iio: imu: inv_mpu6050: new timestamp mechanism

Check validity of interrupt timestamps by computing time between
2 interrupts. If it matches the chip frequency modulo 4%, it is
used as the data timestamp and also for estimating the chip
frequency measured from the system. Otherwise timestamp is
computed using the estimated chip frequency.

Signed-off-by: Jean-Baptiste Maneyrol <jmaneyrol@invensense.com>
Signed-off-by: Jonathan Cameron <Jonathan.Cameron@huawei.com>
This commit is contained in:
Jean-Baptiste Maneyrol 2018-05-28 15:22:04 +02:00 committed by Jonathan Cameron
parent 17f0361936
commit 4bcc19f1b2
3 changed files with 96 additions and 1 deletions

View File

@ -295,6 +295,13 @@ static int inv_mpu6050_init_config(struct iio_dev *indio_dev)
memcpy(&st->chip_config, hw_info[st->chip_type].config,
sizeof(struct inv_mpu6050_chip_config));
/*
* Internal chip period is 1ms (1kHz).
* Let's use at the beginning the theorical value before measuring
* with interrupt timestamps.
*/
st->chip_period = NSEC_PER_MSEC;
return inv_mpu6050_set_power_itg(st, false);
error_power_off:

View File

@ -125,6 +125,9 @@ struct inv_mpu6050_hw {
* @map regmap pointer.
* @irq interrupt number.
* @irq_mask the int_pin_cfg mask to configure interrupt type.
* @chip_period: chip internal period estimation (~1kHz).
* @it_timestamp: timestamp from previous interrupt.
* @data_timestamp: timestamp for next data sample.
*/
struct inv_mpu6050_state {
struct mutex lock;
@ -142,6 +145,9 @@ struct inv_mpu6050_state {
int irq;
u8 irq_mask;
unsigned skip_samples;
s64 chip_period;
s64 it_timestamp;
s64 data_timestamp;
};
/*register and associated bit definition*/
@ -223,6 +229,8 @@ struct inv_mpu6050_state {
#define INV_MPU6050_LATCH_INT_EN 0x20
#define INV_MPU6050_BIT_BYPASS_EN 0x2
/* Allowed timestamp period jitter in percent */
#define INV_MPU6050_TS_PERIOD_JITTER 4
/* init parameters */
#define INV_MPU6050_INIT_FIFO_RATE 50

View File

@ -20,15 +20,93 @@
#include <linux/irq.h>
#include <linux/interrupt.h>
#include <linux/poll.h>
#include <linux/math64.h>
#include <asm/unaligned.h>
#include "inv_mpu_iio.h"
/**
* inv_mpu6050_update_period() - Update chip internal period estimation
*
* @st: driver state
* @timestamp: the interrupt timestamp
* @nb: number of data set in the fifo
*
* This function uses interrupt timestamps to estimate the chip period and
* to choose the data timestamp to come.
*/
static void inv_mpu6050_update_period(struct inv_mpu6050_state *st,
s64 timestamp, size_t nb)
{
/* Period boundaries for accepting timestamp */
const s64 period_min =
(NSEC_PER_MSEC * (100 - INV_MPU6050_TS_PERIOD_JITTER)) / 100;
const s64 period_max =
(NSEC_PER_MSEC * (100 + INV_MPU6050_TS_PERIOD_JITTER)) / 100;
const s32 divider = INV_MPU6050_FREQ_DIVIDER(st);
s64 delta, interval;
bool use_it_timestamp = false;
if (st->it_timestamp == 0) {
/* not initialized, forced to use it_timestamp */
use_it_timestamp = true;
} else if (nb == 1) {
/*
* Validate the use of it timestamp by checking if interrupt
* has been delayed.
* nb > 1 means interrupt was delayed for more than 1 sample,
* so it's obviously not good.
* Compute the chip period between 2 interrupts for validating.
*/
delta = div_s64(timestamp - st->it_timestamp, divider);
if (delta > period_min && delta < period_max) {
/* update chip period and use it timestamp */
st->chip_period = (st->chip_period + delta) / 2;
use_it_timestamp = true;
}
}
if (use_it_timestamp) {
/*
* Manage case of multiple samples in the fifo (nb > 1):
* compute timestamp corresponding to the first sample using
* estimated chip period.
*/
interval = (nb - 1) * st->chip_period * divider;
st->data_timestamp = timestamp - interval;
}
/* save it timestamp */
st->it_timestamp = timestamp;
}
/**
* inv_mpu6050_get_timestamp() - Return the current data timestamp
*
* @st: driver state
* @return: current data timestamp
*
* This function returns the current data timestamp and prepares for next one.
*/
static s64 inv_mpu6050_get_timestamp(struct inv_mpu6050_state *st)
{
s64 ts;
/* return current data timestamp and increment */
ts = st->data_timestamp;
st->data_timestamp += st->chip_period * INV_MPU6050_FREQ_DIVIDER(st);
return ts;
}
int inv_reset_fifo(struct iio_dev *indio_dev)
{
int result;
u8 d;
struct inv_mpu6050_state *st = iio_priv(indio_dev);
/* reset it timestamp validation */
st->it_timestamp = 0;
/* disable interrupt */
result = regmap_write(st->map, st->reg->int_enable, 0);
if (result) {
@ -97,7 +175,7 @@ irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
int result;
u8 data[INV_MPU6050_OUTPUT_DATA_SIZE];
u16 fifo_count;
s64 timestamp = pf->timestamp;
s64 timestamp;
int int_status;
size_t i, nb;
@ -140,6 +218,7 @@ irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
fifo_count = get_unaligned_be16(&data[0]);
/* compute and process all complete datum */
nb = fifo_count / bytes_per_datum;
inv_mpu6050_update_period(st, pf->timestamp, nb);
for (i = 0; i < nb; ++i) {
result = regmap_bulk_read(st->map, st->reg->fifo_r_w,
data, bytes_per_datum);
@ -150,6 +229,7 @@ irqreturn_t inv_mpu6050_read_fifo(int irq, void *p)
st->skip_samples--;
continue;
}
timestamp = inv_mpu6050_get_timestamp(st);
iio_push_to_buffers_with_timestamp(indio_dev, data, timestamp);
}