time: Improve performance of time64_to_tm()
The current implementation of time64_to_tm() contains unnecessary loops, branches and look-up tables. The new one uses an arithmetic-based algorithm appeared in [1] and is approximately 3x faster (YMMV). The drawback is that the new code isn't intuitive and contains many 'magic numbers' (not unusual for this type of algorithm). However, [1] justifies all those numbers and, given this function's history, the code is unlikely to need much maintenance, if any at all. Add a KUnit test for it which checks every day in a 160,000 years interval centered at 1970-01-01 against the expected result. [1] Neri, Schneider, "Euclidean Affine Functions and Applications to Calendar Algorithms". https://arxiv.org/abs/2102.06959 Signed-off-by: Cassio Neri <cassio.neri@gmail.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Link: https://lore.kernel.org/r/20210622213616.313046-1-cassio.neri@gmail.com
This commit is contained in:
parent
4e82d2e20f
commit
2760105516
|
@ -64,6 +64,15 @@ config LEGACY_TIMER_TICK
|
|||
lack support for the generic clockevent framework.
|
||||
New platforms should use generic clockevents instead.
|
||||
|
||||
config TIME_KUNIT_TEST
|
||||
tristate "KUnit test for kernel/time functions" if !KUNIT_ALL_TESTS
|
||||
depends on KUNIT
|
||||
default KUNIT_ALL_TESTS
|
||||
help
|
||||
Enable this option to test RTC library functions.
|
||||
|
||||
If unsure, say N.
|
||||
|
||||
if GENERIC_CLOCKEVENTS
|
||||
menu "Timers subsystem"
|
||||
|
||||
|
|
|
@ -22,3 +22,4 @@ obj-$(CONFIG_DEBUG_FS) += timekeeping_debug.o
|
|||
obj-$(CONFIG_TEST_UDELAY) += test_udelay.o
|
||||
obj-$(CONFIG_TIME_NS) += namespace.o
|
||||
obj-$(CONFIG_TEST_CLOCKSOURCE_WATCHDOG) += clocksource-wdtest.o
|
||||
obj-$(CONFIG_TIME_KUNIT_TEST) += time_test.o
|
||||
|
|
|
@ -0,0 +1,98 @@
|
|||
// SPDX-License-Identifier: LGPL-2.1+
|
||||
|
||||
#include <kunit/test.h>
|
||||
#include <linux/time.h>
|
||||
|
||||
/*
|
||||
* Traditional implementation of leap year evaluation.
|
||||
*/
|
||||
static bool is_leap(long year)
|
||||
{
|
||||
return year % 4 == 0 && (year % 100 != 0 || year % 400 == 0);
|
||||
}
|
||||
|
||||
/*
|
||||
* Gets the last day of a month.
|
||||
*/
|
||||
static int last_day_of_month(long year, int month)
|
||||
{
|
||||
if (month == 2)
|
||||
return 28 + is_leap(year);
|
||||
if (month == 4 || month == 6 || month == 9 || month == 11)
|
||||
return 30;
|
||||
return 31;
|
||||
}
|
||||
|
||||
/*
|
||||
* Advances a date by one day.
|
||||
*/
|
||||
static void advance_date(long *year, int *month, int *mday, int *yday)
|
||||
{
|
||||
if (*mday != last_day_of_month(*year, *month)) {
|
||||
++*mday;
|
||||
++*yday;
|
||||
return;
|
||||
}
|
||||
|
||||
*mday = 1;
|
||||
if (*month != 12) {
|
||||
++*month;
|
||||
++*yday;
|
||||
return;
|
||||
}
|
||||
|
||||
*month = 1;
|
||||
*yday = 0;
|
||||
++*year;
|
||||
}
|
||||
|
||||
/*
|
||||
* Checks every day in a 160000 years interval centered at 1970-01-01
|
||||
* against the expected result.
|
||||
*/
|
||||
static void time64_to_tm_test_date_range(struct kunit *test)
|
||||
{
|
||||
/*
|
||||
* 80000 years = (80000 / 400) * 400 years
|
||||
* = (80000 / 400) * 146097 days
|
||||
* = (80000 / 400) * 146097 * 86400 seconds
|
||||
*/
|
||||
time64_t total_secs = ((time64_t) 80000) / 400 * 146097 * 86400;
|
||||
long year = 1970 - 80000;
|
||||
int month = 1;
|
||||
int mdday = 1;
|
||||
int yday = 0;
|
||||
|
||||
struct tm result;
|
||||
time64_t secs;
|
||||
s64 days;
|
||||
|
||||
for (secs = -total_secs; secs <= total_secs; secs += 86400) {
|
||||
|
||||
time64_to_tm(secs, 0, &result);
|
||||
|
||||
days = div_s64(secs, 86400);
|
||||
|
||||
#define FAIL_MSG "%05ld/%02d/%02d (%2d) : %ld", \
|
||||
year, month, mdday, yday, days
|
||||
|
||||
KUNIT_ASSERT_EQ_MSG(test, year - 1900, result.tm_year, FAIL_MSG);
|
||||
KUNIT_ASSERT_EQ_MSG(test, month - 1, result.tm_mon, FAIL_MSG);
|
||||
KUNIT_ASSERT_EQ_MSG(test, mdday, result.tm_mday, FAIL_MSG);
|
||||
KUNIT_ASSERT_EQ_MSG(test, yday, result.tm_yday, FAIL_MSG);
|
||||
|
||||
advance_date(&year, &month, &mdday, &yday);
|
||||
}
|
||||
}
|
||||
|
||||
static struct kunit_case time_test_cases[] = {
|
||||
KUNIT_CASE(time64_to_tm_test_date_range),
|
||||
{}
|
||||
};
|
||||
|
||||
static struct kunit_suite time_test_suite = {
|
||||
.name = "time_test_cases",
|
||||
.test_cases = time_test_cases,
|
||||
};
|
||||
|
||||
kunit_test_suite(time_test_suite);
|
|
@ -22,47 +22,16 @@
|
|||
|
||||
/*
|
||||
* Converts the calendar time to broken-down time representation
|
||||
* Based on code from glibc-2.6
|
||||
*
|
||||
* 2009-7-14:
|
||||
* Moved from glibc-2.6 to kernel by Zhaolei<zhaolei@cn.fujitsu.com>
|
||||
* 2021-06-02:
|
||||
* Reimplemented by Cassio Neri <cassio.neri@gmail.com>
|
||||
*/
|
||||
|
||||
#include <linux/time.h>
|
||||
#include <linux/module.h>
|
||||
|
||||
/*
|
||||
* Nonzero if YEAR is a leap year (every 4 years,
|
||||
* except every 100th isn't, and every 400th is).
|
||||
*/
|
||||
static int __isleap(long year)
|
||||
{
|
||||
return (year) % 4 == 0 && ((year) % 100 != 0 || (year) % 400 == 0);
|
||||
}
|
||||
|
||||
/* do a mathdiv for long type */
|
||||
static long math_div(long a, long b)
|
||||
{
|
||||
return a / b - (a % b < 0);
|
||||
}
|
||||
|
||||
/* How many leap years between y1 and y2, y1 must less or equal to y2 */
|
||||
static long leaps_between(long y1, long y2)
|
||||
{
|
||||
long leaps1 = math_div(y1 - 1, 4) - math_div(y1 - 1, 100)
|
||||
+ math_div(y1 - 1, 400);
|
||||
long leaps2 = math_div(y2 - 1, 4) - math_div(y2 - 1, 100)
|
||||
+ math_div(y2 - 1, 400);
|
||||
return leaps2 - leaps1;
|
||||
}
|
||||
|
||||
/* How many days come before each month (0-12). */
|
||||
static const unsigned short __mon_yday[2][13] = {
|
||||
/* Normal years. */
|
||||
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334, 365},
|
||||
/* Leap years. */
|
||||
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335, 366}
|
||||
};
|
||||
#include <linux/kernel.h>
|
||||
|
||||
#define SECS_PER_HOUR (60 * 60)
|
||||
#define SECS_PER_DAY (SECS_PER_HOUR * 24)
|
||||
|
@ -77,9 +46,11 @@ static const unsigned short __mon_yday[2][13] = {
|
|||
*/
|
||||
void time64_to_tm(time64_t totalsecs, int offset, struct tm *result)
|
||||
{
|
||||
long days, rem, y;
|
||||
u32 u32tmp, day_of_century, year_of_century, day_of_year, month, day;
|
||||
u64 u64tmp, udays, century, year;
|
||||
bool is_Jan_or_Feb, is_leap_year;
|
||||
long days, rem;
|
||||
int remainder;
|
||||
const unsigned short *ip;
|
||||
|
||||
days = div_s64_rem(totalsecs, SECS_PER_DAY, &remainder);
|
||||
rem = remainder;
|
||||
|
@ -103,27 +74,68 @@ void time64_to_tm(time64_t totalsecs, int offset, struct tm *result)
|
|||
if (result->tm_wday < 0)
|
||||
result->tm_wday += 7;
|
||||
|
||||
y = 1970;
|
||||
/*
|
||||
* The following algorithm is, basically, Proposition 6.3 of Neri
|
||||
* and Schneider [1]. In a few words: it works on the computational
|
||||
* (fictitious) calendar where the year starts in March, month = 2
|
||||
* (*), and finishes in February, month = 13. This calendar is
|
||||
* mathematically convenient because the day of the year does not
|
||||
* depend on whether the year is leap or not. For instance:
|
||||
*
|
||||
* March 1st 0-th day of the year;
|
||||
* ...
|
||||
* April 1st 31-st day of the year;
|
||||
* ...
|
||||
* January 1st 306-th day of the year; (Important!)
|
||||
* ...
|
||||
* February 28th 364-th day of the year;
|
||||
* February 29th 365-th day of the year (if it exists).
|
||||
*
|
||||
* After having worked out the date in the computational calendar
|
||||
* (using just arithmetics) it's easy to convert it to the
|
||||
* corresponding date in the Gregorian calendar.
|
||||
*
|
||||
* [1] "Euclidean Affine Functions and Applications to Calendar
|
||||
* Algorithms". https://arxiv.org/abs/2102.06959
|
||||
*
|
||||
* (*) The numbering of months follows tm more closely and thus,
|
||||
* is slightly different from [1].
|
||||
*/
|
||||
|
||||
while (days < 0 || days >= (__isleap(y) ? 366 : 365)) {
|
||||
/* Guess a corrected year, assuming 365 days per year. */
|
||||
long yg = y + math_div(days, 365);
|
||||
udays = ((u64) days) + 2305843009213814918ULL;
|
||||
|
||||
/* Adjust DAYS and Y to match the guessed year. */
|
||||
days -= (yg - y) * 365 + leaps_between(y, yg);
|
||||
y = yg;
|
||||
}
|
||||
u64tmp = 4 * udays + 3;
|
||||
century = div64_u64_rem(u64tmp, 146097, &u64tmp);
|
||||
day_of_century = (u32) (u64tmp / 4);
|
||||
|
||||
result->tm_year = y - 1900;
|
||||
u32tmp = 4 * day_of_century + 3;
|
||||
u64tmp = 2939745ULL * u32tmp;
|
||||
year_of_century = upper_32_bits(u64tmp);
|
||||
day_of_year = lower_32_bits(u64tmp) / 2939745 / 4;
|
||||
|
||||
result->tm_yday = days;
|
||||
year = 100 * century + year_of_century;
|
||||
is_leap_year = year_of_century ? !(year_of_century % 4) : !(century % 4);
|
||||
|
||||
ip = __mon_yday[__isleap(y)];
|
||||
for (y = 11; days < ip[y]; y--)
|
||||
continue;
|
||||
days -= ip[y];
|
||||
u32tmp = 2141 * day_of_year + 132377;
|
||||
month = u32tmp >> 16;
|
||||
day = ((u16) u32tmp) / 2141;
|
||||
|
||||
result->tm_mon = y;
|
||||
result->tm_mday = days + 1;
|
||||
/*
|
||||
* Recall that January 1st is the 306-th day of the year in the
|
||||
* computational (not Gregorian) calendar.
|
||||
*/
|
||||
is_Jan_or_Feb = day_of_year >= 306;
|
||||
|
||||
/* Convert to the Gregorian calendar and adjust to Unix time. */
|
||||
year = year + is_Jan_or_Feb - 6313183731940000ULL;
|
||||
month = is_Jan_or_Feb ? month - 12 : month;
|
||||
day = day + 1;
|
||||
day_of_year += is_Jan_or_Feb ? -306 : 31 + 28 + is_leap_year;
|
||||
|
||||
/* Convert to tm's format. */
|
||||
result->tm_year = (long) (year - 1900);
|
||||
result->tm_mon = (int) month;
|
||||
result->tm_mday = (int) day;
|
||||
result->tm_yday = (int) day_of_year;
|
||||
}
|
||||
EXPORT_SYMBOL(time64_to_tm);
|
||||
|
|
Loading…
Reference in New Issue