Merge branches 'ib-mfd-arm-iio-pwm-4.11', 'ib-mfd-input-4.11-1', 'ib-mfd-mtd-4.11' and 'ib-mfd-power-supply-4.11' into ibs-for-mfd-merged
This commit is contained in:
commit
128818f126
|
@ -0,0 +1,88 @@
|
|||
Upgrading BIOS using intel-spi
|
||||
------------------------------
|
||||
|
||||
Many Intel CPUs like Baytrail and Braswell include SPI serial flash host
|
||||
controller which is used to hold BIOS and other platform specific data.
|
||||
Since contents of the SPI serial flash is crucial for machine to function,
|
||||
it is typically protected by different hardware protection mechanisms to
|
||||
avoid accidental (or on purpose) overwrite of the content.
|
||||
|
||||
Not all manufacturers protect the SPI serial flash, mainly because it
|
||||
allows upgrading the BIOS image directly from an OS.
|
||||
|
||||
The intel-spi driver makes it possible to read and write the SPI serial
|
||||
flash, if certain protection bits are not set and locked. If it finds
|
||||
any of them set, the whole MTD device is made read-only to prevent
|
||||
partial overwrites. By default the driver exposes SPI serial flash
|
||||
contents as read-only but it can be changed from kernel command line,
|
||||
passing "intel-spi.writeable=1".
|
||||
|
||||
Please keep in mind that overwriting the BIOS image on SPI serial flash
|
||||
might render the machine unbootable and requires special equipment like
|
||||
Dediprog to revive. You have been warned!
|
||||
|
||||
Below are the steps how to upgrade MinnowBoard MAX BIOS directly from
|
||||
Linux.
|
||||
|
||||
1) Download and extract the latest Minnowboard MAX BIOS SPI image
|
||||
[1]. At the time writing this the latest image is v92.
|
||||
|
||||
2) Install mtd-utils package [2]. We need this in order to erase the SPI
|
||||
serial flash. Distros like Debian and Fedora have this prepackaged with
|
||||
name "mtd-utils".
|
||||
|
||||
3) Add "intel-spi.writeable=1" to the kernel command line and reboot
|
||||
the board (you can also reload the driver passing "writeable=1" as
|
||||
module parameter to modprobe).
|
||||
|
||||
4) Once the board is up and running again, find the right MTD partition
|
||||
(it is named as "BIOS"):
|
||||
|
||||
# cat /proc/mtd
|
||||
dev: size erasesize name
|
||||
mtd0: 00800000 00001000 "BIOS"
|
||||
|
||||
So here it will be /dev/mtd0 but it may vary.
|
||||
|
||||
5) Make backup of the existing image first:
|
||||
|
||||
# dd if=/dev/mtd0ro of=bios.bak
|
||||
16384+0 records in
|
||||
16384+0 records out
|
||||
8388608 bytes (8.4 MB) copied, 10.0269 s, 837 kB/s
|
||||
|
||||
6) Verify the backup
|
||||
|
||||
# sha1sum /dev/mtd0ro bios.bak
|
||||
fdbb011920572ca6c991377c4b418a0502668b73 /dev/mtd0ro
|
||||
fdbb011920572ca6c991377c4b418a0502668b73 bios.bak
|
||||
|
||||
The SHA1 sums must match. Otherwise do not continue any further!
|
||||
|
||||
7) Erase the SPI serial flash. After this step, do not reboot the
|
||||
board! Otherwise it will not start anymore.
|
||||
|
||||
# flash_erase /dev/mtd0 0 0
|
||||
Erasing 4 Kibyte @ 7ff000 -- 100 % complete
|
||||
|
||||
8) Once completed without errors you can write the new BIOS image:
|
||||
|
||||
# dd if=MNW2MAX1.X64.0092.R01.1605221712.bin of=/dev/mtd0
|
||||
|
||||
9) Verify that the new content of the SPI serial flash matches the new
|
||||
BIOS image:
|
||||
|
||||
# sha1sum /dev/mtd0ro MNW2MAX1.X64.0092.R01.1605221712.bin
|
||||
9b4df9e4be2057fceec3a5529ec3d950836c87a2 /dev/mtd0ro
|
||||
9b4df9e4be2057fceec3a5529ec3d950836c87a2 MNW2MAX1.X64.0092.R01.1605221712.bin
|
||||
|
||||
The SHA1 sums should match.
|
||||
|
||||
10) Now you can reboot your board and observe the new BIOS starting up
|
||||
properly.
|
||||
|
||||
References
|
||||
----------
|
||||
|
||||
[1] https://firmware.intel.com/sites/default/files/MinnowBoard.MAX_.X64.92.R01.zip
|
||||
[2] http://www.linux-mtd.infradead.org/
|
|
@ -34,6 +34,8 @@
|
|||
#include <linux/mfd/cros_ec.h>
|
||||
#include <linux/mfd/cros_ec_commands.h>
|
||||
|
||||
#include <asm/unaligned.h>
|
||||
|
||||
/*
|
||||
* @rows: Number of rows in the keypad
|
||||
* @cols: Number of columns in the keypad
|
||||
|
@ -43,8 +45,9 @@
|
|||
* @valid_keys: bitmap of existing keys for each matrix column
|
||||
* @old_kb_state: bitmap of keys pressed last scan
|
||||
* @dev: Device pointer
|
||||
* @idev: Input device
|
||||
* @ec: Top level ChromeOS device to use to talk to EC
|
||||
* @idev: The input device for the matrix keys.
|
||||
* @bs_idev: The input device for non-matrix buttons and switches (or NULL).
|
||||
* @notifier: interrupt event notifier for transport devices
|
||||
*/
|
||||
struct cros_ec_keyb {
|
||||
|
@ -57,12 +60,64 @@ struct cros_ec_keyb {
|
|||
uint8_t *old_kb_state;
|
||||
|
||||
struct device *dev;
|
||||
struct input_dev *idev;
|
||||
struct cros_ec_device *ec;
|
||||
|
||||
struct input_dev *idev;
|
||||
struct input_dev *bs_idev;
|
||||
struct notifier_block notifier;
|
||||
};
|
||||
|
||||
|
||||
/**
|
||||
* cros_ec_bs_map - Struct mapping Linux keycodes to EC button/switch bitmap
|
||||
* #defines
|
||||
*
|
||||
* @ev_type: The type of the input event to generate (e.g., EV_KEY).
|
||||
* @code: A linux keycode
|
||||
* @bit: A #define like EC_MKBP_POWER_BUTTON or EC_MKBP_LID_OPEN
|
||||
* @inverted: If the #define and EV_SW have opposite meanings, this is true.
|
||||
* Only applicable to switches.
|
||||
*/
|
||||
struct cros_ec_bs_map {
|
||||
unsigned int ev_type;
|
||||
unsigned int code;
|
||||
u8 bit;
|
||||
bool inverted;
|
||||
};
|
||||
|
||||
/* cros_ec_keyb_bs - Map EC button/switch #defines into kernel ones */
|
||||
static const struct cros_ec_bs_map cros_ec_keyb_bs[] = {
|
||||
/* Buttons */
|
||||
{
|
||||
.ev_type = EV_KEY,
|
||||
.code = KEY_POWER,
|
||||
.bit = EC_MKBP_POWER_BUTTON,
|
||||
},
|
||||
{
|
||||
.ev_type = EV_KEY,
|
||||
.code = KEY_VOLUMEUP,
|
||||
.bit = EC_MKBP_VOL_UP,
|
||||
},
|
||||
{
|
||||
.ev_type = EV_KEY,
|
||||
.code = KEY_VOLUMEDOWN,
|
||||
.bit = EC_MKBP_VOL_DOWN,
|
||||
},
|
||||
|
||||
/* Switches */
|
||||
{
|
||||
.ev_type = EV_SW,
|
||||
.code = SW_LID,
|
||||
.bit = EC_MKBP_LID_OPEN,
|
||||
.inverted = true,
|
||||
},
|
||||
{
|
||||
.ev_type = EV_SW,
|
||||
.code = SW_TABLET_MODE,
|
||||
.bit = EC_MKBP_TABLET_MODE,
|
||||
},
|
||||
};
|
||||
|
||||
/*
|
||||
* Returns true when there is at least one combination of pressed keys that
|
||||
* results in ghosting.
|
||||
|
@ -149,20 +204,33 @@ static void cros_ec_keyb_process(struct cros_ec_keyb *ckdev,
|
|||
input_sync(ckdev->idev);
|
||||
}
|
||||
|
||||
static int cros_ec_keyb_open(struct input_dev *dev)
|
||||
/**
|
||||
* cros_ec_keyb_report_bs - Report non-matrixed buttons or switches
|
||||
*
|
||||
* This takes a bitmap of buttons or switches from the EC and reports events,
|
||||
* syncing at the end.
|
||||
*
|
||||
* @ckdev: The keyboard device.
|
||||
* @ev_type: The input event type (e.g., EV_KEY).
|
||||
* @mask: A bitmap of buttons from the EC.
|
||||
*/
|
||||
static void cros_ec_keyb_report_bs(struct cros_ec_keyb *ckdev,
|
||||
unsigned int ev_type, u32 mask)
|
||||
|
||||
{
|
||||
struct cros_ec_keyb *ckdev = input_get_drvdata(dev);
|
||||
struct input_dev *idev = ckdev->bs_idev;
|
||||
int i;
|
||||
|
||||
return blocking_notifier_chain_register(&ckdev->ec->event_notifier,
|
||||
&ckdev->notifier);
|
||||
}
|
||||
for (i = 0; i < ARRAY_SIZE(cros_ec_keyb_bs); i++) {
|
||||
const struct cros_ec_bs_map *map = &cros_ec_keyb_bs[i];
|
||||
|
||||
static void cros_ec_keyb_close(struct input_dev *dev)
|
||||
{
|
||||
struct cros_ec_keyb *ckdev = input_get_drvdata(dev);
|
||||
if (map->ev_type != ev_type)
|
||||
continue;
|
||||
|
||||
blocking_notifier_chain_unregister(&ckdev->ec->event_notifier,
|
||||
&ckdev->notifier);
|
||||
input_event(idev, ev_type, map->code,
|
||||
!!(mask & BIT(map->bit)) ^ map->inverted);
|
||||
}
|
||||
input_sync(idev);
|
||||
}
|
||||
|
||||
static int cros_ec_keyb_work(struct notifier_block *nb,
|
||||
|
@ -170,22 +238,54 @@ static int cros_ec_keyb_work(struct notifier_block *nb,
|
|||
{
|
||||
struct cros_ec_keyb *ckdev = container_of(nb, struct cros_ec_keyb,
|
||||
notifier);
|
||||
u32 val;
|
||||
unsigned int ev_type;
|
||||
|
||||
if (ckdev->ec->event_data.event_type != EC_MKBP_EVENT_KEY_MATRIX)
|
||||
switch (ckdev->ec->event_data.event_type) {
|
||||
case EC_MKBP_EVENT_KEY_MATRIX:
|
||||
/*
|
||||
* If EC is not the wake source, discard key state changes
|
||||
* during suspend.
|
||||
*/
|
||||
if (queued_during_suspend)
|
||||
return NOTIFY_OK;
|
||||
|
||||
if (ckdev->ec->event_size != ckdev->cols) {
|
||||
dev_err(ckdev->dev,
|
||||
"Discarded incomplete key matrix event.\n");
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
cros_ec_keyb_process(ckdev,
|
||||
ckdev->ec->event_data.data.key_matrix,
|
||||
ckdev->ec->event_size);
|
||||
break;
|
||||
|
||||
case EC_MKBP_EVENT_BUTTON:
|
||||
case EC_MKBP_EVENT_SWITCH:
|
||||
/*
|
||||
* If EC is not the wake source, discard key state
|
||||
* changes during suspend. Switches will be re-checked in
|
||||
* cros_ec_keyb_resume() to be sure nothing is lost.
|
||||
*/
|
||||
if (queued_during_suspend)
|
||||
return NOTIFY_OK;
|
||||
|
||||
if (ckdev->ec->event_data.event_type == EC_MKBP_EVENT_BUTTON) {
|
||||
val = get_unaligned_le32(
|
||||
&ckdev->ec->event_data.data.buttons);
|
||||
ev_type = EV_KEY;
|
||||
} else {
|
||||
val = get_unaligned_le32(
|
||||
&ckdev->ec->event_data.data.switches);
|
||||
ev_type = EV_SW;
|
||||
}
|
||||
cros_ec_keyb_report_bs(ckdev, ev_type, val);
|
||||
break;
|
||||
|
||||
default:
|
||||
return NOTIFY_DONE;
|
||||
/*
|
||||
* If EC is not the wake source, discard key state changes during
|
||||
* suspend.
|
||||
*/
|
||||
if (queued_during_suspend)
|
||||
return NOTIFY_OK;
|
||||
if (ckdev->ec->event_size != ckdev->cols) {
|
||||
dev_err(ckdev->dev,
|
||||
"Discarded incomplete key matrix event.\n");
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
cros_ec_keyb_process(ckdev, ckdev->ec->event_data.data.key_matrix,
|
||||
ckdev->ec->event_size);
|
||||
|
||||
return NOTIFY_OK;
|
||||
}
|
||||
|
||||
|
@ -213,22 +313,228 @@ static void cros_ec_keyb_compute_valid_keys(struct cros_ec_keyb *ckdev)
|
|||
}
|
||||
}
|
||||
|
||||
static int cros_ec_keyb_probe(struct platform_device *pdev)
|
||||
/**
|
||||
* cros_ec_keyb_info - Wrap the EC command EC_CMD_MKBP_INFO
|
||||
*
|
||||
* This wraps the EC_CMD_MKBP_INFO, abstracting out all of the marshalling and
|
||||
* unmarshalling and different version nonsense into something simple.
|
||||
*
|
||||
* @ec_dev: The EC device
|
||||
* @info_type: Either EC_MKBP_INFO_SUPPORTED or EC_MKBP_INFO_CURRENT.
|
||||
* @event_type: Either EC_MKBP_EVENT_BUTTON or EC_MKBP_EVENT_SWITCH. Actually
|
||||
* in some cases this could be EC_MKBP_EVENT_KEY_MATRIX or
|
||||
* EC_MKBP_EVENT_HOST_EVENT too but we don't use in this driver.
|
||||
* @result: Where we'll store the result; a union
|
||||
* @result_size: The size of the result. Expected to be the size of one of
|
||||
* the elements in the union.
|
||||
*
|
||||
* Returns 0 if no error or -error upon error.
|
||||
*/
|
||||
static int cros_ec_keyb_info(struct cros_ec_device *ec_dev,
|
||||
enum ec_mkbp_info_type info_type,
|
||||
enum ec_mkbp_event event_type,
|
||||
union ec_response_get_next_data *result,
|
||||
size_t result_size)
|
||||
{
|
||||
struct cros_ec_device *ec = dev_get_drvdata(pdev->dev.parent);
|
||||
struct device *dev = &pdev->dev;
|
||||
struct cros_ec_keyb *ckdev;
|
||||
struct ec_params_mkbp_info *params;
|
||||
struct cros_ec_command *msg;
|
||||
int ret;
|
||||
|
||||
msg = kzalloc(sizeof(*msg) + max_t(size_t, result_size,
|
||||
sizeof(*params)), GFP_KERNEL);
|
||||
if (!msg)
|
||||
return -ENOMEM;
|
||||
|
||||
msg->command = EC_CMD_MKBP_INFO;
|
||||
msg->version = 1;
|
||||
msg->outsize = sizeof(*params);
|
||||
msg->insize = result_size;
|
||||
params = (struct ec_params_mkbp_info *)msg->data;
|
||||
params->info_type = info_type;
|
||||
params->event_type = event_type;
|
||||
|
||||
ret = cros_ec_cmd_xfer(ec_dev, msg);
|
||||
if (ret < 0) {
|
||||
dev_warn(ec_dev->dev, "Transfer error %d/%d: %d\n",
|
||||
(int)info_type, (int)event_type, ret);
|
||||
} else if (msg->result == EC_RES_INVALID_VERSION) {
|
||||
/* With older ECs we just return 0 for everything */
|
||||
memset(result, 0, result_size);
|
||||
ret = 0;
|
||||
} else if (msg->result != EC_RES_SUCCESS) {
|
||||
dev_warn(ec_dev->dev, "Error getting info %d/%d: %d\n",
|
||||
(int)info_type, (int)event_type, msg->result);
|
||||
ret = -EPROTO;
|
||||
} else if (ret != result_size) {
|
||||
dev_warn(ec_dev->dev, "Wrong size %d/%d: %d != %zu\n",
|
||||
(int)info_type, (int)event_type,
|
||||
ret, result_size);
|
||||
ret = -EPROTO;
|
||||
} else {
|
||||
memcpy(result, msg->data, result_size);
|
||||
ret = 0;
|
||||
}
|
||||
|
||||
kfree(msg);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
/**
|
||||
* cros_ec_keyb_query_switches - Query the state of switches and report
|
||||
*
|
||||
* This will ask the EC about the current state of switches and report to the
|
||||
* kernel. Note that we don't query for buttons because they are more
|
||||
* transitory and we'll get an update on the next release / press.
|
||||
*
|
||||
* @ckdev: The keyboard device
|
||||
*
|
||||
* Returns 0 if no error or -error upon error.
|
||||
*/
|
||||
static int cros_ec_keyb_query_switches(struct cros_ec_keyb *ckdev)
|
||||
{
|
||||
struct cros_ec_device *ec_dev = ckdev->ec;
|
||||
union ec_response_get_next_data event_data = {};
|
||||
int ret;
|
||||
|
||||
ret = cros_ec_keyb_info(ec_dev, EC_MKBP_INFO_CURRENT,
|
||||
EC_MKBP_EVENT_SWITCH, &event_data,
|
||||
sizeof(event_data.switches));
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
cros_ec_keyb_report_bs(ckdev, EV_SW,
|
||||
get_unaligned_le32(&event_data.switches));
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cros_ec_keyb_resume - Resume the keyboard
|
||||
*
|
||||
* We use the resume notification as a chance to query the EC for switches.
|
||||
*
|
||||
* @dev: The keyboard device
|
||||
*
|
||||
* Returns 0 if no error or -error upon error.
|
||||
*/
|
||||
static __maybe_unused int cros_ec_keyb_resume(struct device *dev)
|
||||
{
|
||||
struct cros_ec_keyb *ckdev = dev_get_drvdata(dev);
|
||||
|
||||
if (ckdev->bs_idev)
|
||||
return cros_ec_keyb_query_switches(ckdev);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cros_ec_keyb_register_bs - Register non-matrix buttons/switches
|
||||
*
|
||||
* Handles all the bits of the keyboard driver related to non-matrix buttons
|
||||
* and switches, including asking the EC about which are present and telling
|
||||
* the kernel to expect them.
|
||||
*
|
||||
* If this device has no support for buttons and switches we'll return no error
|
||||
* but the ckdev->bs_idev will remain NULL when this function exits.
|
||||
*
|
||||
* @ckdev: The keyboard device
|
||||
*
|
||||
* Returns 0 if no error or -error upon error.
|
||||
*/
|
||||
static int cros_ec_keyb_register_bs(struct cros_ec_keyb *ckdev)
|
||||
{
|
||||
struct cros_ec_device *ec_dev = ckdev->ec;
|
||||
struct device *dev = ckdev->dev;
|
||||
struct input_dev *idev;
|
||||
struct device_node *np;
|
||||
union ec_response_get_next_data event_data = {};
|
||||
const char *phys;
|
||||
u32 buttons;
|
||||
u32 switches;
|
||||
int ret;
|
||||
int i;
|
||||
|
||||
ret = cros_ec_keyb_info(ec_dev, EC_MKBP_INFO_SUPPORTED,
|
||||
EC_MKBP_EVENT_BUTTON, &event_data,
|
||||
sizeof(event_data.buttons));
|
||||
if (ret)
|
||||
return ret;
|
||||
buttons = get_unaligned_le32(&event_data.buttons);
|
||||
|
||||
ret = cros_ec_keyb_info(ec_dev, EC_MKBP_INFO_SUPPORTED,
|
||||
EC_MKBP_EVENT_SWITCH, &event_data,
|
||||
sizeof(event_data.switches));
|
||||
if (ret)
|
||||
return ret;
|
||||
switches = get_unaligned_le32(&event_data.switches);
|
||||
|
||||
if (!buttons && !switches)
|
||||
return 0;
|
||||
|
||||
/*
|
||||
* We call the non-matrix buttons/switches 'input1', if present.
|
||||
* Allocate phys before input dev, to ensure correct tear-down
|
||||
* ordering.
|
||||
*/
|
||||
phys = devm_kasprintf(dev, GFP_KERNEL, "%s/input1", ec_dev->phys_name);
|
||||
if (!phys)
|
||||
return -ENOMEM;
|
||||
|
||||
idev = devm_input_allocate_device(dev);
|
||||
if (!idev)
|
||||
return -ENOMEM;
|
||||
|
||||
idev->name = "cros_ec_buttons";
|
||||
idev->phys = phys;
|
||||
__set_bit(EV_REP, idev->evbit);
|
||||
|
||||
idev->id.bustype = BUS_VIRTUAL;
|
||||
idev->id.version = 1;
|
||||
idev->id.product = 0;
|
||||
idev->dev.parent = dev;
|
||||
|
||||
input_set_drvdata(idev, ckdev);
|
||||
ckdev->bs_idev = idev;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(cros_ec_keyb_bs); i++) {
|
||||
const struct cros_ec_bs_map *map = &cros_ec_keyb_bs[i];
|
||||
|
||||
if (buttons & BIT(map->bit))
|
||||
input_set_capability(idev, map->ev_type, map->code);
|
||||
}
|
||||
|
||||
ret = cros_ec_keyb_query_switches(ckdev);
|
||||
if (ret) {
|
||||
dev_err(dev, "cannot query switches\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = input_register_device(ckdev->bs_idev);
|
||||
if (ret) {
|
||||
dev_err(dev, "cannot register input device\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/**
|
||||
* cros_ec_keyb_register_bs - Register matrix keys
|
||||
*
|
||||
* Handles all the bits of the keyboard driver related to matrix keys.
|
||||
*
|
||||
* @ckdev: The keyboard device
|
||||
*
|
||||
* Returns 0 if no error or -error upon error.
|
||||
*/
|
||||
static int cros_ec_keyb_register_matrix(struct cros_ec_keyb *ckdev)
|
||||
{
|
||||
struct cros_ec_device *ec_dev = ckdev->ec;
|
||||
struct device *dev = ckdev->dev;
|
||||
struct input_dev *idev;
|
||||
const char *phys;
|
||||
int err;
|
||||
|
||||
np = pdev->dev.of_node;
|
||||
if (!np)
|
||||
return -ENODEV;
|
||||
|
||||
ckdev = devm_kzalloc(dev, sizeof(*ckdev), GFP_KERNEL);
|
||||
if (!ckdev)
|
||||
return -ENOMEM;
|
||||
err = matrix_keypad_parse_of_params(dev, &ckdev->rows, &ckdev->cols);
|
||||
if (err)
|
||||
return err;
|
||||
|
@ -241,27 +547,28 @@ static int cros_ec_keyb_probe(struct platform_device *pdev)
|
|||
if (!ckdev->old_kb_state)
|
||||
return -ENOMEM;
|
||||
|
||||
/*
|
||||
* We call the keyboard matrix 'input0'. Allocate phys before input
|
||||
* dev, to ensure correct tear-down ordering.
|
||||
*/
|
||||
phys = devm_kasprintf(dev, GFP_KERNEL, "%s/input0", ec_dev->phys_name);
|
||||
if (!phys)
|
||||
return -ENOMEM;
|
||||
|
||||
idev = devm_input_allocate_device(dev);
|
||||
if (!idev)
|
||||
return -ENOMEM;
|
||||
|
||||
ckdev->ec = ec;
|
||||
ckdev->notifier.notifier_call = cros_ec_keyb_work;
|
||||
ckdev->dev = dev;
|
||||
dev_set_drvdata(dev, ckdev);
|
||||
|
||||
idev->name = CROS_EC_DEV_NAME;
|
||||
idev->phys = ec->phys_name;
|
||||
idev->phys = phys;
|
||||
__set_bit(EV_REP, idev->evbit);
|
||||
|
||||
idev->id.bustype = BUS_VIRTUAL;
|
||||
idev->id.version = 1;
|
||||
idev->id.product = 0;
|
||||
idev->dev.parent = dev;
|
||||
idev->open = cros_ec_keyb_open;
|
||||
idev->close = cros_ec_keyb_close;
|
||||
|
||||
ckdev->ghost_filter = of_property_read_bool(np,
|
||||
ckdev->ghost_filter = of_property_read_bool(dev->of_node,
|
||||
"google,needs-ghost-filter");
|
||||
|
||||
err = matrix_keypad_build_keymap(NULL, NULL, ckdev->rows, ckdev->cols,
|
||||
|
@ -287,6 +594,57 @@ static int cros_ec_keyb_probe(struct platform_device *pdev)
|
|||
return 0;
|
||||
}
|
||||
|
||||
static int cros_ec_keyb_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct cros_ec_device *ec = dev_get_drvdata(pdev->dev.parent);
|
||||
struct device *dev = &pdev->dev;
|
||||
struct cros_ec_keyb *ckdev;
|
||||
int err;
|
||||
|
||||
if (!dev->of_node)
|
||||
return -ENODEV;
|
||||
|
||||
ckdev = devm_kzalloc(dev, sizeof(*ckdev), GFP_KERNEL);
|
||||
if (!ckdev)
|
||||
return -ENOMEM;
|
||||
|
||||
ckdev->ec = ec;
|
||||
ckdev->dev = dev;
|
||||
dev_set_drvdata(dev, ckdev);
|
||||
|
||||
err = cros_ec_keyb_register_matrix(ckdev);
|
||||
if (err) {
|
||||
dev_err(dev, "cannot register matrix inputs: %d\n", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
err = cros_ec_keyb_register_bs(ckdev);
|
||||
if (err) {
|
||||
dev_err(dev, "cannot register non-matrix inputs: %d\n", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
ckdev->notifier.notifier_call = cros_ec_keyb_work;
|
||||
err = blocking_notifier_chain_register(&ckdev->ec->event_notifier,
|
||||
&ckdev->notifier);
|
||||
if (err) {
|
||||
dev_err(dev, "cannot register notifier: %d\n", err);
|
||||
return err;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int cros_ec_keyb_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct cros_ec_keyb *ckdev = dev_get_drvdata(&pdev->dev);
|
||||
|
||||
blocking_notifier_chain_unregister(&ckdev->ec->event_notifier,
|
||||
&ckdev->notifier);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
#ifdef CONFIG_OF
|
||||
static const struct of_device_id cros_ec_keyb_of_match[] = {
|
||||
{ .compatible = "google,cros-ec-keyb" },
|
||||
|
@ -295,11 +653,15 @@ static const struct of_device_id cros_ec_keyb_of_match[] = {
|
|||
MODULE_DEVICE_TABLE(of, cros_ec_keyb_of_match);
|
||||
#endif
|
||||
|
||||
static const SIMPLE_DEV_PM_OPS(cros_ec_keyb_pm_ops, NULL, cros_ec_keyb_resume);
|
||||
|
||||
static struct platform_driver cros_ec_keyb_driver = {
|
||||
.probe = cros_ec_keyb_probe,
|
||||
.remove = cros_ec_keyb_remove,
|
||||
.driver = {
|
||||
.name = "cros-ec-keyb",
|
||||
.of_match_table = of_match_ptr(cros_ec_keyb_of_match),
|
||||
.pm = &cros_ec_keyb_pm_ops,
|
||||
},
|
||||
};
|
||||
|
||||
|
|
|
@ -56,6 +56,7 @@
|
|||
* document number TBD : Wildcat Point-LP
|
||||
* document number TBD : 9 Series
|
||||
* document number TBD : Lewisburg
|
||||
* document number TBD : Apollo Lake SoC
|
||||
*/
|
||||
|
||||
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
||||
|
@ -83,6 +84,17 @@
|
|||
#define ACPIBASE_GCS_OFF 0x3410
|
||||
#define ACPIBASE_GCS_END 0x3414
|
||||
|
||||
#define SPIBASE_BYT 0x54
|
||||
#define SPIBASE_BYT_SZ 512
|
||||
#define SPIBASE_BYT_EN BIT(1)
|
||||
|
||||
#define SPIBASE_LPT 0x3800
|
||||
#define SPIBASE_LPT_SZ 512
|
||||
#define BCR 0xdc
|
||||
#define BCR_WPD BIT(0)
|
||||
|
||||
#define SPIBASE_APL_SZ 4096
|
||||
|
||||
#define GPIOBASE_ICH0 0x58
|
||||
#define GPIOCTRL_ICH0 0x5C
|
||||
#define GPIOBASE_ICH6 0x48
|
||||
|
@ -133,6 +145,12 @@ static struct resource gpio_ich_res[] = {
|
|||
},
|
||||
};
|
||||
|
||||
static struct resource intel_spi_res[] = {
|
||||
{
|
||||
.flags = IORESOURCE_MEM,
|
||||
}
|
||||
};
|
||||
|
||||
static struct mfd_cell lpc_ich_wdt_cell = {
|
||||
.name = "iTCO_wdt",
|
||||
.num_resources = ARRAY_SIZE(wdt_ich_res),
|
||||
|
@ -147,6 +165,14 @@ static struct mfd_cell lpc_ich_gpio_cell = {
|
|||
.ignore_resource_conflicts = true,
|
||||
};
|
||||
|
||||
|
||||
static struct mfd_cell lpc_ich_spi_cell = {
|
||||
.name = "intel-spi",
|
||||
.num_resources = ARRAY_SIZE(intel_spi_res),
|
||||
.resources = intel_spi_res,
|
||||
.ignore_resource_conflicts = true,
|
||||
};
|
||||
|
||||
/* chipset related info */
|
||||
enum lpc_chipsets {
|
||||
LPC_ICH = 0, /* ICH */
|
||||
|
@ -216,6 +242,7 @@ enum lpc_chipsets {
|
|||
LPC_BRASWELL, /* Braswell SoC */
|
||||
LPC_LEWISBURG, /* Lewisburg */
|
||||
LPC_9S, /* 9 Series */
|
||||
LPC_APL, /* Apollo Lake SoC */
|
||||
};
|
||||
|
||||
static struct lpc_ich_info lpc_chipset_info[] = {
|
||||
|
@ -494,10 +521,12 @@ static struct lpc_ich_info lpc_chipset_info[] = {
|
|||
.name = "Lynx Point",
|
||||
.iTCO_version = 2,
|
||||
.gpio_version = ICH_V5_GPIO,
|
||||
.spi_type = INTEL_SPI_LPT,
|
||||
},
|
||||
[LPC_LPT_LP] = {
|
||||
.name = "Lynx Point_LP",
|
||||
.iTCO_version = 2,
|
||||
.spi_type = INTEL_SPI_LPT,
|
||||
},
|
||||
[LPC_WBG] = {
|
||||
.name = "Wellsburg",
|
||||
|
@ -511,6 +540,7 @@ static struct lpc_ich_info lpc_chipset_info[] = {
|
|||
[LPC_BAYTRAIL] = {
|
||||
.name = "Bay Trail SoC",
|
||||
.iTCO_version = 3,
|
||||
.spi_type = INTEL_SPI_BYT,
|
||||
},
|
||||
[LPC_COLETO] = {
|
||||
.name = "Coleto Creek",
|
||||
|
@ -519,10 +549,12 @@ static struct lpc_ich_info lpc_chipset_info[] = {
|
|||
[LPC_WPT_LP] = {
|
||||
.name = "Wildcat Point_LP",
|
||||
.iTCO_version = 2,
|
||||
.spi_type = INTEL_SPI_LPT,
|
||||
},
|
||||
[LPC_BRASWELL] = {
|
||||
.name = "Braswell SoC",
|
||||
.iTCO_version = 3,
|
||||
.spi_type = INTEL_SPI_BYT,
|
||||
},
|
||||
[LPC_LEWISBURG] = {
|
||||
.name = "Lewisburg",
|
||||
|
@ -533,6 +565,10 @@ static struct lpc_ich_info lpc_chipset_info[] = {
|
|||
.iTCO_version = 2,
|
||||
.gpio_version = ICH_V5_GPIO,
|
||||
},
|
||||
[LPC_APL] = {
|
||||
.name = "Apollo Lake SoC",
|
||||
.spi_type = INTEL_SPI_BXT,
|
||||
},
|
||||
};
|
||||
|
||||
/*
|
||||
|
@ -681,6 +717,7 @@ static const struct pci_device_id lpc_ich_ids[] = {
|
|||
{ PCI_VDEVICE(INTEL, 0x3b14), LPC_3420},
|
||||
{ PCI_VDEVICE(INTEL, 0x3b16), LPC_3450},
|
||||
{ PCI_VDEVICE(INTEL, 0x5031), LPC_EP80579},
|
||||
{ PCI_VDEVICE(INTEL, 0x5ae8), LPC_APL},
|
||||
{ PCI_VDEVICE(INTEL, 0x8c40), LPC_LPT},
|
||||
{ PCI_VDEVICE(INTEL, 0x8c41), LPC_LPT},
|
||||
{ PCI_VDEVICE(INTEL, 0x8c42), LPC_LPT},
|
||||
|
@ -1056,6 +1093,94 @@ static int lpc_ich_init_wdt(struct pci_dev *dev)
|
|||
return ret;
|
||||
}
|
||||
|
||||
static int lpc_ich_init_spi(struct pci_dev *dev)
|
||||
{
|
||||
struct lpc_ich_priv *priv = pci_get_drvdata(dev);
|
||||
struct resource *res = &intel_spi_res[0];
|
||||
struct intel_spi_boardinfo *info;
|
||||
u32 spi_base, rcba, bcr;
|
||||
|
||||
info = devm_kzalloc(&dev->dev, sizeof(*info), GFP_KERNEL);
|
||||
if (!info)
|
||||
return -ENOMEM;
|
||||
|
||||
info->type = lpc_chipset_info[priv->chipset].spi_type;
|
||||
|
||||
switch (info->type) {
|
||||
case INTEL_SPI_BYT:
|
||||
pci_read_config_dword(dev, SPIBASE_BYT, &spi_base);
|
||||
if (spi_base & SPIBASE_BYT_EN) {
|
||||
res->start = spi_base & ~(SPIBASE_BYT_SZ - 1);
|
||||
res->end = res->start + SPIBASE_BYT_SZ - 1;
|
||||
}
|
||||
break;
|
||||
|
||||
case INTEL_SPI_LPT:
|
||||
pci_read_config_dword(dev, RCBABASE, &rcba);
|
||||
if (rcba & 1) {
|
||||
spi_base = round_down(rcba, SPIBASE_LPT_SZ);
|
||||
res->start = spi_base + SPIBASE_LPT;
|
||||
res->end = res->start + SPIBASE_LPT_SZ - 1;
|
||||
|
||||
/*
|
||||
* Try to make the flash chip writeable now by
|
||||
* setting BCR_WPD. It it fails we tell the driver
|
||||
* that it can only read the chip.
|
||||
*/
|
||||
pci_read_config_dword(dev, BCR, &bcr);
|
||||
if (!(bcr & BCR_WPD)) {
|
||||
bcr |= BCR_WPD;
|
||||
pci_write_config_dword(dev, BCR, bcr);
|
||||
pci_read_config_dword(dev, BCR, &bcr);
|
||||
}
|
||||
info->writeable = !!(bcr & BCR_WPD);
|
||||
}
|
||||
break;
|
||||
|
||||
case INTEL_SPI_BXT: {
|
||||
unsigned int p2sb = PCI_DEVFN(13, 0);
|
||||
unsigned int spi = PCI_DEVFN(13, 2);
|
||||
struct pci_bus *bus = dev->bus;
|
||||
|
||||
/*
|
||||
* The P2SB is hidden by BIOS and we need to unhide it in
|
||||
* order to read BAR of the SPI flash device. Once that is
|
||||
* done we hide it again.
|
||||
*/
|
||||
pci_bus_write_config_byte(bus, p2sb, 0xe1, 0x0);
|
||||
pci_bus_read_config_dword(bus, spi, PCI_BASE_ADDRESS_0,
|
||||
&spi_base);
|
||||
if (spi_base != ~0) {
|
||||
res->start = spi_base & 0xfffffff0;
|
||||
res->end = res->start + SPIBASE_APL_SZ - 1;
|
||||
|
||||
pci_bus_read_config_dword(bus, spi, BCR, &bcr);
|
||||
if (!(bcr & BCR_WPD)) {
|
||||
bcr |= BCR_WPD;
|
||||
pci_bus_write_config_dword(bus, spi, BCR, bcr);
|
||||
pci_bus_read_config_dword(bus, spi, BCR, &bcr);
|
||||
}
|
||||
info->writeable = !!(bcr & BCR_WPD);
|
||||
}
|
||||
|
||||
pci_bus_write_config_byte(bus, p2sb, 0xe1, 0x1);
|
||||
break;
|
||||
}
|
||||
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
if (!res->start)
|
||||
return -ENODEV;
|
||||
|
||||
lpc_ich_spi_cell.platform_data = info;
|
||||
lpc_ich_spi_cell.pdata_size = sizeof(*info);
|
||||
|
||||
return mfd_add_devices(&dev->dev, PLATFORM_DEVID_NONE,
|
||||
&lpc_ich_spi_cell, 1, NULL, 0, NULL);
|
||||
}
|
||||
|
||||
static int lpc_ich_probe(struct pci_dev *dev,
|
||||
const struct pci_device_id *id)
|
||||
{
|
||||
|
@ -1099,6 +1224,12 @@ static int lpc_ich_probe(struct pci_dev *dev,
|
|||
cell_added = true;
|
||||
}
|
||||
|
||||
if (lpc_chipset_info[priv->chipset].spi_type) {
|
||||
ret = lpc_ich_init_spi(dev);
|
||||
if (!ret)
|
||||
cell_added = true;
|
||||
}
|
||||
|
||||
/*
|
||||
* We only care if at least one or none of the cells registered
|
||||
* successfully.
|
||||
|
|
|
@ -76,4 +76,24 @@ config SPI_NXP_SPIFI
|
|||
Flash. Enable this option if you have a device with a SPIFI
|
||||
controller and want to access the Flash as a mtd device.
|
||||
|
||||
config SPI_INTEL_SPI
|
||||
tristate
|
||||
|
||||
config SPI_INTEL_SPI_PLATFORM
|
||||
tristate "Intel PCH/PCU SPI flash platform driver" if EXPERT
|
||||
depends on X86
|
||||
select SPI_INTEL_SPI
|
||||
help
|
||||
This enables platform support for the Intel PCH/PCU SPI
|
||||
controller in master mode. This controller is present in modern
|
||||
Intel hardware and is used to hold BIOS and other persistent
|
||||
settings. Using this driver it is possible to upgrade BIOS
|
||||
directly from Linux.
|
||||
|
||||
Say N here unless you know what you are doing. Overwriting the
|
||||
SPI flash may render the system unbootable.
|
||||
|
||||
To compile this driver as a module, choose M here: the module
|
||||
will be called intel-spi-platform.
|
||||
|
||||
endif # MTD_SPI_NOR
|
||||
|
|
|
@ -5,3 +5,5 @@ obj-$(CONFIG_SPI_FSL_QUADSPI) += fsl-quadspi.o
|
|||
obj-$(CONFIG_SPI_HISI_SFC) += hisi-sfc.o
|
||||
obj-$(CONFIG_MTD_MT81xx_NOR) += mtk-quadspi.o
|
||||
obj-$(CONFIG_SPI_NXP_SPIFI) += nxp-spifi.o
|
||||
obj-$(CONFIG_SPI_INTEL_SPI) += intel-spi.o
|
||||
obj-$(CONFIG_SPI_INTEL_SPI_PLATFORM) += intel-spi-platform.o
|
||||
|
|
|
@ -0,0 +1,57 @@
|
|||
/*
|
||||
* Intel PCH/PCU SPI flash platform driver.
|
||||
*
|
||||
* Copyright (C) 2016, Intel Corporation
|
||||
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/ioport.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/platform_device.h>
|
||||
|
||||
#include "intel-spi.h"
|
||||
|
||||
static int intel_spi_platform_probe(struct platform_device *pdev)
|
||||
{
|
||||
struct intel_spi_boardinfo *info;
|
||||
struct intel_spi *ispi;
|
||||
struct resource *mem;
|
||||
|
||||
info = dev_get_platdata(&pdev->dev);
|
||||
if (!info)
|
||||
return -EINVAL;
|
||||
|
||||
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
|
||||
ispi = intel_spi_probe(&pdev->dev, mem, info);
|
||||
if (IS_ERR(ispi))
|
||||
return PTR_ERR(ispi);
|
||||
|
||||
platform_set_drvdata(pdev, ispi);
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int intel_spi_platform_remove(struct platform_device *pdev)
|
||||
{
|
||||
struct intel_spi *ispi = platform_get_drvdata(pdev);
|
||||
|
||||
return intel_spi_remove(ispi);
|
||||
}
|
||||
|
||||
static struct platform_driver intel_spi_platform_driver = {
|
||||
.probe = intel_spi_platform_probe,
|
||||
.remove = intel_spi_platform_remove,
|
||||
.driver = {
|
||||
.name = "intel-spi",
|
||||
},
|
||||
};
|
||||
|
||||
module_platform_driver(intel_spi_platform_driver);
|
||||
|
||||
MODULE_DESCRIPTION("Intel PCH/PCU SPI flash platform driver");
|
||||
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
|
||||
MODULE_LICENSE("GPL v2");
|
||||
MODULE_ALIAS("platform:intel-spi");
|
|
@ -0,0 +1,777 @@
|
|||
/*
|
||||
* Intel PCH/PCU SPI flash driver.
|
||||
*
|
||||
* Copyright (C) 2016, Intel Corporation
|
||||
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#include <linux/err.h>
|
||||
#include <linux/io.h>
|
||||
#include <linux/iopoll.h>
|
||||
#include <linux/module.h>
|
||||
#include <linux/sched.h>
|
||||
#include <linux/sizes.h>
|
||||
#include <linux/mtd/mtd.h>
|
||||
#include <linux/mtd/partitions.h>
|
||||
#include <linux/mtd/spi-nor.h>
|
||||
#include <linux/platform_data/intel-spi.h>
|
||||
|
||||
#include "intel-spi.h"
|
||||
|
||||
/* Offsets are from @ispi->base */
|
||||
#define BFPREG 0x00
|
||||
|
||||
#define HSFSTS_CTL 0x04
|
||||
#define HSFSTS_CTL_FSMIE BIT(31)
|
||||
#define HSFSTS_CTL_FDBC_SHIFT 24
|
||||
#define HSFSTS_CTL_FDBC_MASK (0x3f << HSFSTS_CTL_FDBC_SHIFT)
|
||||
|
||||
#define HSFSTS_CTL_FCYCLE_SHIFT 17
|
||||
#define HSFSTS_CTL_FCYCLE_MASK (0x0f << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
/* HW sequencer opcodes */
|
||||
#define HSFSTS_CTL_FCYCLE_READ (0x00 << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
#define HSFSTS_CTL_FCYCLE_WRITE (0x02 << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
#define HSFSTS_CTL_FCYCLE_ERASE (0x03 << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
#define HSFSTS_CTL_FCYCLE_ERASE_64K (0x04 << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
#define HSFSTS_CTL_FCYCLE_RDID (0x06 << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
#define HSFSTS_CTL_FCYCLE_WRSR (0x07 << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
#define HSFSTS_CTL_FCYCLE_RDSR (0x08 << HSFSTS_CTL_FCYCLE_SHIFT)
|
||||
|
||||
#define HSFSTS_CTL_FGO BIT(16)
|
||||
#define HSFSTS_CTL_FLOCKDN BIT(15)
|
||||
#define HSFSTS_CTL_FDV BIT(14)
|
||||
#define HSFSTS_CTL_SCIP BIT(5)
|
||||
#define HSFSTS_CTL_AEL BIT(2)
|
||||
#define HSFSTS_CTL_FCERR BIT(1)
|
||||
#define HSFSTS_CTL_FDONE BIT(0)
|
||||
|
||||
#define FADDR 0x08
|
||||
#define DLOCK 0x0c
|
||||
#define FDATA(n) (0x10 + ((n) * 4))
|
||||
|
||||
#define FRACC 0x50
|
||||
|
||||
#define FREG(n) (0x54 + ((n) * 4))
|
||||
#define FREG_BASE_MASK 0x3fff
|
||||
#define FREG_LIMIT_SHIFT 16
|
||||
#define FREG_LIMIT_MASK (0x03fff << FREG_LIMIT_SHIFT)
|
||||
|
||||
/* Offset is from @ispi->pregs */
|
||||
#define PR(n) ((n) * 4)
|
||||
#define PR_WPE BIT(31)
|
||||
#define PR_LIMIT_SHIFT 16
|
||||
#define PR_LIMIT_MASK (0x3fff << PR_LIMIT_SHIFT)
|
||||
#define PR_RPE BIT(15)
|
||||
#define PR_BASE_MASK 0x3fff
|
||||
/* Last PR is GPR0 */
|
||||
#define PR_NUM (5 + 1)
|
||||
|
||||
/* Offsets are from @ispi->sregs */
|
||||
#define SSFSTS_CTL 0x00
|
||||
#define SSFSTS_CTL_FSMIE BIT(23)
|
||||
#define SSFSTS_CTL_DS BIT(22)
|
||||
#define SSFSTS_CTL_DBC_SHIFT 16
|
||||
#define SSFSTS_CTL_SPOP BIT(11)
|
||||
#define SSFSTS_CTL_ACS BIT(10)
|
||||
#define SSFSTS_CTL_SCGO BIT(9)
|
||||
#define SSFSTS_CTL_COP_SHIFT 12
|
||||
#define SSFSTS_CTL_FRS BIT(7)
|
||||
#define SSFSTS_CTL_DOFRS BIT(6)
|
||||
#define SSFSTS_CTL_AEL BIT(4)
|
||||
#define SSFSTS_CTL_FCERR BIT(3)
|
||||
#define SSFSTS_CTL_FDONE BIT(2)
|
||||
#define SSFSTS_CTL_SCIP BIT(0)
|
||||
|
||||
#define PREOP_OPTYPE 0x04
|
||||
#define OPMENU0 0x08
|
||||
#define OPMENU1 0x0c
|
||||
|
||||
/* CPU specifics */
|
||||
#define BYT_PR 0x74
|
||||
#define BYT_SSFSTS_CTL 0x90
|
||||
#define BYT_BCR 0xfc
|
||||
#define BYT_BCR_WPD BIT(0)
|
||||
#define BYT_FREG_NUM 5
|
||||
|
||||
#define LPT_PR 0x74
|
||||
#define LPT_SSFSTS_CTL 0x90
|
||||
#define LPT_FREG_NUM 5
|
||||
|
||||
#define BXT_PR 0x84
|
||||
#define BXT_SSFSTS_CTL 0xa0
|
||||
#define BXT_FREG_NUM 12
|
||||
|
||||
#define INTEL_SPI_TIMEOUT 5000 /* ms */
|
||||
#define INTEL_SPI_FIFO_SZ 64
|
||||
|
||||
/**
|
||||
* struct intel_spi - Driver private data
|
||||
* @dev: Device pointer
|
||||
* @info: Pointer to board specific info
|
||||
* @nor: SPI NOR layer structure
|
||||
* @base: Beginning of MMIO space
|
||||
* @pregs: Start of protection registers
|
||||
* @sregs: Start of software sequencer registers
|
||||
* @nregions: Maximum number of regions
|
||||
* @writeable: Is the chip writeable
|
||||
* @swseq: Use SW sequencer in register reads/writes
|
||||
* @erase_64k: 64k erase supported
|
||||
* @opcodes: Opcodes which are supported. This are programmed by BIOS
|
||||
* before it locks down the controller.
|
||||
* @preopcodes: Preopcodes which are supported.
|
||||
*/
|
||||
struct intel_spi {
|
||||
struct device *dev;
|
||||
const struct intel_spi_boardinfo *info;
|
||||
struct spi_nor nor;
|
||||
void __iomem *base;
|
||||
void __iomem *pregs;
|
||||
void __iomem *sregs;
|
||||
size_t nregions;
|
||||
bool writeable;
|
||||
bool swseq;
|
||||
bool erase_64k;
|
||||
u8 opcodes[8];
|
||||
u8 preopcodes[2];
|
||||
};
|
||||
|
||||
static bool writeable;
|
||||
module_param(writeable, bool, 0);
|
||||
MODULE_PARM_DESC(writeable, "Enable write access to SPI flash chip (default=0)");
|
||||
|
||||
static void intel_spi_dump_regs(struct intel_spi *ispi)
|
||||
{
|
||||
u32 value;
|
||||
int i;
|
||||
|
||||
dev_dbg(ispi->dev, "BFPREG=0x%08x\n", readl(ispi->base + BFPREG));
|
||||
|
||||
value = readl(ispi->base + HSFSTS_CTL);
|
||||
dev_dbg(ispi->dev, "HSFSTS_CTL=0x%08x\n", value);
|
||||
if (value & HSFSTS_CTL_FLOCKDN)
|
||||
dev_dbg(ispi->dev, "-> Locked\n");
|
||||
|
||||
dev_dbg(ispi->dev, "FADDR=0x%08x\n", readl(ispi->base + FADDR));
|
||||
dev_dbg(ispi->dev, "DLOCK=0x%08x\n", readl(ispi->base + DLOCK));
|
||||
|
||||
for (i = 0; i < 16; i++)
|
||||
dev_dbg(ispi->dev, "FDATA(%d)=0x%08x\n",
|
||||
i, readl(ispi->base + FDATA(i)));
|
||||
|
||||
dev_dbg(ispi->dev, "FRACC=0x%08x\n", readl(ispi->base + FRACC));
|
||||
|
||||
for (i = 0; i < ispi->nregions; i++)
|
||||
dev_dbg(ispi->dev, "FREG(%d)=0x%08x\n", i,
|
||||
readl(ispi->base + FREG(i)));
|
||||
for (i = 0; i < PR_NUM; i++)
|
||||
dev_dbg(ispi->dev, "PR(%d)=0x%08x\n", i,
|
||||
readl(ispi->pregs + PR(i)));
|
||||
|
||||
value = readl(ispi->sregs + SSFSTS_CTL);
|
||||
dev_dbg(ispi->dev, "SSFSTS_CTL=0x%08x\n", value);
|
||||
dev_dbg(ispi->dev, "PREOP_OPTYPE=0x%08x\n",
|
||||
readl(ispi->sregs + PREOP_OPTYPE));
|
||||
dev_dbg(ispi->dev, "OPMENU0=0x%08x\n", readl(ispi->sregs + OPMENU0));
|
||||
dev_dbg(ispi->dev, "OPMENU1=0x%08x\n", readl(ispi->sregs + OPMENU1));
|
||||
|
||||
if (ispi->info->type == INTEL_SPI_BYT)
|
||||
dev_dbg(ispi->dev, "BCR=0x%08x\n", readl(ispi->base + BYT_BCR));
|
||||
|
||||
dev_dbg(ispi->dev, "Protected regions:\n");
|
||||
for (i = 0; i < PR_NUM; i++) {
|
||||
u32 base, limit;
|
||||
|
||||
value = readl(ispi->pregs + PR(i));
|
||||
if (!(value & (PR_WPE | PR_RPE)))
|
||||
continue;
|
||||
|
||||
limit = (value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
|
||||
base = value & PR_BASE_MASK;
|
||||
|
||||
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x [%c%c]\n",
|
||||
i, base << 12, (limit << 12) | 0xfff,
|
||||
value & PR_WPE ? 'W' : '.',
|
||||
value & PR_RPE ? 'R' : '.');
|
||||
}
|
||||
|
||||
dev_dbg(ispi->dev, "Flash regions:\n");
|
||||
for (i = 0; i < ispi->nregions; i++) {
|
||||
u32 region, base, limit;
|
||||
|
||||
region = readl(ispi->base + FREG(i));
|
||||
base = region & FREG_BASE_MASK;
|
||||
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
|
||||
|
||||
if (base >= limit || (i > 0 && limit == 0))
|
||||
dev_dbg(ispi->dev, " %02d disabled\n", i);
|
||||
else
|
||||
dev_dbg(ispi->dev, " %02d base: 0x%08x limit: 0x%08x\n",
|
||||
i, base << 12, (limit << 12) | 0xfff);
|
||||
}
|
||||
|
||||
dev_dbg(ispi->dev, "Using %cW sequencer for register access\n",
|
||||
ispi->swseq ? 'S' : 'H');
|
||||
}
|
||||
|
||||
/* Reads max INTEL_SPI_FIFO_SZ bytes from the device fifo */
|
||||
static int intel_spi_read_block(struct intel_spi *ispi, void *buf, size_t size)
|
||||
{
|
||||
size_t bytes;
|
||||
int i = 0;
|
||||
|
||||
if (size > INTEL_SPI_FIFO_SZ)
|
||||
return -EINVAL;
|
||||
|
||||
while (size > 0) {
|
||||
bytes = min_t(size_t, size, 4);
|
||||
memcpy_fromio(buf, ispi->base + FDATA(i), bytes);
|
||||
size -= bytes;
|
||||
buf += bytes;
|
||||
i++;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* Writes max INTEL_SPI_FIFO_SZ bytes to the device fifo */
|
||||
static int intel_spi_write_block(struct intel_spi *ispi, const void *buf,
|
||||
size_t size)
|
||||
{
|
||||
size_t bytes;
|
||||
int i = 0;
|
||||
|
||||
if (size > INTEL_SPI_FIFO_SZ)
|
||||
return -EINVAL;
|
||||
|
||||
while (size > 0) {
|
||||
bytes = min_t(size_t, size, 4);
|
||||
memcpy_toio(ispi->base + FDATA(i), buf, bytes);
|
||||
size -= bytes;
|
||||
buf += bytes;
|
||||
i++;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int intel_spi_wait_hw_busy(struct intel_spi *ispi)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
return readl_poll_timeout(ispi->base + HSFSTS_CTL, val,
|
||||
!(val & HSFSTS_CTL_SCIP), 0,
|
||||
INTEL_SPI_TIMEOUT * 1000);
|
||||
}
|
||||
|
||||
static int intel_spi_wait_sw_busy(struct intel_spi *ispi)
|
||||
{
|
||||
u32 val;
|
||||
|
||||
return readl_poll_timeout(ispi->sregs + SSFSTS_CTL, val,
|
||||
!(val & SSFSTS_CTL_SCIP), 0,
|
||||
INTEL_SPI_TIMEOUT * 1000);
|
||||
}
|
||||
|
||||
static int intel_spi_init(struct intel_spi *ispi)
|
||||
{
|
||||
u32 opmenu0, opmenu1, val;
|
||||
int i;
|
||||
|
||||
switch (ispi->info->type) {
|
||||
case INTEL_SPI_BYT:
|
||||
ispi->sregs = ispi->base + BYT_SSFSTS_CTL;
|
||||
ispi->pregs = ispi->base + BYT_PR;
|
||||
ispi->nregions = BYT_FREG_NUM;
|
||||
|
||||
if (writeable) {
|
||||
/* Disable write protection */
|
||||
val = readl(ispi->base + BYT_BCR);
|
||||
if (!(val & BYT_BCR_WPD)) {
|
||||
val |= BYT_BCR_WPD;
|
||||
writel(val, ispi->base + BYT_BCR);
|
||||
val = readl(ispi->base + BYT_BCR);
|
||||
}
|
||||
|
||||
ispi->writeable = !!(val & BYT_BCR_WPD);
|
||||
}
|
||||
|
||||
break;
|
||||
|
||||
case INTEL_SPI_LPT:
|
||||
ispi->sregs = ispi->base + LPT_SSFSTS_CTL;
|
||||
ispi->pregs = ispi->base + LPT_PR;
|
||||
ispi->nregions = LPT_FREG_NUM;
|
||||
break;
|
||||
|
||||
case INTEL_SPI_BXT:
|
||||
ispi->sregs = ispi->base + BXT_SSFSTS_CTL;
|
||||
ispi->pregs = ispi->base + BXT_PR;
|
||||
ispi->nregions = BXT_FREG_NUM;
|
||||
ispi->erase_64k = true;
|
||||
break;
|
||||
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
/* Disable #SMI generation */
|
||||
val = readl(ispi->base + HSFSTS_CTL);
|
||||
val &= ~HSFSTS_CTL_FSMIE;
|
||||
writel(val, ispi->base + HSFSTS_CTL);
|
||||
|
||||
/*
|
||||
* BIOS programs allowed opcodes and then locks down the register.
|
||||
* So read back what opcodes it decided to support. That's the set
|
||||
* we are going to support as well.
|
||||
*/
|
||||
opmenu0 = readl(ispi->sregs + OPMENU0);
|
||||
opmenu1 = readl(ispi->sregs + OPMENU1);
|
||||
|
||||
/*
|
||||
* Some controllers can only do basic operations using hardware
|
||||
* sequencer. All other operations are supposed to be carried out
|
||||
* using software sequencer. If we find that BIOS has programmed
|
||||
* opcodes for the software sequencer we use that over the hardware
|
||||
* sequencer.
|
||||
*/
|
||||
if (opmenu0 && opmenu1) {
|
||||
for (i = 0; i < ARRAY_SIZE(ispi->opcodes) / 2; i++) {
|
||||
ispi->opcodes[i] = opmenu0 >> i * 8;
|
||||
ispi->opcodes[i + 4] = opmenu1 >> i * 8;
|
||||
}
|
||||
|
||||
val = readl(ispi->sregs + PREOP_OPTYPE);
|
||||
ispi->preopcodes[0] = val;
|
||||
ispi->preopcodes[1] = val >> 8;
|
||||
|
||||
/* Disable #SMI generation from SW sequencer */
|
||||
val = readl(ispi->sregs + SSFSTS_CTL);
|
||||
val &= ~SSFSTS_CTL_FSMIE;
|
||||
writel(val, ispi->sregs + SSFSTS_CTL);
|
||||
|
||||
ispi->swseq = true;
|
||||
}
|
||||
|
||||
intel_spi_dump_regs(ispi);
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int intel_spi_opcode_index(struct intel_spi *ispi, u8 opcode)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < ARRAY_SIZE(ispi->opcodes); i++)
|
||||
if (ispi->opcodes[i] == opcode)
|
||||
return i;
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
static int intel_spi_hw_cycle(struct intel_spi *ispi, u8 opcode, u8 *buf,
|
||||
int len)
|
||||
{
|
||||
u32 val, status;
|
||||
int ret;
|
||||
|
||||
val = readl(ispi->base + HSFSTS_CTL);
|
||||
val &= ~(HSFSTS_CTL_FCYCLE_MASK | HSFSTS_CTL_FDBC_MASK);
|
||||
|
||||
switch (opcode) {
|
||||
case SPINOR_OP_RDID:
|
||||
val |= HSFSTS_CTL_FCYCLE_RDID;
|
||||
break;
|
||||
case SPINOR_OP_WRSR:
|
||||
val |= HSFSTS_CTL_FCYCLE_WRSR;
|
||||
break;
|
||||
case SPINOR_OP_RDSR:
|
||||
val |= HSFSTS_CTL_FCYCLE_RDSR;
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
val |= (len - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
||||
val |= HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
||||
val |= HSFSTS_CTL_FGO;
|
||||
writel(val, ispi->base + HSFSTS_CTL);
|
||||
|
||||
ret = intel_spi_wait_hw_busy(ispi);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
status = readl(ispi->base + HSFSTS_CTL);
|
||||
if (status & HSFSTS_CTL_FCERR)
|
||||
return -EIO;
|
||||
else if (status & HSFSTS_CTL_AEL)
|
||||
return -EACCES;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int intel_spi_sw_cycle(struct intel_spi *ispi, u8 opcode, u8 *buf,
|
||||
int len)
|
||||
{
|
||||
u32 val, status;
|
||||
int ret;
|
||||
|
||||
ret = intel_spi_opcode_index(ispi, opcode);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
val = (len << SSFSTS_CTL_DBC_SHIFT) | SSFSTS_CTL_DS;
|
||||
val |= ret << SSFSTS_CTL_COP_SHIFT;
|
||||
val |= SSFSTS_CTL_FCERR | SSFSTS_CTL_FDONE;
|
||||
val |= SSFSTS_CTL_SCGO;
|
||||
writel(val, ispi->sregs + SSFSTS_CTL);
|
||||
|
||||
ret = intel_spi_wait_sw_busy(ispi);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
status = readl(ispi->base + SSFSTS_CTL);
|
||||
if (status & SSFSTS_CTL_FCERR)
|
||||
return -EIO;
|
||||
else if (status & SSFSTS_CTL_AEL)
|
||||
return -EACCES;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int intel_spi_read_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
|
||||
{
|
||||
struct intel_spi *ispi = nor->priv;
|
||||
int ret;
|
||||
|
||||
/* Address of the first chip */
|
||||
writel(0, ispi->base + FADDR);
|
||||
|
||||
if (ispi->swseq)
|
||||
ret = intel_spi_sw_cycle(ispi, opcode, buf, len);
|
||||
else
|
||||
ret = intel_spi_hw_cycle(ispi, opcode, buf, len);
|
||||
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
return intel_spi_read_block(ispi, buf, len);
|
||||
}
|
||||
|
||||
static int intel_spi_write_reg(struct spi_nor *nor, u8 opcode, u8 *buf, int len)
|
||||
{
|
||||
struct intel_spi *ispi = nor->priv;
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* This is handled with atomic operation and preop code in Intel
|
||||
* controller so skip it here now.
|
||||
*/
|
||||
if (opcode == SPINOR_OP_WREN)
|
||||
return 0;
|
||||
|
||||
writel(0, ispi->base + FADDR);
|
||||
|
||||
/* Write the value beforehand */
|
||||
ret = intel_spi_write_block(ispi, buf, len);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
if (ispi->swseq)
|
||||
return intel_spi_sw_cycle(ispi, opcode, buf, len);
|
||||
return intel_spi_hw_cycle(ispi, opcode, buf, len);
|
||||
}
|
||||
|
||||
static ssize_t intel_spi_read(struct spi_nor *nor, loff_t from, size_t len,
|
||||
u_char *read_buf)
|
||||
{
|
||||
struct intel_spi *ispi = nor->priv;
|
||||
size_t block_size, retlen = 0;
|
||||
u32 val, status;
|
||||
ssize_t ret;
|
||||
|
||||
switch (nor->read_opcode) {
|
||||
case SPINOR_OP_READ:
|
||||
case SPINOR_OP_READ_FAST:
|
||||
break;
|
||||
default:
|
||||
return -EINVAL;
|
||||
}
|
||||
|
||||
while (len > 0) {
|
||||
block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
|
||||
|
||||
writel(from, ispi->base + FADDR);
|
||||
|
||||
val = readl(ispi->base + HSFSTS_CTL);
|
||||
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
||||
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
||||
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
||||
val |= HSFSTS_CTL_FCYCLE_READ;
|
||||
val |= HSFSTS_CTL_FGO;
|
||||
writel(val, ispi->base + HSFSTS_CTL);
|
||||
|
||||
ret = intel_spi_wait_hw_busy(ispi);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
status = readl(ispi->base + HSFSTS_CTL);
|
||||
if (status & HSFSTS_CTL_FCERR)
|
||||
ret = -EIO;
|
||||
else if (status & HSFSTS_CTL_AEL)
|
||||
ret = -EACCES;
|
||||
|
||||
if (ret < 0) {
|
||||
dev_err(ispi->dev, "read error: %llx: %#x\n", from,
|
||||
status);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = intel_spi_read_block(ispi, read_buf, block_size);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
len -= block_size;
|
||||
from += block_size;
|
||||
retlen += block_size;
|
||||
read_buf += block_size;
|
||||
}
|
||||
|
||||
return retlen;
|
||||
}
|
||||
|
||||
static ssize_t intel_spi_write(struct spi_nor *nor, loff_t to, size_t len,
|
||||
const u_char *write_buf)
|
||||
{
|
||||
struct intel_spi *ispi = nor->priv;
|
||||
size_t block_size, retlen = 0;
|
||||
u32 val, status;
|
||||
ssize_t ret;
|
||||
|
||||
while (len > 0) {
|
||||
block_size = min_t(size_t, len, INTEL_SPI_FIFO_SZ);
|
||||
|
||||
writel(to, ispi->base + FADDR);
|
||||
|
||||
val = readl(ispi->base + HSFSTS_CTL);
|
||||
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
||||
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
||||
val |= (block_size - 1) << HSFSTS_CTL_FDBC_SHIFT;
|
||||
val |= HSFSTS_CTL_FCYCLE_WRITE;
|
||||
|
||||
/* Write enable */
|
||||
if (ispi->preopcodes[1] == SPINOR_OP_WREN)
|
||||
val |= SSFSTS_CTL_SPOP;
|
||||
val |= SSFSTS_CTL_ACS;
|
||||
writel(val, ispi->base + HSFSTS_CTL);
|
||||
|
||||
ret = intel_spi_write_block(ispi, write_buf, block_size);
|
||||
if (ret) {
|
||||
dev_err(ispi->dev, "failed to write block\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Start the write now */
|
||||
val = readl(ispi->base + HSFSTS_CTL);
|
||||
writel(val | HSFSTS_CTL_FGO, ispi->base + HSFSTS_CTL);
|
||||
|
||||
ret = intel_spi_wait_hw_busy(ispi);
|
||||
if (ret) {
|
||||
dev_err(ispi->dev, "timeout\n");
|
||||
return ret;
|
||||
}
|
||||
|
||||
status = readl(ispi->base + HSFSTS_CTL);
|
||||
if (status & HSFSTS_CTL_FCERR)
|
||||
ret = -EIO;
|
||||
else if (status & HSFSTS_CTL_AEL)
|
||||
ret = -EACCES;
|
||||
|
||||
if (ret < 0) {
|
||||
dev_err(ispi->dev, "write error: %llx: %#x\n", to,
|
||||
status);
|
||||
return ret;
|
||||
}
|
||||
|
||||
len -= block_size;
|
||||
to += block_size;
|
||||
retlen += block_size;
|
||||
write_buf += block_size;
|
||||
}
|
||||
|
||||
return retlen;
|
||||
}
|
||||
|
||||
static int intel_spi_erase(struct spi_nor *nor, loff_t offs)
|
||||
{
|
||||
size_t erase_size, len = nor->mtd.erasesize;
|
||||
struct intel_spi *ispi = nor->priv;
|
||||
u32 val, status, cmd;
|
||||
int ret;
|
||||
|
||||
/* If the hardware can do 64k erase use that when possible */
|
||||
if (len >= SZ_64K && ispi->erase_64k) {
|
||||
cmd = HSFSTS_CTL_FCYCLE_ERASE_64K;
|
||||
erase_size = SZ_64K;
|
||||
} else {
|
||||
cmd = HSFSTS_CTL_FCYCLE_ERASE;
|
||||
erase_size = SZ_4K;
|
||||
}
|
||||
|
||||
while (len > 0) {
|
||||
writel(offs, ispi->base + FADDR);
|
||||
|
||||
val = readl(ispi->base + HSFSTS_CTL);
|
||||
val &= ~(HSFSTS_CTL_FDBC_MASK | HSFSTS_CTL_FCYCLE_MASK);
|
||||
val |= HSFSTS_CTL_AEL | HSFSTS_CTL_FCERR | HSFSTS_CTL_FDONE;
|
||||
val |= cmd;
|
||||
val |= HSFSTS_CTL_FGO;
|
||||
writel(val, ispi->base + HSFSTS_CTL);
|
||||
|
||||
ret = intel_spi_wait_hw_busy(ispi);
|
||||
if (ret)
|
||||
return ret;
|
||||
|
||||
status = readl(ispi->base + HSFSTS_CTL);
|
||||
if (status & HSFSTS_CTL_FCERR)
|
||||
return -EIO;
|
||||
else if (status & HSFSTS_CTL_AEL)
|
||||
return -EACCES;
|
||||
|
||||
offs += erase_size;
|
||||
len -= erase_size;
|
||||
}
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static bool intel_spi_is_protected(const struct intel_spi *ispi,
|
||||
unsigned int base, unsigned int limit)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < PR_NUM; i++) {
|
||||
u32 pr_base, pr_limit, pr_value;
|
||||
|
||||
pr_value = readl(ispi->pregs + PR(i));
|
||||
if (!(pr_value & (PR_WPE | PR_RPE)))
|
||||
continue;
|
||||
|
||||
pr_limit = (pr_value & PR_LIMIT_MASK) >> PR_LIMIT_SHIFT;
|
||||
pr_base = pr_value & PR_BASE_MASK;
|
||||
|
||||
if (pr_base >= base && pr_limit <= limit)
|
||||
return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/*
|
||||
* There will be a single partition holding all enabled flash regions. We
|
||||
* call this "BIOS".
|
||||
*/
|
||||
static void intel_spi_fill_partition(struct intel_spi *ispi,
|
||||
struct mtd_partition *part)
|
||||
{
|
||||
u64 end;
|
||||
int i;
|
||||
|
||||
memset(part, 0, sizeof(*part));
|
||||
|
||||
/* Start from the mandatory descriptor region */
|
||||
part->size = 4096;
|
||||
part->name = "BIOS";
|
||||
|
||||
/*
|
||||
* Now try to find where this partition ends based on the flash
|
||||
* region registers.
|
||||
*/
|
||||
for (i = 1; i < ispi->nregions; i++) {
|
||||
u32 region, base, limit;
|
||||
|
||||
region = readl(ispi->base + FREG(i));
|
||||
base = region & FREG_BASE_MASK;
|
||||
limit = (region & FREG_LIMIT_MASK) >> FREG_LIMIT_SHIFT;
|
||||
|
||||
if (base >= limit || limit == 0)
|
||||
continue;
|
||||
|
||||
/*
|
||||
* If any of the regions have protection bits set, make the
|
||||
* whole partition read-only to be on the safe side.
|
||||
*/
|
||||
if (intel_spi_is_protected(ispi, base, limit))
|
||||
ispi->writeable = 0;
|
||||
|
||||
end = (limit << 12) + 4096;
|
||||
if (end > part->size)
|
||||
part->size = end;
|
||||
}
|
||||
}
|
||||
|
||||
struct intel_spi *intel_spi_probe(struct device *dev,
|
||||
struct resource *mem, const struct intel_spi_boardinfo *info)
|
||||
{
|
||||
struct mtd_partition part;
|
||||
struct intel_spi *ispi;
|
||||
int ret;
|
||||
|
||||
if (!info || !mem)
|
||||
return ERR_PTR(-EINVAL);
|
||||
|
||||
ispi = devm_kzalloc(dev, sizeof(*ispi), GFP_KERNEL);
|
||||
if (!ispi)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
|
||||
ispi->base = devm_ioremap_resource(dev, mem);
|
||||
if (IS_ERR(ispi->base))
|
||||
return ispi->base;
|
||||
|
||||
ispi->dev = dev;
|
||||
ispi->info = info;
|
||||
ispi->writeable = info->writeable;
|
||||
|
||||
ret = intel_spi_init(ispi);
|
||||
if (ret)
|
||||
return ERR_PTR(ret);
|
||||
|
||||
ispi->nor.dev = ispi->dev;
|
||||
ispi->nor.priv = ispi;
|
||||
ispi->nor.read_reg = intel_spi_read_reg;
|
||||
ispi->nor.write_reg = intel_spi_write_reg;
|
||||
ispi->nor.read = intel_spi_read;
|
||||
ispi->nor.write = intel_spi_write;
|
||||
ispi->nor.erase = intel_spi_erase;
|
||||
|
||||
ret = spi_nor_scan(&ispi->nor, NULL, SPI_NOR_NORMAL);
|
||||
if (ret) {
|
||||
dev_info(dev, "failed to locate the chip\n");
|
||||
return ERR_PTR(ret);
|
||||
}
|
||||
|
||||
intel_spi_fill_partition(ispi, &part);
|
||||
|
||||
/* Prevent writes if not explicitly enabled */
|
||||
if (!ispi->writeable || !writeable)
|
||||
ispi->nor.mtd.flags &= ~MTD_WRITEABLE;
|
||||
|
||||
ret = mtd_device_parse_register(&ispi->nor.mtd, NULL, NULL, &part, 1);
|
||||
if (ret)
|
||||
return ERR_PTR(ret);
|
||||
|
||||
return ispi;
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(intel_spi_probe);
|
||||
|
||||
int intel_spi_remove(struct intel_spi *ispi)
|
||||
{
|
||||
return mtd_device_unregister(&ispi->nor.mtd);
|
||||
}
|
||||
EXPORT_SYMBOL_GPL(intel_spi_remove);
|
||||
|
||||
MODULE_DESCRIPTION("Intel PCH/PCU SPI flash core driver");
|
||||
MODULE_AUTHOR("Mika Westerberg <mika.westerberg@linux.intel.com>");
|
||||
MODULE_LICENSE("GPL v2");
|
|
@ -0,0 +1,24 @@
|
|||
/*
|
||||
* Intel PCH/PCU SPI flash driver.
|
||||
*
|
||||
* Copyright (C) 2016, Intel Corporation
|
||||
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef INTEL_SPI_H
|
||||
#define INTEL_SPI_H
|
||||
|
||||
#include <linux/platform_data/intel-spi.h>
|
||||
|
||||
struct intel_spi;
|
||||
struct resource;
|
||||
|
||||
struct intel_spi *intel_spi_probe(struct device *dev,
|
||||
struct resource *mem, const struct intel_spi_boardinfo *info);
|
||||
int intel_spi_remove(struct intel_spi *ispi);
|
||||
|
||||
#endif /* INTEL_SPI_H */
|
|
@ -143,7 +143,6 @@ enum {
|
|||
|
||||
struct axp288_chrg_info {
|
||||
struct platform_device *pdev;
|
||||
struct axp20x_chrg_pdata *pdata;
|
||||
struct regmap *regmap;
|
||||
struct regmap_irq_chip_data *regmap_irqc;
|
||||
int irq[CHRG_INTR_END];
|
||||
|
@ -701,110 +700,112 @@ static int axp288_charger_handle_otg_evt(struct notifier_block *nb,
|
|||
return NOTIFY_OK;
|
||||
}
|
||||
|
||||
static void charger_init_hw_regs(struct axp288_chrg_info *info)
|
||||
static int charger_init_hw_regs(struct axp288_chrg_info *info)
|
||||
{
|
||||
int ret, cc, cv;
|
||||
unsigned int val;
|
||||
|
||||
/* Program temperature thresholds */
|
||||
ret = regmap_write(info->regmap, AXP20X_V_LTF_CHRG, CHRG_VLTFC_0C);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
AXP20X_V_LTF_CHRG, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = regmap_write(info->regmap, AXP20X_V_HTF_CHRG, CHRG_VHTFC_45C);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
AXP20X_V_HTF_CHRG, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Do not turn-off charger o/p after charge cycle ends */
|
||||
ret = regmap_update_bits(info->regmap,
|
||||
AXP20X_CHRG_CTRL2,
|
||||
CNTL2_CHG_OUT_TURNON, 1);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
AXP20X_CHRG_CTRL2, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Enable interrupts */
|
||||
ret = regmap_update_bits(info->regmap,
|
||||
AXP20X_IRQ2_EN,
|
||||
BAT_IRQ_CFG_BAT_MASK, 1);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
AXP20X_IRQ2_EN, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
ret = regmap_update_bits(info->regmap, AXP20X_IRQ3_EN,
|
||||
TEMP_IRQ_CFG_MASK, 1);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
AXP20X_IRQ3_EN, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Setup ending condition for charging to be 10% of I(chrg) */
|
||||
ret = regmap_update_bits(info->regmap,
|
||||
AXP20X_CHRG_CTRL1,
|
||||
CHRG_CCCV_ITERM_20P, 0);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
AXP20X_CHRG_CTRL1, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Disable OCV-SOC curve calibration */
|
||||
ret = regmap_update_bits(info->regmap,
|
||||
AXP20X_CC_CTRL,
|
||||
FG_CNTL_OCV_ADJ_EN, 0);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "register(%x) write error(%d)\n",
|
||||
AXP20X_CC_CTRL, ret);
|
||||
|
||||
/* Init charging current and voltage */
|
||||
info->max_cc = info->pdata->max_cc;
|
||||
info->max_cv = info->pdata->max_cv;
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Read current charge voltage and current limit */
|
||||
ret = regmap_read(info->regmap, AXP20X_CHRG_CTRL1, &val);
|
||||
if (ret < 0) {
|
||||
/* Assume default if cannot read */
|
||||
info->cc = info->pdata->def_cc;
|
||||
info->cv = info->pdata->def_cv;
|
||||
} else {
|
||||
/* Determine charge voltage */
|
||||
cv = (val & CHRG_CCCV_CV_MASK) >> CHRG_CCCV_CV_BIT_POS;
|
||||
switch (cv) {
|
||||
case CHRG_CCCV_CV_4100MV:
|
||||
info->cv = CV_4100MV;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4150MV:
|
||||
info->cv = CV_4150MV;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4200MV:
|
||||
info->cv = CV_4200MV;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4350MV:
|
||||
info->cv = CV_4350MV;
|
||||
break;
|
||||
default:
|
||||
info->cv = INT_MAX;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Determine charge current limit */
|
||||
cc = (ret & CHRG_CCCV_CC_MASK) >> CHRG_CCCV_CC_BIT_POS;
|
||||
cc = (cc * CHRG_CCCV_CC_LSB_RES) + CHRG_CCCV_CC_OFFSET;
|
||||
info->cc = cc;
|
||||
|
||||
/* Program default charging voltage and current */
|
||||
cc = min(info->pdata->def_cc, info->max_cc);
|
||||
cv = min(info->pdata->def_cv, info->max_cv);
|
||||
|
||||
ret = axp288_charger_set_cc(info, cc);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev,
|
||||
"error(%d) in setting CC\n", ret);
|
||||
|
||||
ret = axp288_charger_set_cv(info, cv);
|
||||
if (ret < 0)
|
||||
dev_warn(&info->pdev->dev,
|
||||
"error(%d) in setting CV\n", ret);
|
||||
dev_err(&info->pdev->dev, "register(%x) read error(%d)\n",
|
||||
AXP20X_CHRG_CTRL1, ret);
|
||||
return ret;
|
||||
}
|
||||
|
||||
/* Determine charge voltage */
|
||||
cv = (val & CHRG_CCCV_CV_MASK) >> CHRG_CCCV_CV_BIT_POS;
|
||||
switch (cv) {
|
||||
case CHRG_CCCV_CV_4100MV:
|
||||
info->cv = CV_4100MV;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4150MV:
|
||||
info->cv = CV_4150MV;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4200MV:
|
||||
info->cv = CV_4200MV;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4350MV:
|
||||
info->cv = CV_4350MV;
|
||||
break;
|
||||
}
|
||||
|
||||
/* Determine charge current limit */
|
||||
cc = (ret & CHRG_CCCV_CC_MASK) >> CHRG_CCCV_CC_BIT_POS;
|
||||
cc = (cc * CHRG_CCCV_CC_LSB_RES) + CHRG_CCCV_CC_OFFSET;
|
||||
info->cc = cc;
|
||||
|
||||
/*
|
||||
* Do not allow the user to configure higher settings then those
|
||||
* set by the firmware
|
||||
*/
|
||||
info->max_cv = info->cv;
|
||||
info->max_cc = info->cc;
|
||||
|
||||
return 0;
|
||||
}
|
||||
|
||||
static int axp288_charger_probe(struct platform_device *pdev)
|
||||
|
@ -821,15 +822,6 @@ static int axp288_charger_probe(struct platform_device *pdev)
|
|||
info->pdev = pdev;
|
||||
info->regmap = axp20x->regmap;
|
||||
info->regmap_irqc = axp20x->regmap_irqc;
|
||||
info->pdata = pdev->dev.platform_data;
|
||||
|
||||
if (!info->pdata) {
|
||||
/* Try ACPI provided pdata via device properties */
|
||||
if (!device_property_present(&pdev->dev,
|
||||
"axp288_charger_data\n"))
|
||||
dev_err(&pdev->dev, "failed to get platform data\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
info->cable.edev = extcon_get_extcon_dev(AXP288_EXTCON_DEV_NAME);
|
||||
if (info->cable.edev == NULL) {
|
||||
|
@ -916,7 +908,9 @@ static int axp288_charger_probe(struct platform_device *pdev)
|
|||
}
|
||||
}
|
||||
|
||||
charger_init_hw_regs(info);
|
||||
ret = charger_init_hw_regs(info);
|
||||
if (ret)
|
||||
goto intr_reg_failed;
|
||||
|
||||
return 0;
|
||||
|
||||
|
|
|
@ -49,11 +49,6 @@
|
|||
#define CHRG_CCCV_CV_4350MV 0x3 /* 4.35V */
|
||||
#define CHRG_CCCV_CHG_EN (1 << 7)
|
||||
|
||||
#define CV_4100 4100 /* 4100mV */
|
||||
#define CV_4150 4150 /* 4150mV */
|
||||
#define CV_4200 4200 /* 4200mV */
|
||||
#define CV_4350 4350 /* 4350mV */
|
||||
|
||||
#define TEMP_IRQ_CFG_QWBTU (1 << 0)
|
||||
#define TEMP_IRQ_CFG_WBTU (1 << 1)
|
||||
#define TEMP_IRQ_CFG_QWBTO (1 << 2)
|
||||
|
@ -104,9 +99,7 @@
|
|||
|
||||
/* 1.1mV per LSB expressed in uV */
|
||||
#define VOLTAGE_FROM_ADC(a) ((a * 11) / 10)
|
||||
/* properties converted to tenths of degrees, uV, uA, uW */
|
||||
#define PROP_TEMP(a) ((a) * 10)
|
||||
#define UNPROP_TEMP(a) ((a) / 10)
|
||||
/* properties converted to uV, uA */
|
||||
#define PROP_VOLT(a) ((a) * 1000)
|
||||
#define PROP_CURR(a) ((a) * 1000)
|
||||
|
||||
|
@ -122,13 +115,13 @@ enum {
|
|||
|
||||
struct axp288_fg_info {
|
||||
struct platform_device *pdev;
|
||||
struct axp20x_fg_pdata *pdata;
|
||||
struct regmap *regmap;
|
||||
struct regmap_irq_chip_data *regmap_irqc;
|
||||
int irq[AXP288_FG_INTR_NUM];
|
||||
struct power_supply *bat;
|
||||
struct mutex lock;
|
||||
int status;
|
||||
int max_volt;
|
||||
struct delayed_work status_monitor;
|
||||
struct dentry *debug_file;
|
||||
};
|
||||
|
@ -138,22 +131,14 @@ static enum power_supply_property fuel_gauge_props[] = {
|
|||
POWER_SUPPLY_PROP_PRESENT,
|
||||
POWER_SUPPLY_PROP_HEALTH,
|
||||
POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN,
|
||||
POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN,
|
||||
POWER_SUPPLY_PROP_VOLTAGE_NOW,
|
||||
POWER_SUPPLY_PROP_VOLTAGE_OCV,
|
||||
POWER_SUPPLY_PROP_CURRENT_NOW,
|
||||
POWER_SUPPLY_PROP_CAPACITY,
|
||||
POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN,
|
||||
POWER_SUPPLY_PROP_TEMP,
|
||||
POWER_SUPPLY_PROP_TEMP_MAX,
|
||||
POWER_SUPPLY_PROP_TEMP_MIN,
|
||||
POWER_SUPPLY_PROP_TEMP_ALERT_MIN,
|
||||
POWER_SUPPLY_PROP_TEMP_ALERT_MAX,
|
||||
POWER_SUPPLY_PROP_TECHNOLOGY,
|
||||
POWER_SUPPLY_PROP_CHARGE_FULL,
|
||||
POWER_SUPPLY_PROP_CHARGE_NOW,
|
||||
POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN,
|
||||
POWER_SUPPLY_PROP_MODEL_NAME,
|
||||
};
|
||||
|
||||
static int fuel_gauge_reg_readb(struct axp288_fg_info *info, int reg)
|
||||
|
@ -417,102 +402,6 @@ static int fuel_gauge_get_current(struct axp288_fg_info *info, int *cur)
|
|||
return ret;
|
||||
}
|
||||
|
||||
static int temp_to_adc(struct axp288_fg_info *info, int tval)
|
||||
{
|
||||
int rntc = 0, i, ret, adc_val;
|
||||
int rmin, rmax, tmin, tmax;
|
||||
int tcsz = info->pdata->tcsz;
|
||||
|
||||
/* get the Rntc resitance value for this temp */
|
||||
if (tval > info->pdata->thermistor_curve[0][1]) {
|
||||
rntc = info->pdata->thermistor_curve[0][0];
|
||||
} else if (tval <= info->pdata->thermistor_curve[tcsz-1][1]) {
|
||||
rntc = info->pdata->thermistor_curve[tcsz-1][0];
|
||||
} else {
|
||||
for (i = 1; i < tcsz; i++) {
|
||||
if (tval > info->pdata->thermistor_curve[i][1]) {
|
||||
rmin = info->pdata->thermistor_curve[i-1][0];
|
||||
rmax = info->pdata->thermistor_curve[i][0];
|
||||
tmin = info->pdata->thermistor_curve[i-1][1];
|
||||
tmax = info->pdata->thermistor_curve[i][1];
|
||||
rntc = rmin + ((rmax - rmin) *
|
||||
(tval - tmin) / (tmax - tmin));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* we need the current to calculate the proper adc voltage */
|
||||
ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE);
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
|
||||
ret = 0x30;
|
||||
}
|
||||
|
||||
/*
|
||||
* temperature is proportional to NTS thermistor resistance
|
||||
* ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA
|
||||
* [12-bit ADC VAL] = R_NTC(Ω) * current / 800
|
||||
*/
|
||||
adc_val = rntc * (20 + (20 * ((ret >> 4) & 0x3))) / 800;
|
||||
|
||||
return adc_val;
|
||||
}
|
||||
|
||||
static int adc_to_temp(struct axp288_fg_info *info, int adc_val)
|
||||
{
|
||||
int ret, r, i, tval = 0;
|
||||
int rmin, rmax, tmin, tmax;
|
||||
int tcsz = info->pdata->tcsz;
|
||||
|
||||
ret = fuel_gauge_reg_readb(info, AXP20X_ADC_RATE);
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
|
||||
ret = 0x30;
|
||||
}
|
||||
|
||||
/*
|
||||
* temperature is proportional to NTS thermistor resistance
|
||||
* ADC_RATE[5-4] determines current, 00=20uA,01=40uA,10=60uA,11=80uA
|
||||
* R_NTC(Ω) = [12-bit ADC VAL] * 800 / current
|
||||
*/
|
||||
r = adc_val * 800 / (20 + (20 * ((ret >> 4) & 0x3)));
|
||||
|
||||
if (r < info->pdata->thermistor_curve[0][0]) {
|
||||
tval = info->pdata->thermistor_curve[0][1];
|
||||
} else if (r >= info->pdata->thermistor_curve[tcsz-1][0]) {
|
||||
tval = info->pdata->thermistor_curve[tcsz-1][1];
|
||||
} else {
|
||||
for (i = 1; i < tcsz; i++) {
|
||||
if (r < info->pdata->thermistor_curve[i][0]) {
|
||||
rmin = info->pdata->thermistor_curve[i-1][0];
|
||||
rmax = info->pdata->thermistor_curve[i][0];
|
||||
tmin = info->pdata->thermistor_curve[i-1][1];
|
||||
tmax = info->pdata->thermistor_curve[i][1];
|
||||
tval = tmin + ((tmax - tmin) *
|
||||
(r - rmin) / (rmax - rmin));
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return tval;
|
||||
}
|
||||
|
||||
static int fuel_gauge_get_btemp(struct axp288_fg_info *info, int *btemp)
|
||||
{
|
||||
int ret, raw_val = 0;
|
||||
|
||||
ret = pmic_read_adc_val("axp288-batt-temp", &raw_val, info);
|
||||
if (ret < 0)
|
||||
goto temp_read_fail;
|
||||
|
||||
*btemp = adc_to_temp(info, raw_val);
|
||||
|
||||
temp_read_fail:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int fuel_gauge_get_vocv(struct axp288_fg_info *info, int *vocv)
|
||||
{
|
||||
int ret, value;
|
||||
|
@ -535,25 +424,14 @@ static int fuel_gauge_get_vocv(struct axp288_fg_info *info, int *vocv)
|
|||
|
||||
static int fuel_gauge_battery_health(struct axp288_fg_info *info)
|
||||
{
|
||||
int temp, vocv;
|
||||
int ret, health = POWER_SUPPLY_HEALTH_UNKNOWN;
|
||||
|
||||
ret = fuel_gauge_get_btemp(info, &temp);
|
||||
if (ret < 0)
|
||||
goto health_read_fail;
|
||||
int ret, vocv, health = POWER_SUPPLY_HEALTH_UNKNOWN;
|
||||
|
||||
ret = fuel_gauge_get_vocv(info, &vocv);
|
||||
if (ret < 0)
|
||||
goto health_read_fail;
|
||||
|
||||
if (vocv > info->pdata->max_volt)
|
||||
if (vocv > info->max_volt)
|
||||
health = POWER_SUPPLY_HEALTH_OVERVOLTAGE;
|
||||
else if (temp > info->pdata->max_temp)
|
||||
health = POWER_SUPPLY_HEALTH_OVERHEAT;
|
||||
else if (temp < info->pdata->min_temp)
|
||||
health = POWER_SUPPLY_HEALTH_COLD;
|
||||
else if (vocv < info->pdata->min_volt)
|
||||
health = POWER_SUPPLY_HEALTH_DEAD;
|
||||
else
|
||||
health = POWER_SUPPLY_HEALTH_GOOD;
|
||||
|
||||
|
@ -561,28 +439,6 @@ static int fuel_gauge_battery_health(struct axp288_fg_info *info)
|
|||
return health;
|
||||
}
|
||||
|
||||
static int fuel_gauge_set_high_btemp_alert(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret, adc_val;
|
||||
|
||||
/* program temperature threshold as 1/16 ADC value */
|
||||
adc_val = temp_to_adc(info, info->pdata->max_temp);
|
||||
ret = fuel_gauge_reg_writeb(info, AXP20X_V_HTF_DISCHRG, adc_val >> 4);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int fuel_gauge_set_low_btemp_alert(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret, adc_val;
|
||||
|
||||
/* program temperature threshold as 1/16 ADC value */
|
||||
adc_val = temp_to_adc(info, info->pdata->min_temp);
|
||||
ret = fuel_gauge_reg_writeb(info, AXP20X_V_LTF_DISCHRG, adc_val >> 4);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int fuel_gauge_get_property(struct power_supply *ps,
|
||||
enum power_supply_property prop,
|
||||
union power_supply_propval *val)
|
||||
|
@ -643,20 +499,6 @@ static int fuel_gauge_get_property(struct power_supply *ps,
|
|||
goto fuel_gauge_read_err;
|
||||
val->intval = (ret & 0x0f);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_TEMP:
|
||||
ret = fuel_gauge_get_btemp(info, &value);
|
||||
if (ret < 0)
|
||||
goto fuel_gauge_read_err;
|
||||
val->intval = PROP_TEMP(value);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_TEMP_MAX:
|
||||
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
|
||||
val->intval = PROP_TEMP(info->pdata->max_temp);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_TEMP_MIN:
|
||||
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
|
||||
val->intval = PROP_TEMP(info->pdata->min_temp);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_TECHNOLOGY:
|
||||
val->intval = POWER_SUPPLY_TECHNOLOGY_LION;
|
||||
break;
|
||||
|
@ -684,17 +526,8 @@ static int fuel_gauge_get_property(struct power_supply *ps,
|
|||
value |= (ret & FG_DES_CAP0_VAL_MASK);
|
||||
val->intval = value * FG_DES_CAP_RES_LSB;
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN:
|
||||
val->intval = PROP_CURR(info->pdata->design_cap);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_VOLTAGE_MAX_DESIGN:
|
||||
val->intval = PROP_VOLT(info->pdata->max_volt);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_VOLTAGE_MIN_DESIGN:
|
||||
val->intval = PROP_VOLT(info->pdata->min_volt);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_MODEL_NAME:
|
||||
val->strval = info->pdata->battid;
|
||||
val->intval = PROP_VOLT(info->max_volt);
|
||||
break;
|
||||
default:
|
||||
mutex_unlock(&info->lock);
|
||||
|
@ -718,35 +551,6 @@ static int fuel_gauge_set_property(struct power_supply *ps,
|
|||
|
||||
mutex_lock(&info->lock);
|
||||
switch (prop) {
|
||||
case POWER_SUPPLY_PROP_STATUS:
|
||||
info->status = val->intval;
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_TEMP_MIN:
|
||||
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
|
||||
if ((val->intval < PD_DEF_MIN_TEMP) ||
|
||||
(val->intval > PD_DEF_MAX_TEMP)) {
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
info->pdata->min_temp = UNPROP_TEMP(val->intval);
|
||||
ret = fuel_gauge_set_low_btemp_alert(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev,
|
||||
"temp alert min set fail:%d\n", ret);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_TEMP_MAX:
|
||||
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
|
||||
if ((val->intval < PD_DEF_MIN_TEMP) ||
|
||||
(val->intval > PD_DEF_MAX_TEMP)) {
|
||||
ret = -EINVAL;
|
||||
break;
|
||||
}
|
||||
info->pdata->max_temp = UNPROP_TEMP(val->intval);
|
||||
ret = fuel_gauge_set_high_btemp_alert(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev,
|
||||
"temp alert max set fail:%d\n", ret);
|
||||
break;
|
||||
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
|
||||
if ((val->intval < 0) || (val->intval > 15)) {
|
||||
ret = -EINVAL;
|
||||
|
@ -774,11 +578,6 @@ static int fuel_gauge_property_is_writeable(struct power_supply *psy,
|
|||
int ret;
|
||||
|
||||
switch (psp) {
|
||||
case POWER_SUPPLY_PROP_STATUS:
|
||||
case POWER_SUPPLY_PROP_TEMP_MIN:
|
||||
case POWER_SUPPLY_PROP_TEMP_ALERT_MIN:
|
||||
case POWER_SUPPLY_PROP_TEMP_MAX:
|
||||
case POWER_SUPPLY_PROP_TEMP_ALERT_MAX:
|
||||
case POWER_SUPPLY_PROP_CAPACITY_ALERT_MIN:
|
||||
ret = 1;
|
||||
break;
|
||||
|
@ -863,158 +662,6 @@ static const struct power_supply_desc fuel_gauge_desc = {
|
|||
.external_power_changed = fuel_gauge_external_power_changed,
|
||||
};
|
||||
|
||||
static int fuel_gauge_set_lowbatt_thresholds(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret;
|
||||
u8 reg_val;
|
||||
|
||||
ret = fuel_gauge_reg_readb(info, AXP20X_FG_RES);
|
||||
if (ret < 0) {
|
||||
dev_err(&info->pdev->dev, "%s:read err:%d\n", __func__, ret);
|
||||
return ret;
|
||||
}
|
||||
ret = (ret & FG_REP_CAP_VAL_MASK);
|
||||
|
||||
if (ret > FG_LOW_CAP_WARN_THR)
|
||||
reg_val = FG_LOW_CAP_WARN_THR;
|
||||
else if (ret > FG_LOW_CAP_CRIT_THR)
|
||||
reg_val = FG_LOW_CAP_CRIT_THR;
|
||||
else
|
||||
reg_val = FG_LOW_CAP_SHDN_THR;
|
||||
|
||||
reg_val |= FG_LOW_CAP_THR1_VAL;
|
||||
ret = fuel_gauge_reg_writeb(info, AXP288_FG_LOW_CAP_REG, reg_val);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "%s:write err:%d\n", __func__, ret);
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int fuel_gauge_program_vbatt_full(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret;
|
||||
u8 val;
|
||||
|
||||
ret = fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1);
|
||||
if (ret < 0)
|
||||
goto fg_prog_ocv_fail;
|
||||
else
|
||||
val = (ret & ~CHRG_CCCV_CV_MASK);
|
||||
|
||||
switch (info->pdata->max_volt) {
|
||||
case CV_4100:
|
||||
val |= (CHRG_CCCV_CV_4100MV << CHRG_CCCV_CV_BIT_POS);
|
||||
break;
|
||||
case CV_4150:
|
||||
val |= (CHRG_CCCV_CV_4150MV << CHRG_CCCV_CV_BIT_POS);
|
||||
break;
|
||||
case CV_4200:
|
||||
val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS);
|
||||
break;
|
||||
case CV_4350:
|
||||
val |= (CHRG_CCCV_CV_4350MV << CHRG_CCCV_CV_BIT_POS);
|
||||
break;
|
||||
default:
|
||||
val |= (CHRG_CCCV_CV_4200MV << CHRG_CCCV_CV_BIT_POS);
|
||||
break;
|
||||
}
|
||||
|
||||
ret = fuel_gauge_reg_writeb(info, AXP20X_CHRG_CTRL1, val);
|
||||
fg_prog_ocv_fail:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int fuel_gauge_program_design_cap(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = fuel_gauge_reg_writeb(info,
|
||||
AXP288_FG_DES_CAP1_REG, info->pdata->cap1);
|
||||
if (ret < 0)
|
||||
goto fg_prog_descap_fail;
|
||||
|
||||
ret = fuel_gauge_reg_writeb(info,
|
||||
AXP288_FG_DES_CAP0_REG, info->pdata->cap0);
|
||||
|
||||
fg_prog_descap_fail:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int fuel_gauge_program_ocv_curve(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret = 0, i;
|
||||
|
||||
for (i = 0; i < OCV_CURVE_SIZE; i++) {
|
||||
ret = fuel_gauge_reg_writeb(info,
|
||||
AXP288_FG_OCV_CURVE_REG + i, info->pdata->ocv_curve[i]);
|
||||
if (ret < 0)
|
||||
goto fg_prog_ocv_fail;
|
||||
}
|
||||
|
||||
fg_prog_ocv_fail:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static int fuel_gauge_program_rdc_vals(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret;
|
||||
|
||||
ret = fuel_gauge_reg_writeb(info,
|
||||
AXP288_FG_RDC1_REG, info->pdata->rdc1);
|
||||
if (ret < 0)
|
||||
goto fg_prog_ocv_fail;
|
||||
|
||||
ret = fuel_gauge_reg_writeb(info,
|
||||
AXP288_FG_RDC0_REG, info->pdata->rdc0);
|
||||
|
||||
fg_prog_ocv_fail:
|
||||
return ret;
|
||||
}
|
||||
|
||||
static void fuel_gauge_init_config_regs(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret;
|
||||
|
||||
/*
|
||||
* check if the config data is already
|
||||
* programmed and if so just return.
|
||||
*/
|
||||
|
||||
ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG);
|
||||
if (ret < 0) {
|
||||
dev_warn(&info->pdev->dev, "CAP1 reg read err!!\n");
|
||||
} else if (!(ret & FG_DES_CAP1_VALID)) {
|
||||
dev_info(&info->pdev->dev, "FG data needs to be initialized\n");
|
||||
} else {
|
||||
dev_info(&info->pdev->dev, "FG data is already initialized\n");
|
||||
return;
|
||||
}
|
||||
|
||||
ret = fuel_gauge_program_vbatt_full(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "set vbatt full fail:%d\n", ret);
|
||||
|
||||
ret = fuel_gauge_program_design_cap(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "set design cap fail:%d\n", ret);
|
||||
|
||||
ret = fuel_gauge_program_rdc_vals(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "set rdc fail:%d\n", ret);
|
||||
|
||||
ret = fuel_gauge_program_ocv_curve(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "set ocv curve fail:%d\n", ret);
|
||||
|
||||
ret = fuel_gauge_set_lowbatt_thresholds(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "lowbatt thr set fail:%d\n", ret);
|
||||
|
||||
ret = fuel_gauge_reg_writeb(info, AXP20X_CC_CTRL, 0xef);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "gauge cntl set fail:%d\n", ret);
|
||||
}
|
||||
|
||||
static void fuel_gauge_init_irq(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret, i, pirq;
|
||||
|
@ -1054,17 +701,8 @@ static void fuel_gauge_init_irq(struct axp288_fg_info *info)
|
|||
|
||||
static void fuel_gauge_init_hw_regs(struct axp288_fg_info *info)
|
||||
{
|
||||
int ret;
|
||||
unsigned int val;
|
||||
|
||||
ret = fuel_gauge_set_high_btemp_alert(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "high batt temp set fail:%d\n", ret);
|
||||
|
||||
ret = fuel_gauge_set_low_btemp_alert(info);
|
||||
if (ret < 0)
|
||||
dev_err(&info->pdev->dev, "low batt temp set fail:%d\n", ret);
|
||||
|
||||
/* enable interrupts */
|
||||
val = fuel_gauge_reg_readb(info, AXP20X_IRQ3_EN);
|
||||
val |= TEMP_IRQ_CFG_MASK;
|
||||
|
@ -1090,15 +728,39 @@ static int axp288_fuel_gauge_probe(struct platform_device *pdev)
|
|||
info->regmap = axp20x->regmap;
|
||||
info->regmap_irqc = axp20x->regmap_irqc;
|
||||
info->status = POWER_SUPPLY_STATUS_UNKNOWN;
|
||||
info->pdata = pdev->dev.platform_data;
|
||||
if (!info->pdata)
|
||||
return -ENODEV;
|
||||
|
||||
platform_set_drvdata(pdev, info);
|
||||
|
||||
mutex_init(&info->lock);
|
||||
INIT_DELAYED_WORK(&info->status_monitor, fuel_gauge_status_monitor);
|
||||
|
||||
ret = fuel_gauge_reg_readb(info, AXP288_FG_DES_CAP1_REG);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
|
||||
if (!(ret & FG_DES_CAP1_VALID)) {
|
||||
dev_err(&pdev->dev, "axp288 not configured by firmware\n");
|
||||
return -ENODEV;
|
||||
}
|
||||
|
||||
ret = fuel_gauge_reg_readb(info, AXP20X_CHRG_CTRL1);
|
||||
if (ret < 0)
|
||||
return ret;
|
||||
switch ((ret & CHRG_CCCV_CV_MASK) >> CHRG_CCCV_CV_BIT_POS) {
|
||||
case CHRG_CCCV_CV_4100MV:
|
||||
info->max_volt = 4100;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4150MV:
|
||||
info->max_volt = 4150;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4200MV:
|
||||
info->max_volt = 4200;
|
||||
break;
|
||||
case CHRG_CCCV_CV_4350MV:
|
||||
info->max_volt = 4350;
|
||||
break;
|
||||
}
|
||||
|
||||
psy_cfg.drv_data = info;
|
||||
info->bat = power_supply_register(&pdev->dev, &fuel_gauge_desc, &psy_cfg);
|
||||
if (IS_ERR(info->bat)) {
|
||||
|
@ -1108,12 +770,11 @@ static int axp288_fuel_gauge_probe(struct platform_device *pdev)
|
|||
}
|
||||
|
||||
fuel_gauge_create_debugfs(info);
|
||||
fuel_gauge_init_config_regs(info);
|
||||
fuel_gauge_init_irq(info);
|
||||
fuel_gauge_init_hw_regs(info);
|
||||
schedule_delayed_work(&info->status_monitor, STATUS_MON_DELAY_JIFFIES);
|
||||
|
||||
return ret;
|
||||
return 0;
|
||||
}
|
||||
|
||||
static const struct platform_device_id axp288_fg_id_table[] = {
|
||||
|
|
|
@ -532,35 +532,6 @@ struct axp20x_dev {
|
|||
const struct regmap_irq_chip *regmap_irq_chip;
|
||||
};
|
||||
|
||||
#define BATTID_LEN 64
|
||||
#define OCV_CURVE_SIZE 32
|
||||
#define MAX_THERM_CURVE_SIZE 25
|
||||
#define PD_DEF_MIN_TEMP 0
|
||||
#define PD_DEF_MAX_TEMP 55
|
||||
|
||||
struct axp20x_fg_pdata {
|
||||
char battid[BATTID_LEN + 1];
|
||||
int design_cap;
|
||||
int min_volt;
|
||||
int max_volt;
|
||||
int max_temp;
|
||||
int min_temp;
|
||||
int cap1;
|
||||
int cap0;
|
||||
int rdc1;
|
||||
int rdc0;
|
||||
int ocv_curve[OCV_CURVE_SIZE];
|
||||
int tcsz;
|
||||
int thermistor_curve[MAX_THERM_CURVE_SIZE][2];
|
||||
};
|
||||
|
||||
struct axp20x_chrg_pdata {
|
||||
int max_cc;
|
||||
int max_cv;
|
||||
int def_cc;
|
||||
int def_cv;
|
||||
};
|
||||
|
||||
struct axp288_extcon_pdata {
|
||||
/* GPIO pin control to switch D+/D- lines b/w PMIC and SOC */
|
||||
struct gpio_desc *gpio_mux_cntl;
|
||||
|
|
|
@ -1839,18 +1839,69 @@ struct ec_response_tmp006_get_raw {
|
|||
*
|
||||
* Returns raw data for keyboard cols; see ec_response_mkbp_info.cols for
|
||||
* expected response size.
|
||||
*
|
||||
* NOTE: This has been superseded by EC_CMD_MKBP_GET_NEXT_EVENT. If you wish
|
||||
* to obtain the instantaneous state, use EC_CMD_MKBP_INFO with the type
|
||||
* EC_MKBP_INFO_CURRENT and event EC_MKBP_EVENT_KEY_MATRIX.
|
||||
*/
|
||||
#define EC_CMD_MKBP_STATE 0x60
|
||||
|
||||
/* Provide information about the matrix : number of rows and columns */
|
||||
/*
|
||||
* Provide information about various MKBP things. See enum ec_mkbp_info_type.
|
||||
*/
|
||||
#define EC_CMD_MKBP_INFO 0x61
|
||||
|
||||
struct ec_response_mkbp_info {
|
||||
uint32_t rows;
|
||||
uint32_t cols;
|
||||
uint8_t switches;
|
||||
/* Formerly "switches", which was 0. */
|
||||
uint8_t reserved;
|
||||
} __packed;
|
||||
|
||||
struct ec_params_mkbp_info {
|
||||
uint8_t info_type;
|
||||
uint8_t event_type;
|
||||
} __packed;
|
||||
|
||||
enum ec_mkbp_info_type {
|
||||
/*
|
||||
* Info about the keyboard matrix: number of rows and columns.
|
||||
*
|
||||
* Returns struct ec_response_mkbp_info.
|
||||
*/
|
||||
EC_MKBP_INFO_KBD = 0,
|
||||
|
||||
/*
|
||||
* For buttons and switches, info about which specifically are
|
||||
* supported. event_type must be set to one of the values in enum
|
||||
* ec_mkbp_event.
|
||||
*
|
||||
* For EC_MKBP_EVENT_BUTTON and EC_MKBP_EVENT_SWITCH, returns a 4 byte
|
||||
* bitmask indicating which buttons or switches are present. See the
|
||||
* bit inidices below.
|
||||
*/
|
||||
EC_MKBP_INFO_SUPPORTED = 1,
|
||||
|
||||
/*
|
||||
* Instantaneous state of buttons and switches.
|
||||
*
|
||||
* event_type must be set to one of the values in enum ec_mkbp_event.
|
||||
*
|
||||
* For EC_MKBP_EVENT_KEY_MATRIX, returns uint8_t key_matrix[13]
|
||||
* indicating the current state of the keyboard matrix.
|
||||
*
|
||||
* For EC_MKBP_EVENT_HOST_EVENT, return uint32_t host_event, the raw
|
||||
* event state.
|
||||
*
|
||||
* For EC_MKBP_EVENT_BUTTON, returns uint32_t buttons, indicating the
|
||||
* state of supported buttons.
|
||||
*
|
||||
* For EC_MKBP_EVENT_SWITCH, returns uint32_t switches, indicating the
|
||||
* state of supported switches.
|
||||
*/
|
||||
EC_MKBP_INFO_CURRENT = 2,
|
||||
};
|
||||
|
||||
/* Simulate key press */
|
||||
#define EC_CMD_MKBP_SIMULATE_KEY 0x62
|
||||
|
||||
|
@ -1983,6 +2034,12 @@ enum ec_mkbp_event {
|
|||
/* New Sensor FIFO data. The event data is fifo_info structure. */
|
||||
EC_MKBP_EVENT_SENSOR_FIFO = 2,
|
||||
|
||||
/* The state of the non-matrixed buttons have changed. */
|
||||
EC_MKBP_EVENT_BUTTON = 3,
|
||||
|
||||
/* The state of the switches have changed. */
|
||||
EC_MKBP_EVENT_SWITCH = 4,
|
||||
|
||||
/* Number of MKBP events */
|
||||
EC_MKBP_EVENT_COUNT,
|
||||
};
|
||||
|
@ -1992,6 +2049,9 @@ union ec_response_get_next_data {
|
|||
|
||||
/* Unaligned */
|
||||
uint32_t host_event;
|
||||
|
||||
uint32_t buttons;
|
||||
uint32_t switches;
|
||||
} __packed;
|
||||
|
||||
struct ec_response_get_next_event {
|
||||
|
@ -2000,6 +2060,16 @@ struct ec_response_get_next_event {
|
|||
union ec_response_get_next_data data;
|
||||
} __packed;
|
||||
|
||||
/* Bit indices for buttons and switches.*/
|
||||
/* Buttons */
|
||||
#define EC_MKBP_POWER_BUTTON 0
|
||||
#define EC_MKBP_VOL_UP 1
|
||||
#define EC_MKBP_VOL_DOWN 2
|
||||
|
||||
/* Switches */
|
||||
#define EC_MKBP_LID_OPEN 0
|
||||
#define EC_MKBP_TABLET_MODE 1
|
||||
|
||||
/*****************************************************************************/
|
||||
/* Temperature sensor commands */
|
||||
|
||||
|
|
|
@ -20,6 +20,8 @@
|
|||
#ifndef LPC_ICH_H
|
||||
#define LPC_ICH_H
|
||||
|
||||
#include <linux/platform_data/intel-spi.h>
|
||||
|
||||
/* GPIO resources */
|
||||
#define ICH_RES_GPIO 0
|
||||
#define ICH_RES_GPE0 1
|
||||
|
@ -40,6 +42,7 @@ struct lpc_ich_info {
|
|||
char name[32];
|
||||
unsigned int iTCO_version;
|
||||
unsigned int gpio_version;
|
||||
enum intel_spi_type spi_type;
|
||||
u8 use_gpio;
|
||||
};
|
||||
|
||||
|
|
|
@ -0,0 +1,31 @@
|
|||
/*
|
||||
* Intel PCH/PCU SPI flash driver.
|
||||
*
|
||||
* Copyright (C) 2016, Intel Corporation
|
||||
* Author: Mika Westerberg <mika.westerberg@linux.intel.com>
|
||||
*
|
||||
* This program is free software; you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License version 2 as
|
||||
* published by the Free Software Foundation.
|
||||
*/
|
||||
|
||||
#ifndef INTEL_SPI_PDATA_H
|
||||
#define INTEL_SPI_PDATA_H
|
||||
|
||||
enum intel_spi_type {
|
||||
INTEL_SPI_BYT = 1,
|
||||
INTEL_SPI_LPT,
|
||||
INTEL_SPI_BXT,
|
||||
};
|
||||
|
||||
/**
|
||||
* struct intel_spi_boardinfo - Board specific data for Intel SPI driver
|
||||
* @type: Type which this controller is compatible with
|
||||
* @writeable: The chip is writeable
|
||||
*/
|
||||
struct intel_spi_boardinfo {
|
||||
enum intel_spi_type type;
|
||||
bool writeable;
|
||||
};
|
||||
|
||||
#endif /* INTEL_SPI_PDATA_H */
|
Loading…
Reference in New Issue