, devfn, where, val);
default:
BUG();
return -EOPNOTSUPP;
}
}
static struct pci_ops pci_direct_ampci = {
pci_ampci_read_config,
pci_ampci_write_config,
};
/*
* Before we decide to use direct hardware access mechanisms, we try to do some
* trivial checks to ensure it at least _seems_ to be working -- we just test
* whether bus 00 contains a host bridge (this is similar to checking
* techniques used in XFree86, but ours should be more reliable since we
* attempt to make use of direct access hints provided by the PCI BIOS).
*
* This should be close to trivial, but it isn't, because there are buggy
* chipsets (yes, you guessed it, by Intel and Compaq) that have no class ID.
*/
static int __init pci_sanity_check(struct pci_ops *o)
{
struct pci_bus bus; /* Fake bus and device */
u32 x;
bus.number = 0;
if ((!o->read(&bus, 0, PCI_CLASS_DEVICE, 2, &x) &&
(x == PCI_CLASS_BRIDGE_HOST || x == PCI_CLASS_DISPLAY_VGA)) ||
(!o->read(&bus, 0, PCI_VENDOR_ID, 2, &x) &&
(x == PCI_VENDOR_ID_INTEL || x == PCI_VENDOR_ID_COMPAQ)))
return 1;
printk(KERN_ERROR "PCI: Sanity check failed\n");
return 0;
}
static int __init pci_check_direct(void)
{
unsigned long flags;
local_irq_save(flags);
/*
* Check if access works.
*/
if (pci_sanity_check(&pci_direct_ampci)) {
local_irq_restore(flags);
printk(KERN_INFO "PCI: Using configuration ampci\n");
request_mem_region(0xBE040000, 256, "AMPCI bridge");
request_mem_region(0xBFFFFFF4, 12, "PCI ampci");
return 0;
}
local_irq_restore(flags);
return -ENODEV;
}
static int __devinit is_valid_resource(struct pci_dev *dev, int idx)
{
unsigned int i, type_mask = IORESOURCE_IO | IORESOURCE_MEM;
struct resource *devr = &dev->resource[idx];
if (dev->bus) {
for (i = 0; i < PCI_BUS_NUM_RESOURCES; i++) {
struct resource *busr = dev->bus->resource[i];
if (!busr || (busr->flags ^ devr->flags) & type_mask)
continue;
if (devr->start &&
devr->start >= busr->start &&
devr->end <= busr->end)
return 1;
}
}
return 0;
}
static void __devinit pcibios_fixup_device_resources(struct pci_dev *dev)
{
struct pci_bus_region region;
int i;
int limit;
if (dev->bus->number != 0)
return;
limit = (dev->hdr_type == PCI_HEADER_TYPE_NORMAL) ?
PCI_BRIDGE_RESOURCES : PCI_NUM_RESOURCES;
for (i = 0; i < limit; i++) {
if (!dev->resource[i].flags)
continue;
region.start = dev->resource[i].start;
region.end = dev->resource[i].end;
pcibios_bus_to_resource(dev, &dev->resource[i], &region);
if (is_valid_resource(dev, i))
pci_claim_resource(dev, i);
}
}
/*
* Called after each bus is probed, but before its children
* are examined.
*/
void __devinit pcibios_fixup_bus(struct pci_bus *bus)
{
struct pci_dev *dev;
if (bus->self) {
pci_read_bridge_bases(bus);
pcibios_fixup_device_resources(bus->self);
}
list_for_each_entry(dev, &bus->devices, bus_list)
pcibios_fixup_device_resources(dev);
}
/*
* Initialization. Try all known PCI access methods. Note that we support
* using both PCI BIOS and direct access: in such cases, we use I/O ports
* to access config space, but we still keep BIOS order of cards to be
* compatible with 2.0.X. This should go away some day.
*/
static int __init pcibios_init(void)
{
ioport_resource.start = 0xA0000000;
ioport_resource.end = 0xDFFFFFFF;
iomem_resource.start = 0xA0000000;
iomem_resource.end = 0xDFFFFFFF;
if (!pci_probe)
return 0;
if (pci_check_direct() < 0) {
printk(KERN_WARNING "PCI: No PCI bus detected\n");
return 0;
}
printk(KERN_INFO "PCI: Probing PCI hardware [mempage %08x]\n",
MEM_PAGING_REG);
{
#if 0
static struct pci_bus am33_root_bus = {
.children = LIST_HEAD_INIT(am33_root_bus.children),
.devices = LIST_HEAD_INIT(am33_root_bus.devices),
.number = 0,
.secondary = 0,
.resource = { &ioport_resource, &iomem_resource },
};
am33_root_bus.ops = pci_root_ops;
list_add_tail(&am33_root_bus.node, &pci_root_buses);
am33_root_bus.subordinate = pci_do_scan_bus(0);
pci_root_bus = &am33_root_bus;
#else
pci_root_bus = pci_scan_bus(0, &pci_direct_ampci, NULL);
#endif
}
pcibios_irq_init();
pcibios_fixup_irqs();
#if 0
pcibios_resource_survey();
#endif
return 0;
}
arch_initcall(pcibios_init);
char *__init pcibios_setup(char *str)
{
if (!strcmp(str, "off")) {
pci_probe = 0;
return NULL;
} else if (!strncmp(str, "lastbus=", 8)) {
pcibios_last_bus = simple_strtol(str+8, NULL, 0);
return NULL;
}
return str;
}
int pcibios_enable_device(struct pci_dev *dev, int mask)
{
int err;
err = pcibios_enable_resources(dev, mask);
if (err == 0)
pcibios_enable_irq(dev);
return err;
}
/*
* disable the ethernet chipset
*/
static void __init unit_disable_pcnet(struct pci_bus *bus, struct pci_ops *o)
{
u32 x;
bus->number = 0;
o->read (bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, &x);
x |= PCI_COMMAND_MASTER |
PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
o->write(bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, x);
o->read (bus, PCI_DEVFN(2, 0), PCI_COMMAND, 2, &x);
o->write(bus, PCI_DEVFN(2, 0), PCI_BASE_ADDRESS_0, 4, 0x00030001);
o->read (bus, PCI_DEVFN(2, 0), PCI_BASE_ADDRESS_0, 4, &x);
#define RDP (*(volatile u32 *) 0xBE030010)
#define RAP (*(volatile u32 *) 0xBE030014)
#define __set_RAP(X) do { RAP = (X); x = RAP; } while (0)
#define __set_RDP(X) do { RDP = (X); x = RDP; } while (0)
#define __get_RDP() ({ RDP & 0xffff; })
__set_RAP(0);
__set_RDP(0x0004); /* CSR0 = STOP */
__set_RAP(88); /* check CSR88 indicates an Am79C973 */
BUG_ON(__get_RDP() != 0x5003);
for (x = 0; x < 100; x++)
asm volatile("nop");
__set_RDP(0x0004); /* CSR0 = STOP */
}
/*
* initialise the unit hardware
*/
asmlinkage void __init unit_pci_init(void)
{
struct pci_bus bus; /* Fake bus and device */
struct pci_ops *o = &pci_direct_ampci;
u32 x;
set_intr_level(XIRQ1, GxICR_LEVEL_3);
memset(&bus, 0, sizeof(bus));
MEM_PAGING_REG = 0xE8000000;
/* we need to set up the bridge _now_ or we won't be able to access the
* PCI config registers
*/
BRIDGEREGW(PCI_COMMAND) |=
PCI_COMMAND_SERR | PCI_COMMAND_PARITY |
PCI_COMMAND_MEMORY | PCI_COMMAND_IO | PCI_COMMAND_MASTER;
BRIDGEREGW(PCI_STATUS) = 0xF800;
BRIDGEREGB(PCI_LATENCY_TIMER) = 0x10;
BRIDGEREGL(PCI_BASE_ADDRESS_0) = 0x80000000;
BRIDGEREGB(PCI_INTERRUPT_LINE) = 1;
BRIDGEREGL(0x48) = 0x98000000; /* AMPCI base addr */
BRIDGEREGB(0x41) = 0x00; /* secondary bus
* number */
BRIDGEREGB(0x42) = 0x01; /* subordinate bus
* number */
BRIDGEREGB(0x44) = 0x01;
BRIDGEREGL(0x50) = 0x00000001;
BRIDGEREGL(0x58) = 0x00001002;
BRIDGEREGL(0x5C) = 0x00000011;
/* we also need to set up the PCI-PCI bridge */
bus.number = 0;
/* IO: 0x00000000-0x00020000 */
o->read (&bus, PCI_DEVFN(3, 0), PCI_COMMAND, 2, &x);
x |= PCI_COMMAND_MASTER |
PCI_COMMAND_IO | PCI_COMMAND_MEMORY |
PCI_COMMAND_SERR | PCI_COMMAND_PARITY;
o->write(&bus, PCI_DEVFN(3, 0), PCI_COMMAND, 2, x);
o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, &x);
o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, &x);
o->read (&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, &x);
o->read (&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, &x);
o->write(&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, 0x01);
o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE, 1, &x);
o->write(&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, 0x00020000);
o->read (&bus, PCI_DEVFN(3, 0), PCI_IO_BASE_UPPER16, 4, &x);
o->write(&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, 0xEBB0EA00);
o->read (&bus, PCI_DEVFN(3, 0), PCI_MEMORY_BASE, 4, &x);
o->write(&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, 0xE9F0E800);
o->read (&bus, PCI_DEVFN(3, 0), PCI_PREF_MEMORY_BASE, 4, &x);
unit_disable_pcnet(&bus, o);
}