Merge branch 'ovs-802.1ad'

Eric Garver says:

====================
openvswitch: add 802.1ad support

This series adds 802.1ad support to openvswitch. It is a continuation of the
work originally started by Thomas F Herbert - hence the large rev number.

The extra VLAN is implemented by using an additional level of the
OVS_KEY_ATTR_ENCAP netlink attribute.
In OVS flow speak, this looks like

   eth_type(0x88a8),vlan(vid=100),encap(eth_type(0x8100), vlan(vid=200),
                                        encap(eth_type(0x0800), ...))

The userspace counterpart has also seen recent activity on the ovs-dev mailing
lists. There are some new 802.1ad OVS tests being added - also on the ovs-dev
list. This patch series has been tested using the most recent version of
userspace (v3) and tests (v2).

v22 changes:
  - merge patch 4 into patch 3
  - fix checkpatch.pl errors
    - Still some 80 char warnings for long string literals
  - refresh pointer after pskb_may_pull()
  - refactor vlan nlattr parsing to remove some double checks
  - introduce ovs_nla_put_vlan()
  - move triple VLAN check to after ethertype serialization
  - WARN_ON_ONCE() on triple VLAN and unexpected encap values

v21 changes:
  - Fix (and simplify) netlink attribute parsing
  - re-add handling of truncated VLAN tags
  - fix if/else dangling assignment in {push,pop}_vlan()
  - simplify parse_vlan()
====================

Signed-off-by: David S. Miller <davem@davemloft.net>
This commit is contained in:
David S. Miller 2016-09-08 17:10:28 -07:00
commit 3b61075be0
7 changed files with 314 additions and 142 deletions

View File

@ -272,6 +272,23 @@ static inline int vlan_get_encap_level(struct net_device *dev)
} }
#endif #endif
/**
* eth_type_vlan - check for valid vlan ether type.
* @ethertype: ether type to check
*
* Returns true if the ether type is a vlan ether type.
*/
static inline bool eth_type_vlan(__be16 ethertype)
{
switch (ethertype) {
case htons(ETH_P_8021Q):
case htons(ETH_P_8021AD):
return true;
default:
return false;
}
}
static inline bool vlan_hw_offload_capable(netdev_features_t features, static inline bool vlan_hw_offload_capable(netdev_features_t features,
__be16 proto) __be16 proto)
{ {
@ -425,8 +442,7 @@ static inline int __vlan_get_tag(const struct sk_buff *skb, u16 *vlan_tci)
{ {
struct vlan_ethhdr *veth = (struct vlan_ethhdr *)skb->data; struct vlan_ethhdr *veth = (struct vlan_ethhdr *)skb->data;
if (veth->h_vlan_proto != htons(ETH_P_8021Q) && if (!eth_type_vlan(veth->h_vlan_proto))
veth->h_vlan_proto != htons(ETH_P_8021AD))
return -EINVAL; return -EINVAL;
*vlan_tci = ntohs(veth->h_vlan_TCI); *vlan_tci = ntohs(veth->h_vlan_TCI);
@ -488,7 +504,7 @@ static inline __be16 __vlan_get_protocol(struct sk_buff *skb, __be16 type,
* present at mac_len - VLAN_HLEN (if mac_len > 0), or at * present at mac_len - VLAN_HLEN (if mac_len > 0), or at
* ETH_HLEN otherwise * ETH_HLEN otherwise
*/ */
if (type == htons(ETH_P_8021Q) || type == htons(ETH_P_8021AD)) { if (eth_type_vlan(type)) {
if (vlan_depth) { if (vlan_depth) {
if (WARN_ON(vlan_depth < VLAN_HLEN)) if (WARN_ON(vlan_depth < VLAN_HLEN))
return 0; return 0;
@ -506,8 +522,7 @@ static inline __be16 __vlan_get_protocol(struct sk_buff *skb, __be16 type,
vh = (struct vlan_hdr *)(skb->data + vlan_depth); vh = (struct vlan_hdr *)(skb->data + vlan_depth);
type = vh->h_vlan_encapsulated_proto; type = vh->h_vlan_encapsulated_proto;
vlan_depth += VLAN_HLEN; vlan_depth += VLAN_HLEN;
} while (type == htons(ETH_P_8021Q) || } while (eth_type_vlan(type));
type == htons(ETH_P_8021AD));
} }
if (depth) if (depth)
@ -572,8 +587,7 @@ static inline void vlan_set_encap_proto(struct sk_buff *skb,
static inline bool skb_vlan_tagged(const struct sk_buff *skb) static inline bool skb_vlan_tagged(const struct sk_buff *skb)
{ {
if (!skb_vlan_tag_present(skb) && if (!skb_vlan_tag_present(skb) &&
likely(skb->protocol != htons(ETH_P_8021Q) && likely(!eth_type_vlan(skb->protocol)))
skb->protocol != htons(ETH_P_8021AD)))
return false; return false;
return true; return true;
@ -593,15 +607,14 @@ static inline bool skb_vlan_tagged_multi(const struct sk_buff *skb)
if (!skb_vlan_tag_present(skb)) { if (!skb_vlan_tag_present(skb)) {
struct vlan_ethhdr *veh; struct vlan_ethhdr *veh;
if (likely(protocol != htons(ETH_P_8021Q) && if (likely(!eth_type_vlan(protocol)))
protocol != htons(ETH_P_8021AD)))
return false; return false;
veh = (struct vlan_ethhdr *)skb->data; veh = (struct vlan_ethhdr *)skb->data;
protocol = veh->h_vlan_encapsulated_proto; protocol = veh->h_vlan_encapsulated_proto;
} }
if (protocol != htons(ETH_P_8021Q) && protocol != htons(ETH_P_8021AD)) if (!eth_type_vlan(protocol))
return false; return false;
return true; return true;

View File

@ -605,13 +605,13 @@ struct ovs_action_push_mpls {
* @vlan_tci: Tag control identifier (TCI) to push. The CFI bit must be set * @vlan_tci: Tag control identifier (TCI) to push. The CFI bit must be set
* (but it will not be set in the 802.1Q header that is pushed). * (but it will not be set in the 802.1Q header that is pushed).
* *
* The @vlan_tpid value is typically %ETH_P_8021Q. The only acceptable TPID * The @vlan_tpid value is typically %ETH_P_8021Q or %ETH_P_8021AD.
* values are those that the kernel module also parses as 802.1Q headers, to * The only acceptable TPID values are those that the kernel module also parses
* prevent %OVS_ACTION_ATTR_PUSH_VLAN followed by %OVS_ACTION_ATTR_POP_VLAN * as 802.1Q or 802.1AD headers, to prevent %OVS_ACTION_ATTR_PUSH_VLAN followed
* from having surprising results. * by %OVS_ACTION_ATTR_POP_VLAN from having surprising results.
*/ */
struct ovs_action_push_vlan { struct ovs_action_push_vlan {
__be16 vlan_tpid; /* 802.1Q TPID. */ __be16 vlan_tpid; /* 802.1Q or 802.1ad TPID. */
__be16 vlan_tci; /* 802.1Q TCI (VLAN ID and priority). */ __be16 vlan_tci; /* 802.1Q TCI (VLAN ID and priority). */
}; };
@ -721,9 +721,10 @@ enum ovs_nat_attr {
* is copied from the value to the packet header field, rest of the bits are * is copied from the value to the packet header field, rest of the bits are
* left unchanged. The non-masked value bits must be passed in as zeroes. * left unchanged. The non-masked value bits must be passed in as zeroes.
* Masking is not supported for the %OVS_KEY_ATTR_TUNNEL attribute. * Masking is not supported for the %OVS_KEY_ATTR_TUNNEL attribute.
* @OVS_ACTION_ATTR_PUSH_VLAN: Push a new outermost 802.1Q header onto the * @OVS_ACTION_ATTR_PUSH_VLAN: Push a new outermost 802.1Q or 802.1ad header
* packet. * onto the packet.
* @OVS_ACTION_ATTR_POP_VLAN: Pop the outermost 802.1Q header off the packet. * @OVS_ACTION_ATTR_POP_VLAN: Pop the outermost 802.1Q or 802.1ad header
* from the packet.
* @OVS_ACTION_ATTR_SAMPLE: Probabilitically executes actions, as specified in * @OVS_ACTION_ATTR_SAMPLE: Probabilitically executes actions, as specified in
* the nested %OVS_SAMPLE_ATTR_* attributes. * the nested %OVS_SAMPLE_ATTR_* attributes.
* @OVS_ACTION_ATTR_PUSH_MPLS: Push a new MPLS label stack entry onto the * @OVS_ACTION_ATTR_PUSH_MPLS: Push a new MPLS label stack entry onto the

View File

@ -246,20 +246,24 @@ static int pop_vlan(struct sk_buff *skb, struct sw_flow_key *key)
int err; int err;
err = skb_vlan_pop(skb); err = skb_vlan_pop(skb);
if (skb_vlan_tag_present(skb)) if (skb_vlan_tag_present(skb)) {
invalidate_flow_key(key); invalidate_flow_key(key);
else } else {
key->eth.tci = 0; key->eth.vlan.tci = 0;
key->eth.vlan.tpid = 0;
}
return err; return err;
} }
static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key, static int push_vlan(struct sk_buff *skb, struct sw_flow_key *key,
const struct ovs_action_push_vlan *vlan) const struct ovs_action_push_vlan *vlan)
{ {
if (skb_vlan_tag_present(skb)) if (skb_vlan_tag_present(skb)) {
invalidate_flow_key(key); invalidate_flow_key(key);
else } else {
key->eth.tci = vlan->vlan_tci; key->eth.vlan.tci = vlan->vlan_tci;
key->eth.vlan.tpid = vlan->vlan_tpid;
}
return skb_vlan_push(skb, vlan->vlan_tpid, return skb_vlan_push(skb, vlan->vlan_tpid,
ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT); ntohs(vlan->vlan_tci) & ~VLAN_TAG_PRESENT);
} }

View File

@ -302,24 +302,57 @@ static bool icmp6hdr_ok(struct sk_buff *skb)
sizeof(struct icmp6hdr)); sizeof(struct icmp6hdr));
} }
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key) /**
* Parse vlan tag from vlan header.
* Returns ERROR on memory error.
* Returns 0 if it encounters a non-vlan or incomplete packet.
* Returns 1 after successfully parsing vlan tag.
*/
static int parse_vlan_tag(struct sk_buff *skb, struct vlan_head *key_vh)
{ {
struct qtag_prefix { struct vlan_head *vh = (struct vlan_head *)skb->data;
__be16 eth_type; /* ETH_P_8021Q */
__be16 tci;
};
struct qtag_prefix *qp;
if (unlikely(skb->len < sizeof(struct qtag_prefix) + sizeof(__be16))) if (likely(!eth_type_vlan(vh->tpid)))
return 0; return 0;
if (unlikely(!pskb_may_pull(skb, sizeof(struct qtag_prefix) + if (unlikely(skb->len < sizeof(struct vlan_head) + sizeof(__be16)))
return 0;
if (unlikely(!pskb_may_pull(skb, sizeof(struct vlan_head) +
sizeof(__be16)))) sizeof(__be16))))
return -ENOMEM; return -ENOMEM;
qp = (struct qtag_prefix *) skb->data; vh = (struct vlan_head *)skb->data;
key->eth.tci = qp->tci | htons(VLAN_TAG_PRESENT); key_vh->tci = vh->tci | htons(VLAN_TAG_PRESENT);
__skb_pull(skb, sizeof(struct qtag_prefix)); key_vh->tpid = vh->tpid;
__skb_pull(skb, sizeof(struct vlan_head));
return 1;
}
static int parse_vlan(struct sk_buff *skb, struct sw_flow_key *key)
{
int res;
key->eth.vlan.tci = 0;
key->eth.vlan.tpid = 0;
key->eth.cvlan.tci = 0;
key->eth.cvlan.tpid = 0;
if (likely(skb_vlan_tag_present(skb))) {
key->eth.vlan.tci = htons(skb->vlan_tci);
key->eth.vlan.tpid = skb->vlan_proto;
} else {
/* Parse outer vlan tag in the non-accelerated case. */
res = parse_vlan_tag(skb, &key->eth.vlan);
if (res <= 0)
return res;
}
/* Parse inner vlan tag. */
res = parse_vlan_tag(skb, &key->eth.cvlan);
if (res <= 0)
return res;
return 0; return 0;
} }
@ -480,10 +513,6 @@ static int key_extract(struct sk_buff *skb, struct sw_flow_key *key)
* update skb->csum here. * update skb->csum here.
*/ */
key->eth.tci = 0;
if (skb_vlan_tag_present(skb))
key->eth.tci = htons(skb->vlan_tci);
else if (eth->h_proto == htons(ETH_P_8021Q))
if (unlikely(parse_vlan(skb, key))) if (unlikely(parse_vlan(skb, key)))
return -ENOMEM; return -ENOMEM;

View File

@ -50,6 +50,11 @@ struct ovs_tunnel_info {
struct metadata_dst *tun_dst; struct metadata_dst *tun_dst;
}; };
struct vlan_head {
__be16 tpid; /* Vlan type. Generally 802.1q or 802.1ad.*/
__be16 tci; /* 0 if no VLAN, VLAN_TAG_PRESENT set otherwise. */
};
#define OVS_SW_FLOW_KEY_METADATA_SIZE \ #define OVS_SW_FLOW_KEY_METADATA_SIZE \
(offsetof(struct sw_flow_key, recirc_id) + \ (offsetof(struct sw_flow_key, recirc_id) + \
FIELD_SIZEOF(struct sw_flow_key, recirc_id)) FIELD_SIZEOF(struct sw_flow_key, recirc_id))
@ -69,7 +74,8 @@ struct sw_flow_key {
struct { struct {
u8 src[ETH_ALEN]; /* Ethernet source address. */ u8 src[ETH_ALEN]; /* Ethernet source address. */
u8 dst[ETH_ALEN]; /* Ethernet destination address. */ u8 dst[ETH_ALEN]; /* Ethernet destination address. */
__be16 tci; /* 0 if no VLAN, VLAN_TAG_PRESENT set otherwise. */ struct vlan_head vlan;
struct vlan_head cvlan;
__be16 type; /* Ethernet frame type. */ __be16 type; /* Ethernet frame type. */
} eth; } eth;
union { union {

View File

@ -808,6 +808,167 @@ int ovs_nla_put_tunnel_info(struct sk_buff *skb,
ip_tunnel_info_af(tun_info)); ip_tunnel_info_af(tun_info));
} }
static int encode_vlan_from_nlattrs(struct sw_flow_match *match,
const struct nlattr *a[],
bool is_mask, bool inner)
{
__be16 tci = 0;
__be16 tpid = 0;
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (a[OVS_KEY_ATTR_ETHERTYPE])
tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (likely(!inner)) {
SW_FLOW_KEY_PUT(match, eth.vlan.tpid, tpid, is_mask);
SW_FLOW_KEY_PUT(match, eth.vlan.tci, tci, is_mask);
} else {
SW_FLOW_KEY_PUT(match, eth.cvlan.tpid, tpid, is_mask);
SW_FLOW_KEY_PUT(match, eth.cvlan.tci, tci, is_mask);
}
return 0;
}
static int validate_vlan_from_nlattrs(const struct sw_flow_match *match,
u64 key_attrs, bool inner,
const struct nlattr **a, bool log)
{
__be16 tci = 0;
if (!((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) &&
(key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
eth_type_vlan(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE])))) {
/* Not a VLAN. */
return 0;
}
if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
(key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
OVS_NLERR(log, "Invalid %s frame", (inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (!(tci & htons(VLAN_TAG_PRESENT))) {
if (tci) {
OVS_NLERR(log, "%s TCI does not have VLAN_TAG_PRESENT bit set.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
} else if (nla_len(a[OVS_KEY_ATTR_ENCAP])) {
/* Corner case for truncated VLAN header. */
OVS_NLERR(log, "Truncated %s header has non-zero encap attribute.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
}
return 1;
}
static int validate_vlan_mask_from_nlattrs(const struct sw_flow_match *match,
u64 key_attrs, bool inner,
const struct nlattr **a, bool log)
{
__be16 tci = 0;
__be16 tpid = 0;
bool encap_valid = !!(match->key->eth.vlan.tci &
htons(VLAN_TAG_PRESENT));
bool i_encap_valid = !!(match->key->eth.cvlan.tci &
htons(VLAN_TAG_PRESENT));
if (!(key_attrs & (1 << OVS_KEY_ATTR_ENCAP))) {
/* Not a VLAN. */
return 0;
}
if ((!inner && !encap_valid) || (inner && !i_encap_valid)) {
OVS_NLERR(log, "Encap mask attribute is set for non-%s frame.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (a[OVS_KEY_ATTR_ETHERTYPE])
tpid = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (tpid != htons(0xffff)) {
OVS_NLERR(log, "Must have an exact match on %s TPID (mask=%x).",
(inner) ? "C-VLAN" : "VLAN", ntohs(tpid));
return -EINVAL;
}
if (!(tci & htons(VLAN_TAG_PRESENT))) {
OVS_NLERR(log, "%s TCI mask does not have exact match for VLAN_TAG_PRESENT bit.",
(inner) ? "C-VLAN" : "VLAN");
return -EINVAL;
}
return 1;
}
static int __parse_vlan_from_nlattrs(struct sw_flow_match *match,
u64 *key_attrs, bool inner,
const struct nlattr **a, bool is_mask,
bool log)
{
int err;
const struct nlattr *encap;
if (!is_mask)
err = validate_vlan_from_nlattrs(match, *key_attrs, inner,
a, log);
else
err = validate_vlan_mask_from_nlattrs(match, *key_attrs, inner,
a, log);
if (err <= 0)
return err;
err = encode_vlan_from_nlattrs(match, a, is_mask, inner);
if (err)
return err;
*key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
*key_attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
*key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
encap = a[OVS_KEY_ATTR_ENCAP];
if (!is_mask)
err = parse_flow_nlattrs(encap, a, key_attrs, log);
else
err = parse_flow_mask_nlattrs(encap, a, key_attrs, log);
return err;
}
static int parse_vlan_from_nlattrs(struct sw_flow_match *match,
u64 *key_attrs, const struct nlattr **a,
bool is_mask, bool log)
{
int err;
bool encap_valid = false;
err = __parse_vlan_from_nlattrs(match, key_attrs, false, a,
is_mask, log);
if (err)
return err;
encap_valid = !!(match->key->eth.vlan.tci & htons(VLAN_TAG_PRESENT));
if (encap_valid) {
err = __parse_vlan_from_nlattrs(match, key_attrs, true, a,
is_mask, log);
if (err)
return err;
}
return 0;
}
static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match, static int metadata_from_nlattrs(struct net *net, struct sw_flow_match *match,
u64 *attrs, const struct nlattr **a, u64 *attrs, const struct nlattr **a,
bool is_mask, bool log) bool is_mask, bool log)
@ -923,22 +1084,13 @@ static int ovs_key_from_nlattrs(struct net *net, struct sw_flow_match *match,
} }
if (attrs & (1 << OVS_KEY_ATTR_VLAN)) { if (attrs & (1 << OVS_KEY_ATTR_VLAN)) {
__be16 tci; /* VLAN attribute is always parsed before getting here since it
* may occur multiple times.
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]); */
if (!(tci & htons(VLAN_TAG_PRESENT))) { OVS_NLERR(log, "VLAN attribute unexpected.");
if (is_mask)
OVS_NLERR(log, "VLAN TCI mask does not have exact match for VLAN_TAG_PRESENT bit.");
else
OVS_NLERR(log, "VLAN TCI does not have VLAN_TAG_PRESENT bit set.");
return -EINVAL; return -EINVAL;
} }
SW_FLOW_KEY_PUT(match, eth.tci, tci, is_mask);
attrs &= ~(1 << OVS_KEY_ATTR_VLAN);
}
if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) { if (attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) {
__be16 eth_type; __be16 eth_type;
@ -1182,49 +1334,18 @@ int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
bool log) bool log)
{ {
const struct nlattr *a[OVS_KEY_ATTR_MAX + 1]; const struct nlattr *a[OVS_KEY_ATTR_MAX + 1];
const struct nlattr *encap;
struct nlattr *newmask = NULL; struct nlattr *newmask = NULL;
u64 key_attrs = 0; u64 key_attrs = 0;
u64 mask_attrs = 0; u64 mask_attrs = 0;
bool encap_valid = false;
int err; int err;
err = parse_flow_nlattrs(nla_key, a, &key_attrs, log); err = parse_flow_nlattrs(nla_key, a, &key_attrs, log);
if (err) if (err)
return err; return err;
if ((key_attrs & (1 << OVS_KEY_ATTR_ETHERNET)) && err = parse_vlan_from_nlattrs(match, &key_attrs, a, false, log);
(key_attrs & (1 << OVS_KEY_ATTR_ETHERTYPE)) &&
(nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]) == htons(ETH_P_8021Q))) {
__be16 tci;
if (!((key_attrs & (1 << OVS_KEY_ATTR_VLAN)) &&
(key_attrs & (1 << OVS_KEY_ATTR_ENCAP)))) {
OVS_NLERR(log, "Invalid Vlan frame.");
return -EINVAL;
}
key_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
encap = a[OVS_KEY_ATTR_ENCAP];
key_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
encap_valid = true;
if (tci & htons(VLAN_TAG_PRESENT)) {
err = parse_flow_nlattrs(encap, a, &key_attrs, log);
if (err) if (err)
return err; return err;
} else if (!tci) {
/* Corner case for truncated 802.1Q header. */
if (nla_len(encap)) {
OVS_NLERR(log, "Truncated 802.1Q header has non-zero encap attribute.");
return -EINVAL;
}
} else {
OVS_NLERR(log, "Encap attr is set for non-VLAN frame");
return -EINVAL;
}
}
err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log); err = ovs_key_from_nlattrs(net, match, key_attrs, a, false, log);
if (err) if (err)
@ -1265,46 +1386,12 @@ int ovs_nla_get_match(struct net *net, struct sw_flow_match *match,
goto free_newmask; goto free_newmask;
/* Always match on tci. */ /* Always match on tci. */
SW_FLOW_KEY_PUT(match, eth.tci, htons(0xffff), true); SW_FLOW_KEY_PUT(match, eth.vlan.tci, htons(0xffff), true);
SW_FLOW_KEY_PUT(match, eth.cvlan.tci, htons(0xffff), true);
if (mask_attrs & 1 << OVS_KEY_ATTR_ENCAP) { err = parse_vlan_from_nlattrs(match, &mask_attrs, a, true, log);
__be16 eth_type = 0;
__be16 tci = 0;
if (!encap_valid) {
OVS_NLERR(log, "Encap mask attribute is set for non-VLAN frame.");
err = -EINVAL;
goto free_newmask;
}
mask_attrs &= ~(1 << OVS_KEY_ATTR_ENCAP);
if (a[OVS_KEY_ATTR_ETHERTYPE])
eth_type = nla_get_be16(a[OVS_KEY_ATTR_ETHERTYPE]);
if (eth_type == htons(0xffff)) {
mask_attrs &= ~(1 << OVS_KEY_ATTR_ETHERTYPE);
encap = a[OVS_KEY_ATTR_ENCAP];
err = parse_flow_mask_nlattrs(encap, a,
&mask_attrs, log);
if (err) if (err)
goto free_newmask; goto free_newmask;
} else {
OVS_NLERR(log, "VLAN frames must have an exact match on the TPID (mask=%x).",
ntohs(eth_type));
err = -EINVAL;
goto free_newmask;
}
if (a[OVS_KEY_ATTR_VLAN])
tci = nla_get_be16(a[OVS_KEY_ATTR_VLAN]);
if (!(tci & htons(VLAN_TAG_PRESENT))) {
OVS_NLERR(log, "VLAN tag present bit must have an exact match (tci_mask=%x).",
ntohs(tci));
err = -EINVAL;
goto free_newmask;
}
}
err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true, err = ovs_key_from_nlattrs(net, match, mask_attrs, a, true,
log); log);
@ -1410,12 +1497,25 @@ int ovs_nla_get_flow_metadata(struct net *net, const struct nlattr *attr,
return metadata_from_nlattrs(net, &match, &attrs, a, false, log); return metadata_from_nlattrs(net, &match, &attrs, a, false, log);
} }
static int ovs_nla_put_vlan(struct sk_buff *skb, const struct vlan_head *vh,
bool is_mask)
{
__be16 eth_type = !is_mask ? vh->tpid : htons(0xffff);
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, vh->tci))
return -EMSGSIZE;
return 0;
}
static int __ovs_nla_put_key(const struct sw_flow_key *swkey, static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
const struct sw_flow_key *output, bool is_mask, const struct sw_flow_key *output, bool is_mask,
struct sk_buff *skb) struct sk_buff *skb)
{ {
struct ovs_key_ethernet *eth_key; struct ovs_key_ethernet *eth_key;
struct nlattr *nla, *encap; struct nlattr *nla;
struct nlattr *encap = NULL;
struct nlattr *in_encap = NULL;
if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id)) if (nla_put_u32(skb, OVS_KEY_ATTR_RECIRC_ID, output->recirc_id))
goto nla_put_failure; goto nla_put_failure;
@ -1464,17 +1564,21 @@ static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
ether_addr_copy(eth_key->eth_src, output->eth.src); ether_addr_copy(eth_key->eth_src, output->eth.src);
ether_addr_copy(eth_key->eth_dst, output->eth.dst); ether_addr_copy(eth_key->eth_dst, output->eth.dst);
if (swkey->eth.tci || swkey->eth.type == htons(ETH_P_8021Q)) { if (swkey->eth.vlan.tci || eth_type_vlan(swkey->eth.type)) {
__be16 eth_type; if (ovs_nla_put_vlan(skb, &output->eth.vlan, is_mask))
eth_type = !is_mask ? htons(ETH_P_8021Q) : htons(0xffff);
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, eth_type) ||
nla_put_be16(skb, OVS_KEY_ATTR_VLAN, output->eth.tci))
goto nla_put_failure; goto nla_put_failure;
encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP); encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
if (!swkey->eth.tci) if (!swkey->eth.vlan.tci)
goto unencap; goto unencap;
} else
encap = NULL; if (swkey->eth.cvlan.tci || eth_type_vlan(swkey->eth.type)) {
if (ovs_nla_put_vlan(skb, &output->eth.cvlan, is_mask))
goto nla_put_failure;
in_encap = nla_nest_start(skb, OVS_KEY_ATTR_ENCAP);
if (!swkey->eth.cvlan.tci)
goto unencap;
}
}
if (swkey->eth.type == htons(ETH_P_802_2)) { if (swkey->eth.type == htons(ETH_P_802_2)) {
/* /*
@ -1493,6 +1597,14 @@ static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type)) if (nla_put_be16(skb, OVS_KEY_ATTR_ETHERTYPE, output->eth.type))
goto nla_put_failure; goto nla_put_failure;
if (eth_type_vlan(swkey->eth.type)) {
/* There are 3 VLAN tags, we don't know anything about the rest
* of the packet, so truncate here.
*/
WARN_ON_ONCE(!(encap && in_encap));
goto unencap;
}
if (swkey->eth.type == htons(ETH_P_IP)) { if (swkey->eth.type == htons(ETH_P_IP)) {
struct ovs_key_ipv4 *ipv4_key; struct ovs_key_ipv4 *ipv4_key;
@ -1619,6 +1731,8 @@ static int __ovs_nla_put_key(const struct sw_flow_key *swkey,
} }
unencap: unencap:
if (in_encap)
nla_nest_end(skb, in_encap);
if (encap) if (encap)
nla_nest_end(skb, encap); nla_nest_end(skb, encap);
@ -2283,7 +2397,7 @@ static int __ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
case OVS_ACTION_ATTR_PUSH_VLAN: case OVS_ACTION_ATTR_PUSH_VLAN:
vlan = nla_data(a); vlan = nla_data(a);
if (vlan->vlan_tpid != htons(ETH_P_8021Q)) if (!eth_type_vlan(vlan->vlan_tpid))
return -EINVAL; return -EINVAL;
if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT))) if (!(vlan->vlan_tci & htons(VLAN_TAG_PRESENT)))
return -EINVAL; return -EINVAL;
@ -2388,7 +2502,7 @@ int ovs_nla_copy_actions(struct net *net, const struct nlattr *attr,
(*sfa)->orig_len = nla_len(attr); (*sfa)->orig_len = nla_len(attr);
err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type, err = __ovs_nla_copy_actions(net, attr, key, 0, sfa, key->eth.type,
key->eth.tci, log); key->eth.vlan.tci, log);
if (err) if (err)
ovs_nla_free_flow_actions(*sfa); ovs_nla_free_flow_actions(*sfa);

View File

@ -485,9 +485,14 @@ static unsigned int packet_length(const struct sk_buff *skb)
{ {
unsigned int length = skb->len - ETH_HLEN; unsigned int length = skb->len - ETH_HLEN;
if (skb->protocol == htons(ETH_P_8021Q)) if (skb_vlan_tagged(skb))
length -= VLAN_HLEN; length -= VLAN_HLEN;
/* Don't subtract for multiple VLAN tags. Most (all?) drivers allow
* (ETH_LEN + VLAN_HLEN) in addition to the mtu value, but almost none
* account for 802.1ad. e.g. is_skb_forwardable().
*/
return length; return length;
} }