RTC for 4.11

Subsystem:
  - constify rtc_class_ops structures
 
 New driver:
  - STM32
 
 Drivers:
  - armada38x: fix errata, Armada 7K/8K support
  - ds3232: fix wakeup support
  - gemini: DT support
  - m48t86: huge cleanup and platform_data removal
  - mcp795: alarm support
  - sun6i: proper oscillator handling
  - tegra: proper clock handling
  - tps65910: calibration support
 -----BEGIN PGP SIGNATURE-----
 
 iQIzBAABCgAdFiEEl0I5XWmUIrwBfFMm2KKDO9oT4sIFAlizZLQACgkQ2KKDO9oT
 4sISIw//Zl96KIXqeC+En+8v8Sa0pham/mcLbKYujnFIi1mMaesEXJJClALXYAGQ
 r/fwXkYowC14AMXGuV5vMMVAVisJpj1gtMmpom+9/7mYtkFOIUsB8Sis8dMqgTqx
 JFBho7JvPJcwE7BLzUNRzX4tWhFhNm0epyMrsrQrBSeLx3PD8xg5v2kPYuZHdYU0
 63Bovkq6zvH9/WdO8DLXw/nc/Y0Bo66rlvJkcaNfjBrdFTRvRAM5JIiJuxewR+jY
 3bTQ8PQjnHAWIj/RhrwguGTLDlgJKcpitB06Y53TdRaNtVfJuEN8z6EjNkR37kyS
 ZJnPgihCoH6l7v28uY4e5BAg/Fe3ZhDrPmhZWq8rEkByeQpSUWgrE/DtcoC0OkZO
 l2fU/y2vq4za7CpRPp5bvq3sF0PbRHSF0o8rvmHlQZI/mwwYbwF9gk1vg5adyH7i
 1UuTGoDXxcMYZPJm3zezE1bUa4OAyjH1NhrvPvinlDw+aekaai2eFUKIbJim+dJx
 tEVPATPlDk/Ngwth1hpE8D/tOdoQhWtfNk7+zo7MNtMjAO1h/DxSLHXJ9mvCwcPh
 lPT9BmQxT1HECIa5gjN1R+5X5or5z8LPcNGO9TedIchfZ8qBGzsWOt9bXlw2dgI2
 qmXo6IrjCN88kf+qsVA4FKLmaqgpb9+Yb+5cPlhEOKvxUhY47Nc=
 =Go5q
 -----END PGP SIGNATURE-----

Merge tag 'rtc-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux

Pull RTC updates from Alexandre Belloni:
 "Subsystem:
   - constify rtc_class_ops structures

 New driver:
   - STM32

 Drivers:
   - armada38x: fix errata, Armada 7K/8K support
   - ds3232: fix wakeup support
   - gemini: DT support
   - m48t86: huge cleanup and platform_data removal
   - mcp795: alarm support
   - sun6i: proper oscillator handling
   - tegra: proper clock handling
   - tps65910: calibration support"

* tag 'rtc-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/abelloni/linux: (44 commits)
  rtc: ds3232: Call device_init_wakeup before device_register
  rtc: pcf2127: bulk read only date and time registers.
  rtc: armada38x: Add support for Armada 7K/8K
  rtc: armada38x: Prepare driver to manage different versions
  rtc: ds3232: Add regmap max_register definition.
  rtc: ds3232: Cleanup whitespace around register and bit definitions.
  rtc: m48t86: remove unused platform_data
  ARM: Orion5x: ts78xx: allow rtc-m48t86 to manage it's own resources
  ARM: Orion5x: ts78xx: remove RTC detection
  ARM: ep93xx: ts72xx: allow rtc-m48t86 to manage its own resources
  rtc: m48t86: verify that the RTC is actually present
  rtc: m48t86: add NVRAM support
  rtc: m48t86: allow driver to manage its resources
  rtc: m48t86: shorten register name defines
  bindings: rtc: correct wrong reference in required properties
  rtc: sun6i: Fix return value check in sun6i_rtc_clk_init()
  rtc: sun6i: extend test coverage
  rtc: sun6i: Fix compatibility with old DT binding
  rtc: snvs: add a missing write sync
  rtc: bq32000: add support to enable disable the trickle charge FET bypass
  ...
This commit is contained in:
Linus Torvalds 2017-02-27 19:59:21 -08:00
commit 5782fd14aa
35 changed files with 1953 additions and 373 deletions

View File

@ -0,0 +1,7 @@
What: /sys/bus/i2c/devices/.../trickle_charge_bypass
Date: Jan 2017
KernelVersion: 4.11
Contact: Enric Balletbo i Serra <eballetbo@gmail.com>
Description: Attribute for enable/disable the trickle charge bypass
The trickle_charge_bypass attribute allows the userspace to
enable/disable the Trickle charge FET bypass.

View File

@ -1,9 +1,11 @@
* Real Time Clock of the Armada 38x SoCs
* Real Time Clock of the Armada 38x/7K/8K SoCs
RTC controller for the Armada 38x SoCs
RTC controller for the Armada 38x, 7K and 8K SoCs
Required properties:
- compatible : Should be "marvell,armada-380-rtc"
- compatible : Should be one of the following:
"marvell,armada-380-rtc" for Armada 38x SoC
"marvell,armada-8k-rtc" for Aramda 7K/8K SoCs
- reg: a list of base address and size pairs, one for each entry in
reg-names
- reg names: should contain:

View File

@ -0,0 +1,14 @@
* Cortina Systems Gemini RTC
Gemini SoC real-time clock.
Required properties:
- compatible : Should be "cortina,gemini-rtc"
Examples:
rtc@45000000 {
compatible = "cortina,gemini-rtc";
reg = <0x45000000 0x100>;
interrupts = <17 IRQ_TYPE_LEVEL_HIGH>;
};

View File

@ -8,10 +8,13 @@ Required properties:
region.
- interrupts: rtc alarm interrupt
Optional properties:
- interrupts: dryice security violation interrupt
Example:
rtc@80056000 {
compatible = "fsl,imx53-rtc", "fsl,imx25-rtc";
reg = <0x80056000 2000>;
interrupts = <29>;
interrupts = <29 56>;
};

View File

@ -1,7 +1,8 @@
* Maxim DS3231 Real Time Clock
Required properties:
see: Documentation/devicetree/bindings/i2c/trivial-admin-guide/devices.rst
- compatible: Should contain "maxim,ds3231".
- reg: I2C address for chip.
Optional property:
- #clock-cells: Should be 1.

View File

@ -3,7 +3,8 @@
Philips PCF8563/Epson RTC8564 Real Time Clock
Required properties:
see: Documentation/devicetree/bindings/i2c/trivial-admin-guide/devices.rst
- compatible: Should contain "nxp,pcf8563".
- reg: I2C address for chip.
Optional property:
- #clock-cells: Should be 0.

View File

@ -0,0 +1,27 @@
STM32 Real Time Clock
Required properties:
- compatible: "st,stm32-rtc".
- reg: address range of rtc register set.
- clocks: reference to the clock entry ck_rtc.
- interrupt-parent: phandle for the interrupt controller.
- interrupts: rtc alarm interrupt.
- st,syscfg: phandle for pwrcfg, mandatory to disable/enable backup domain
(RTC registers) write protection.
Optional properties (to override default ck_rtc parent clock):
- assigned-clocks: reference to the ck_rtc clock entry.
- assigned-clock-parents: phandle of the new parent clock of ck_rtc.
Example:
rtc: rtc@40002800 {
compatible = "st,stm32-rtc";
reg = <0x40002800 0x400>;
clocks = <&rcc 1 CLK_RTC>;
assigned-clocks = <&rcc 1 CLK_RTC>;
assigned-clock-parents = <&rcc 1 CLK_LSE>;
interrupt-parent = <&exti>;
interrupts = <17 1>;
st,syscfg = <&pwrcfg>;
};

View File

@ -8,10 +8,20 @@ Required properties:
memory mapped region.
- interrupts : IRQ lines for the RTC alarm 0 and alarm 1, in that order.
Required properties for new device trees
- clocks : phandle to the 32kHz external oscillator
- clock-output-names : name of the LOSC clock created
- #clock-cells : must be equals to 1. The RTC provides two clocks: the
LOSC and its external output, with index 0 and 1
respectively.
Example:
rtc: rtc@01f00000 {
compatible = "allwinner,sun6i-a31-rtc";
reg = <0x01f00000 0x54>;
interrupts = <0 40 4>, <0 41 4>;
clock-output-names = "osc32k";
clocks = <&ext_osc32k>;
#clock-cells = <1>;
};

View File

@ -16,7 +16,6 @@
#include <linux/init.h>
#include <linux/platform_device.h>
#include <linux/io.h>
#include <linux/platform_data/rtc-m48t86.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
@ -45,16 +44,6 @@ static struct map_desc ts72xx_io_desc[] __initdata = {
.pfn = __phys_to_pfn(TS72XX_OPTIONS2_PHYS_BASE),
.length = TS72XX_OPTIONS2_SIZE,
.type = MT_DEVICE,
}, {
.virtual = (unsigned long)TS72XX_RTC_INDEX_VIRT_BASE,
.pfn = __phys_to_pfn(TS72XX_RTC_INDEX_PHYS_BASE),
.length = TS72XX_RTC_INDEX_SIZE,
.type = MT_DEVICE,
}, {
.virtual = (unsigned long)TS72XX_RTC_DATA_VIRT_BASE,
.pfn = __phys_to_pfn(TS72XX_RTC_DATA_PHYS_BASE),
.length = TS72XX_RTC_DATA_SIZE,
.type = MT_DEVICE,
}
};
@ -179,31 +168,22 @@ static void __init ts72xx_register_flash(void)
}
}
/*************************************************************************
* RTC M48T86
*************************************************************************/
#define TS72XX_RTC_INDEX_PHYS_BASE (EP93XX_CS1_PHYS_BASE + 0x00800000)
#define TS72XX_RTC_DATA_PHYS_BASE (EP93XX_CS1_PHYS_BASE + 0x01700000)
static unsigned char ts72xx_rtc_readbyte(unsigned long addr)
{
__raw_writeb(addr, TS72XX_RTC_INDEX_VIRT_BASE);
return __raw_readb(TS72XX_RTC_DATA_VIRT_BASE);
}
static void ts72xx_rtc_writebyte(unsigned char value, unsigned long addr)
{
__raw_writeb(addr, TS72XX_RTC_INDEX_VIRT_BASE);
__raw_writeb(value, TS72XX_RTC_DATA_VIRT_BASE);
}
static struct m48t86_ops ts72xx_rtc_ops = {
.readbyte = ts72xx_rtc_readbyte,
.writebyte = ts72xx_rtc_writebyte,
static struct resource ts72xx_rtc_resources[] = {
DEFINE_RES_MEM(TS72XX_RTC_INDEX_PHYS_BASE, 0x01),
DEFINE_RES_MEM(TS72XX_RTC_DATA_PHYS_BASE, 0x01),
};
static struct platform_device ts72xx_rtc_device = {
.name = "rtc-m48t86",
.id = -1,
.dev = {
.platform_data = &ts72xx_rtc_ops,
},
.num_resources = 0,
.resource = ts72xx_rtc_resources,
.num_resources = ARRAY_SIZE(ts72xx_rtc_resources),
};
static struct resource ts72xx_wdt_resources[] = {

View File

@ -9,8 +9,6 @@
* febff000 22000000 4K model number register (bits 0-2)
* febfe000 22400000 4K options register
* febfd000 22800000 4K options register #2
* febf9000 10800000 4K TS-5620 RTC index register
* febf8000 11700000 4K TS-5620 RTC data register
*/
#define TS72XX_MODEL_PHYS_BASE 0x22000000
@ -40,15 +38,6 @@
#define TS72XX_OPTIONS2_TS9420 0x04
#define TS72XX_OPTIONS2_TS9420_BOOT 0x02
#define TS72XX_RTC_INDEX_VIRT_BASE IOMEM(0xfebf9000)
#define TS72XX_RTC_INDEX_PHYS_BASE 0x10800000
#define TS72XX_RTC_INDEX_SIZE 0x00001000
#define TS72XX_RTC_DATA_VIRT_BASE IOMEM(0xfebf8000)
#define TS72XX_RTC_DATA_PHYS_BASE 0x11700000
#define TS72XX_RTC_DATA_SIZE 0x00001000
#define TS72XX_WDT_CONTROL_PHYS_BASE 0x23800000
#define TS72XX_WDT_FEED_PHYS_BASE 0x23c00000

View File

@ -16,7 +16,6 @@
#include <linux/platform_device.h>
#include <linux/mv643xx_eth.h>
#include <linux/ata_platform.h>
#include <linux/platform_data/rtc-m48t86.h>
#include <linux/mtd/nand.h>
#include <linux/mtd/partitions.h>
#include <linux/timeriomem-rng.h>
@ -80,79 +79,38 @@ static struct mv_sata_platform_data ts78xx_sata_data = {
/*****************************************************************************
* RTC M48T86 - nicked^Wborrowed from arch/arm/mach-ep93xx/ts72xx.c
****************************************************************************/
#define TS_RTC_CTRL (TS78XX_FPGA_REGS_VIRT_BASE + 0x808)
#define TS_RTC_DATA (TS78XX_FPGA_REGS_VIRT_BASE + 0x80c)
#define TS_RTC_CTRL (TS78XX_FPGA_REGS_PHYS_BASE + 0x808)
#define TS_RTC_DATA (TS78XX_FPGA_REGS_PHYS_BASE + 0x80c)
static unsigned char ts78xx_ts_rtc_readbyte(unsigned long addr)
{
writeb(addr, TS_RTC_CTRL);
return readb(TS_RTC_DATA);
}
static void ts78xx_ts_rtc_writebyte(unsigned char value, unsigned long addr)
{
writeb(addr, TS_RTC_CTRL);
writeb(value, TS_RTC_DATA);
}
static struct m48t86_ops ts78xx_ts_rtc_ops = {
.readbyte = ts78xx_ts_rtc_readbyte,
.writebyte = ts78xx_ts_rtc_writebyte,
static struct resource ts78xx_ts_rtc_resources[] = {
DEFINE_RES_MEM(TS_RTC_CTRL, 0x01),
DEFINE_RES_MEM(TS_RTC_DATA, 0x01),
};
static struct platform_device ts78xx_ts_rtc_device = {
.name = "rtc-m48t86",
.id = -1,
.dev = {
.platform_data = &ts78xx_ts_rtc_ops,
},
.num_resources = 0,
.resource = ts78xx_ts_rtc_resources,
.num_resources = ARRAY_SIZE(ts78xx_ts_rtc_resources),
};
/*
* TS uses some of the user storage space on the RTC chip so see if it is
* present; as it's an optional feature at purchase time and not all boards
* will have it present
*
* I've used the method TS use in their rtc7800.c example for the detection
*
* TODO: track down a guinea pig without an RTC to see if we can work out a
* better RTC detection routine
*/
static int ts78xx_ts_rtc_load(void)
{
int rc;
unsigned char tmp_rtc0, tmp_rtc1;
tmp_rtc0 = ts78xx_ts_rtc_readbyte(126);
tmp_rtc1 = ts78xx_ts_rtc_readbyte(127);
ts78xx_ts_rtc_writebyte(0x00, 126);
ts78xx_ts_rtc_writebyte(0x55, 127);
if (ts78xx_ts_rtc_readbyte(127) == 0x55) {
ts78xx_ts_rtc_writebyte(0xaa, 127);
if (ts78xx_ts_rtc_readbyte(127) == 0xaa
&& ts78xx_ts_rtc_readbyte(126) == 0x00) {
ts78xx_ts_rtc_writebyte(tmp_rtc0, 126);
ts78xx_ts_rtc_writebyte(tmp_rtc1, 127);
if (ts78xx_fpga.supports.ts_rtc.init == 0) {
rc = platform_device_register(&ts78xx_ts_rtc_device);
if (!rc)
ts78xx_fpga.supports.ts_rtc.init = 1;
} else
rc = platform_device_add(&ts78xx_ts_rtc_device);
if (rc)
pr_info("RTC could not be registered: %d\n",
rc);
return rc;
}
if (ts78xx_fpga.supports.ts_rtc.init == 0) {
rc = platform_device_register(&ts78xx_ts_rtc_device);
if (!rc)
ts78xx_fpga.supports.ts_rtc.init = 1;
} else {
rc = platform_device_add(&ts78xx_ts_rtc_device);
}
pr_info("RTC not found\n");
return -ENODEV;
};
if (rc)
pr_info("RTC could not be registered: %d\n", rc);
return rc;
}
static void ts78xx_ts_rtc_unload(void)
{

View File

@ -1434,9 +1434,10 @@ config RTC_DRV_SUN4V
based RTC on SUN4V systems.
config RTC_DRV_SUN6I
tristate "Allwinner A31 RTC"
default MACH_SUN6I || MACH_SUN8I || COMPILE_TEST
depends on ARCH_SUNXI
bool "Allwinner A31 RTC"
default MACH_SUN6I || MACH_SUN8I
depends on COMMON_CLK
depends on ARCH_SUNXI || COMPILE_TEST
help
If you say Y here you will get support for the RTC found in
some Allwinner SoCs like the A31 or the A64.
@ -1719,6 +1720,17 @@ config RTC_DRV_R7301
This driver can also be built as a module. If so, the module
will be called rtc-r7301.
config RTC_DRV_STM32
tristate "STM32 RTC"
select REGMAP_MMIO
depends on ARCH_STM32 || COMPILE_TEST
help
If you say yes here you get support for the STM32 On-Chip
Real Time Clock.
This driver can also be built as a module, if so, the module
will be called "rtc-stm32".
comment "HID Sensor RTC drivers"
config RTC_DRV_HID_SENSOR_TIME

View File

@ -145,6 +145,7 @@ obj-$(CONFIG_RTC_DRV_SNVS) += rtc-snvs.o
obj-$(CONFIG_RTC_DRV_SPEAR) += rtc-spear.o
obj-$(CONFIG_RTC_DRV_STARFIRE) += rtc-starfire.o
obj-$(CONFIG_RTC_DRV_STK17TA8) += rtc-stk17ta8.o
obj-$(CONFIG_RTC_DRV_STM32) += rtc-stm32.o
obj-$(CONFIG_RTC_DRV_STMP) += rtc-stmp3xxx.o
obj-$(CONFIG_RTC_DRV_ST_LPC) += rtc-st-lpc.o
obj-$(CONFIG_RTC_DRV_SUN4V) += rtc-sun4v.o

View File

@ -16,6 +16,7 @@
#include <linux/io.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
@ -23,17 +24,48 @@
#define RTC_STATUS_ALARM1 BIT(0)
#define RTC_STATUS_ALARM2 BIT(1)
#define RTC_IRQ1_CONF 0x4
#define RTC_IRQ1_AL_EN BIT(0)
#define RTC_IRQ1_FREQ_EN BIT(1)
#define RTC_IRQ1_FREQ_1HZ BIT(2)
#define RTC_IRQ2_CONF 0x8
#define RTC_IRQ_AL_EN BIT(0)
#define RTC_IRQ_FREQ_EN BIT(1)
#define RTC_IRQ_FREQ_1HZ BIT(2)
#define RTC_TIME 0xC
#define RTC_ALARM1 0x10
#define RTC_ALARM2 0x14
#define SOC_RTC_INTERRUPT 0x8
#define SOC_RTC_ALARM1 BIT(0)
#define SOC_RTC_ALARM2 BIT(1)
#define SOC_RTC_ALARM1_MASK BIT(2)
#define SOC_RTC_ALARM2_MASK BIT(3)
/* Armada38x SoC registers */
#define RTC_38X_BRIDGE_TIMING_CTL 0x0
#define RTC_38X_PERIOD_OFFS 0
#define RTC_38X_PERIOD_MASK (0x3FF << RTC_38X_PERIOD_OFFS)
#define RTC_38X_READ_DELAY_OFFS 26
#define RTC_38X_READ_DELAY_MASK (0x1F << RTC_38X_READ_DELAY_OFFS)
/* Armada 7K/8K registers */
#define RTC_8K_BRIDGE_TIMING_CTL0 0x0
#define RTC_8K_WRCLK_PERIOD_OFFS 0
#define RTC_8K_WRCLK_PERIOD_MASK (0xFFFF << RTC_8K_WRCLK_PERIOD_OFFS)
#define RTC_8K_WRCLK_SETUP_OFFS 16
#define RTC_8K_WRCLK_SETUP_MASK (0xFFFF << RTC_8K_WRCLK_SETUP_OFFS)
#define RTC_8K_BRIDGE_TIMING_CTL1 0x4
#define RTC_8K_READ_DELAY_OFFS 0
#define RTC_8K_READ_DELAY_MASK (0xFFFF << RTC_8K_READ_DELAY_OFFS)
#define RTC_8K_ISR 0x10
#define RTC_8K_IMR 0x14
#define RTC_8K_ALARM2 BIT(0)
#define SOC_RTC_INTERRUPT 0x8
#define SOC_RTC_ALARM1 BIT(0)
#define SOC_RTC_ALARM2 BIT(1)
#define SOC_RTC_ALARM1_MASK BIT(2)
#define SOC_RTC_ALARM2_MASK BIT(3)
#define SAMPLE_NR 100
struct value_to_freq {
u32 value;
u8 freq;
};
struct armada38x_rtc {
struct rtc_device *rtc_dev;
@ -41,38 +73,153 @@ struct armada38x_rtc {
void __iomem *regs_soc;
spinlock_t lock;
int irq;
struct value_to_freq *val_to_freq;
struct armada38x_rtc_data *data;
};
#define ALARM1 0
#define ALARM2 1
#define ALARM_REG(base, alarm) ((base) + (alarm) * sizeof(u32))
struct armada38x_rtc_data {
/* Initialize the RTC-MBUS bridge timing */
void (*update_mbus_timing)(struct armada38x_rtc *rtc);
u32 (*read_rtc_reg)(struct armada38x_rtc *rtc, u8 rtc_reg);
void (*clear_isr)(struct armada38x_rtc *rtc);
void (*unmask_interrupt)(struct armada38x_rtc *rtc);
u32 alarm;
};
/*
* According to the datasheet, the OS should wait 5us after every
* register write to the RTC hard macro so that the required update
* can occur without holding off the system bus
* According to errata RES-3124064, Write to any RTC register
* may fail. As a workaround, before writing to RTC
* register, issue a dummy write of 0x0 twice to RTC Status
* register.
*/
static void rtc_delayed_write(u32 val, struct armada38x_rtc *rtc, int offset)
{
writel(0, rtc->regs + RTC_STATUS);
writel(0, rtc->regs + RTC_STATUS);
writel(val, rtc->regs + offset);
udelay(5);
}
/* Update RTC-MBUS bridge timing parameters */
static void rtc_update_38x_mbus_timing_params(struct armada38x_rtc *rtc)
{
u32 reg;
reg = readl(rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
reg &= ~RTC_38X_PERIOD_MASK;
reg |= 0x3FF << RTC_38X_PERIOD_OFFS; /* Maximum value */
reg &= ~RTC_38X_READ_DELAY_MASK;
reg |= 0x1F << RTC_38X_READ_DELAY_OFFS; /* Maximum value */
writel(reg, rtc->regs_soc + RTC_38X_BRIDGE_TIMING_CTL);
}
static void rtc_update_8k_mbus_timing_params(struct armada38x_rtc *rtc)
{
u32 reg;
reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
reg &= ~RTC_8K_WRCLK_PERIOD_MASK;
reg |= 0x3FF << RTC_8K_WRCLK_PERIOD_OFFS;
reg &= ~RTC_8K_WRCLK_SETUP_MASK;
reg |= 0x29 << RTC_8K_WRCLK_SETUP_OFFS;
writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL0);
reg = readl(rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
reg &= ~RTC_8K_READ_DELAY_MASK;
reg |= 0x3F << RTC_8K_READ_DELAY_OFFS;
writel(reg, rtc->regs_soc + RTC_8K_BRIDGE_TIMING_CTL1);
}
static u32 read_rtc_register(struct armada38x_rtc *rtc, u8 rtc_reg)
{
return readl(rtc->regs + rtc_reg);
}
static u32 read_rtc_register_38x_wa(struct armada38x_rtc *rtc, u8 rtc_reg)
{
int i, index_max = 0, max = 0;
for (i = 0; i < SAMPLE_NR; i++) {
rtc->val_to_freq[i].value = readl(rtc->regs + rtc_reg);
rtc->val_to_freq[i].freq = 0;
}
for (i = 0; i < SAMPLE_NR; i++) {
int j = 0;
u32 value = rtc->val_to_freq[i].value;
while (rtc->val_to_freq[j].freq) {
if (rtc->val_to_freq[j].value == value) {
rtc->val_to_freq[j].freq++;
break;
}
j++;
}
if (!rtc->val_to_freq[j].freq) {
rtc->val_to_freq[j].value = value;
rtc->val_to_freq[j].freq = 1;
}
if (rtc->val_to_freq[j].freq > max) {
index_max = j;
max = rtc->val_to_freq[j].freq;
}
/*
* If a value already has half of the sample this is the most
* frequent one and we can stop the research right now
*/
if (max > SAMPLE_NR / 2)
break;
}
return rtc->val_to_freq[index_max].value;
}
static void armada38x_clear_isr(struct armada38x_rtc *rtc)
{
u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
}
static void armada38x_unmask_interrupt(struct armada38x_rtc *rtc)
{
u32 val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
writel(val | SOC_RTC_ALARM1_MASK, rtc->regs_soc + SOC_RTC_INTERRUPT);
}
static void armada8k_clear_isr(struct armada38x_rtc *rtc)
{
writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_ISR);
}
static void armada8k_unmask_interrupt(struct armada38x_rtc *rtc)
{
writel(RTC_8K_ALARM2, rtc->regs_soc + RTC_8K_IMR);
}
static int armada38x_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
unsigned long time, time_check, flags;
unsigned long time, flags;
spin_lock_irqsave(&rtc->lock, flags);
time = readl(rtc->regs + RTC_TIME);
/*
* WA for failing time set attempts. As stated in HW ERRATA if
* more than one second between two time reads is detected
* then read once again.
*/
time_check = readl(rtc->regs + RTC_TIME);
if ((time_check - time) > 1)
time_check = readl(rtc->regs + RTC_TIME);
time = rtc->data->read_rtc_reg(rtc, RTC_TIME);
spin_unlock_irqrestore(&rtc->lock, flags);
rtc_time_to_tm(time_check, tm);
rtc_time_to_tm(time, tm);
return 0;
}
@ -87,16 +234,9 @@ static int armada38x_rtc_set_time(struct device *dev, struct rtc_time *tm)
if (ret)
goto out;
/*
* According to errata FE-3124064, Write to RTC TIME register
* may fail. As a workaround, after writing to RTC TIME
* register, issue a dummy write of 0x0 twice to RTC Status
* register.
*/
spin_lock_irqsave(&rtc->lock, flags);
rtc_delayed_write(time, rtc, RTC_TIME);
rtc_delayed_write(0, rtc, RTC_STATUS);
rtc_delayed_write(0, rtc, RTC_STATUS);
spin_unlock_irqrestore(&rtc->lock, flags);
out:
@ -107,12 +247,14 @@ static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
unsigned long time, flags;
u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
u32 val;
spin_lock_irqsave(&rtc->lock, flags);
time = readl(rtc->regs + RTC_ALARM1);
val = readl(rtc->regs + RTC_IRQ1_CONF) & RTC_IRQ1_AL_EN;
time = rtc->data->read_rtc_reg(rtc, reg);
val = rtc->data->read_rtc_reg(rtc, reg_irq) & RTC_IRQ_AL_EN;
spin_unlock_irqrestore(&rtc->lock, flags);
@ -125,9 +267,10 @@ static int armada38x_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
u32 reg = ALARM_REG(RTC_ALARM1, rtc->data->alarm);
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
unsigned long time, flags;
int ret = 0;
u32 val;
ret = rtc_tm_to_time(&alrm->time, &time);
@ -136,13 +279,11 @@ static int armada38x_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
spin_lock_irqsave(&rtc->lock, flags);
rtc_delayed_write(time, rtc, RTC_ALARM1);
rtc_delayed_write(time, rtc, reg);
if (alrm->enabled) {
rtc_delayed_write(RTC_IRQ1_AL_EN, rtc, RTC_IRQ1_CONF);
val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
writel(val | SOC_RTC_ALARM1_MASK,
rtc->regs_soc + SOC_RTC_INTERRUPT);
rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
rtc->data->unmask_interrupt(rtc);
}
spin_unlock_irqrestore(&rtc->lock, flags);
@ -155,14 +296,15 @@ static int armada38x_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
unsigned long flags;
spin_lock_irqsave(&rtc->lock, flags);
if (enabled)
rtc_delayed_write(RTC_IRQ1_AL_EN, rtc, RTC_IRQ1_CONF);
rtc_delayed_write(RTC_IRQ_AL_EN, rtc, reg_irq);
else
rtc_delayed_write(0, rtc, RTC_IRQ1_CONF);
rtc_delayed_write(0, rtc, reg_irq);
spin_unlock_irqrestore(&rtc->lock, flags);
@ -174,24 +316,23 @@ static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
struct armada38x_rtc *rtc = data;
u32 val;
int event = RTC_IRQF | RTC_AF;
u32 reg_irq = ALARM_REG(RTC_IRQ1_CONF, rtc->data->alarm);
dev_dbg(&rtc->rtc_dev->dev, "%s:irq(%d)\n", __func__, irq);
spin_lock(&rtc->lock);
val = readl(rtc->regs_soc + SOC_RTC_INTERRUPT);
writel(val & ~SOC_RTC_ALARM1, rtc->regs_soc + SOC_RTC_INTERRUPT);
val = readl(rtc->regs + RTC_IRQ1_CONF);
/* disable all the interrupts for alarm 1 */
rtc_delayed_write(0, rtc, RTC_IRQ1_CONF);
rtc->data->clear_isr(rtc);
val = rtc->data->read_rtc_reg(rtc, reg_irq);
/* disable all the interrupts for alarm*/
rtc_delayed_write(0, rtc, reg_irq);
/* Ack the event */
rtc_delayed_write(RTC_STATUS_ALARM1, rtc, RTC_STATUS);
rtc_delayed_write(1 << rtc->data->alarm, rtc, RTC_STATUS);
spin_unlock(&rtc->lock);
if (val & RTC_IRQ1_FREQ_EN) {
if (val & RTC_IRQ1_FREQ_1HZ)
if (val & RTC_IRQ_FREQ_EN) {
if (val & RTC_IRQ_FREQ_1HZ)
event |= RTC_UF;
else
event |= RTC_PF;
@ -202,7 +343,7 @@ static irqreturn_t armada38x_rtc_alarm_irq(int irq, void *data)
return IRQ_HANDLED;
}
static struct rtc_class_ops armada38x_rtc_ops = {
static const struct rtc_class_ops armada38x_rtc_ops = {
.read_time = armada38x_rtc_read_time,
.set_time = armada38x_rtc_set_time,
.read_alarm = armada38x_rtc_read_alarm,
@ -210,17 +351,65 @@ static struct rtc_class_ops armada38x_rtc_ops = {
.alarm_irq_enable = armada38x_rtc_alarm_irq_enable,
};
static const struct rtc_class_ops armada38x_rtc_ops_noirq = {
.read_time = armada38x_rtc_read_time,
.set_time = armada38x_rtc_set_time,
.read_alarm = armada38x_rtc_read_alarm,
};
static const struct armada38x_rtc_data armada38x_data = {
.update_mbus_timing = rtc_update_38x_mbus_timing_params,
.read_rtc_reg = read_rtc_register_38x_wa,
.clear_isr = armada38x_clear_isr,
.unmask_interrupt = armada38x_unmask_interrupt,
.alarm = ALARM1,
};
static const struct armada38x_rtc_data armada8k_data = {
.update_mbus_timing = rtc_update_8k_mbus_timing_params,
.read_rtc_reg = read_rtc_register,
.clear_isr = armada8k_clear_isr,
.unmask_interrupt = armada8k_unmask_interrupt,
.alarm = ALARM2,
};
#ifdef CONFIG_OF
static const struct of_device_id armada38x_rtc_of_match_table[] = {
{
.compatible = "marvell,armada-380-rtc",
.data = &armada38x_data,
},
{
.compatible = "marvell,armada-8k-rtc",
.data = &armada8k_data,
},
{}
};
MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
#endif
static __init int armada38x_rtc_probe(struct platform_device *pdev)
{
const struct rtc_class_ops *ops;
struct resource *res;
struct armada38x_rtc *rtc;
const struct of_device_id *match;
int ret;
match = of_match_device(armada38x_rtc_of_match_table, &pdev->dev);
if (!match)
return -ENODEV;
rtc = devm_kzalloc(&pdev->dev, sizeof(struct armada38x_rtc),
GFP_KERNEL);
if (!rtc)
return -ENOMEM;
rtc->val_to_freq = devm_kcalloc(&pdev->dev, SAMPLE_NR,
sizeof(struct value_to_freq), GFP_KERNEL);
if (!rtc->val_to_freq)
return -ENOMEM;
spin_lock_init(&rtc->lock);
res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "rtc");
@ -242,19 +431,27 @@ static __init int armada38x_rtc_probe(struct platform_device *pdev)
0, pdev->name, rtc) < 0) {
dev_warn(&pdev->dev, "Interrupt not available.\n");
rtc->irq = -1;
}
platform_set_drvdata(pdev, rtc);
if (rtc->irq != -1) {
device_init_wakeup(&pdev->dev, 1);
ops = &armada38x_rtc_ops;
} else {
/*
* If there is no interrupt available then we can't
* use the alarm
*/
armada38x_rtc_ops.set_alarm = NULL;
armada38x_rtc_ops.alarm_irq_enable = NULL;
ops = &armada38x_rtc_ops_noirq;
}
platform_set_drvdata(pdev, rtc);
if (rtc->irq != -1)
device_init_wakeup(&pdev->dev, 1);
rtc->data = (struct armada38x_rtc_data *)match->data;
/* Update RTC-MBUS bridge timing parameters */
rtc->data->update_mbus_timing(rtc);
rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
&armada38x_rtc_ops, THIS_MODULE);
ops, THIS_MODULE);
if (IS_ERR(rtc->rtc_dev)) {
ret = PTR_ERR(rtc->rtc_dev);
dev_err(&pdev->dev, "Failed to register RTC device: %d\n", ret);
@ -280,6 +477,9 @@ static int armada38x_rtc_resume(struct device *dev)
if (device_may_wakeup(dev)) {
struct armada38x_rtc *rtc = dev_get_drvdata(dev);
/* Update RTC-MBUS bridge timing parameters */
rtc->data->update_mbus_timing(rtc);
return disable_irq_wake(rtc->irq);
}
@ -290,14 +490,6 @@ static int armada38x_rtc_resume(struct device *dev)
static SIMPLE_DEV_PM_OPS(armada38x_rtc_pm_ops,
armada38x_rtc_suspend, armada38x_rtc_resume);
#ifdef CONFIG_OF
static const struct of_device_id armada38x_rtc_of_match_table[] = {
{ .compatible = "marvell,armada-380-rtc", },
{}
};
MODULE_DEVICE_TABLE(of, armada38x_rtc_of_match_table);
#endif
static struct platform_driver armada38x_rtc_driver = {
.driver = {
.name = "armada38x-rtc",

View File

@ -56,7 +56,7 @@ static int au1xtoy_rtc_set_time(struct device *dev, struct rtc_time *tm)
return 0;
}
static struct rtc_class_ops au1xtoy_rtc_ops = {
static const struct rtc_class_ops au1xtoy_rtc_ops = {
.read_time = au1xtoy_rtc_read_time,
.set_time = au1xtoy_rtc_set_time,
};

View File

@ -333,7 +333,7 @@ static int bfin_rtc_proc(struct device *dev, struct seq_file *seq)
#undef yesno
}
static struct rtc_class_ops bfin_rtc_ops = {
static const struct rtc_class_ops bfin_rtc_ops = {
.read_time = bfin_rtc_read_time,
.set_time = bfin_rtc_set_time,
.read_alarm = bfin_rtc_read_alarm,

View File

@ -34,6 +34,7 @@
#define BQ32K_CALIBRATION 0x07 /* CAL_CFG1, calibration and control */
#define BQ32K_TCH2 0x08 /* Trickle charge enable */
#define BQ32K_CFG2 0x09 /* Trickle charger control */
#define BQ32K_TCFE BIT(6) /* Trickle charge FET bypass */
struct bq32k_regs {
uint8_t seconds;
@ -188,6 +189,65 @@ static int trickle_charger_of_init(struct device *dev, struct device_node *node)
return 0;
}
static ssize_t bq32k_sysfs_show_tricklecharge_bypass(struct device *dev,
struct device_attribute *attr,
char *buf)
{
int reg, error;
error = bq32k_read(dev, &reg, BQ32K_CFG2, 1);
if (error)
return error;
return sprintf(buf, "%d\n", (reg & BQ32K_TCFE) ? 1 : 0);
}
static ssize_t bq32k_sysfs_store_tricklecharge_bypass(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
int reg, enable, error;
if (kstrtoint(buf, 0, &enable))
return -EINVAL;
error = bq32k_read(dev, &reg, BQ32K_CFG2, 1);
if (error)
return error;
if (enable) {
reg |= BQ32K_TCFE;
error = bq32k_write(dev, &reg, BQ32K_CFG2, 1);
if (error)
return error;
dev_info(dev, "Enabled trickle charge FET bypass.\n");
} else {
reg &= ~BQ32K_TCFE;
error = bq32k_write(dev, &reg, BQ32K_CFG2, 1);
if (error)
return error;
dev_info(dev, "Disabled trickle charge FET bypass.\n");
}
return count;
}
static DEVICE_ATTR(trickle_charge_bypass, 0644,
bq32k_sysfs_show_tricklecharge_bypass,
bq32k_sysfs_store_tricklecharge_bypass);
static int bq32k_sysfs_register(struct device *dev)
{
return device_create_file(dev, &dev_attr_trickle_charge_bypass);
}
static void bq32k_sysfs_unregister(struct device *dev)
{
device_remove_file(dev, &dev_attr_trickle_charge_bypass);
}
static int bq32k_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
@ -224,11 +284,26 @@ static int bq32k_probe(struct i2c_client *client,
if (IS_ERR(rtc))
return PTR_ERR(rtc);
error = bq32k_sysfs_register(&client->dev);
if (error) {
dev_err(&client->dev,
"Unable to create sysfs entries for rtc bq32000\n");
return error;
}
i2c_set_clientdata(client, rtc);
return 0;
}
static int bq32k_remove(struct i2c_client *client)
{
bq32k_sysfs_unregister(&client->dev);
return 0;
}
static const struct i2c_device_id bq32k_id[] = {
{ "bq32000", 0 },
{ }
@ -240,6 +315,7 @@ static struct i2c_driver bq32k_driver = {
.name = "bq32k",
},
.probe = bq32k_probe,
.remove = bq32k_remove,
.id_table = bq32k_id,
};

View File

@ -116,7 +116,7 @@ static int dm355evm_rtc_set_time(struct device *dev, struct rtc_time *tm)
return 0;
}
static struct rtc_class_ops dm355evm_rtc_ops = {
static const struct rtc_class_ops dm355evm_rtc_ops = {
.read_time = dm355evm_rtc_read_time,
.set_time = dm355evm_rtc_set_time,
};

View File

@ -23,28 +23,28 @@
#include <linux/slab.h>
#include <linux/regmap.h>
#define DS3232_REG_SECONDS 0x00
#define DS3232_REG_MINUTES 0x01
#define DS3232_REG_HOURS 0x02
#define DS3232_REG_AMPM 0x02
#define DS3232_REG_DAY 0x03
#define DS3232_REG_DATE 0x04
#define DS3232_REG_MONTH 0x05
#define DS3232_REG_CENTURY 0x05
#define DS3232_REG_YEAR 0x06
#define DS3232_REG_ALARM1 0x07 /* Alarm 1 BASE */
#define DS3232_REG_ALARM2 0x0B /* Alarm 2 BASE */
#define DS3232_REG_CR 0x0E /* Control register */
# define DS3232_REG_CR_nEOSC 0x80
# define DS3232_REG_CR_INTCN 0x04
# define DS3232_REG_CR_A2IE 0x02
# define DS3232_REG_CR_A1IE 0x01
#define DS3232_REG_SECONDS 0x00
#define DS3232_REG_MINUTES 0x01
#define DS3232_REG_HOURS 0x02
#define DS3232_REG_AMPM 0x02
#define DS3232_REG_DAY 0x03
#define DS3232_REG_DATE 0x04
#define DS3232_REG_MONTH 0x05
#define DS3232_REG_CENTURY 0x05
#define DS3232_REG_YEAR 0x06
#define DS3232_REG_ALARM1 0x07 /* Alarm 1 BASE */
#define DS3232_REG_ALARM2 0x0B /* Alarm 2 BASE */
#define DS3232_REG_CR 0x0E /* Control register */
# define DS3232_REG_CR_nEOSC 0x80
# define DS3232_REG_CR_INTCN 0x04
# define DS3232_REG_CR_A2IE 0x02
# define DS3232_REG_CR_A1IE 0x01
#define DS3232_REG_SR 0x0F /* control/status register */
# define DS3232_REG_SR_OSF 0x80
# define DS3232_REG_SR_BSY 0x04
# define DS3232_REG_SR_A2F 0x02
# define DS3232_REG_SR_A1F 0x01
#define DS3232_REG_SR 0x0F /* control/status register */
# define DS3232_REG_SR_OSF 0x80
# define DS3232_REG_SR_BSY 0x04
# define DS3232_REG_SR_A2F 0x02
# define DS3232_REG_SR_A1F 0x01
struct ds3232 {
struct device *dev;
@ -363,6 +363,9 @@ static int ds3232_probe(struct device *dev, struct regmap *regmap, int irq,
if (ret)
return ret;
if (ds3232->irq > 0)
device_init_wakeup(dev, 1);
ds3232->rtc = devm_rtc_device_register(dev, name, &ds3232_rtc_ops,
THIS_MODULE);
if (IS_ERR(ds3232->rtc))
@ -374,10 +377,10 @@ static int ds3232_probe(struct device *dev, struct regmap *regmap, int irq,
IRQF_SHARED | IRQF_ONESHOT,
name, dev);
if (ret) {
device_set_wakeup_capable(dev, 0);
ds3232->irq = 0;
dev_err(dev, "unable to request IRQ\n");
} else
device_init_wakeup(dev, 1);
}
}
return 0;
@ -420,6 +423,7 @@ static int ds3232_i2c_probe(struct i2c_client *client,
static const struct regmap_config config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x13,
};
regmap = devm_regmap_init_i2c(client, &config);
@ -479,6 +483,7 @@ static int ds3234_probe(struct spi_device *spi)
static const struct regmap_config config = {
.reg_bits = 8,
.val_bits = 8,
.max_register = 0x13,
.write_flag_mask = 0x80,
};
struct regmap *regmap;

View File

@ -159,9 +159,16 @@ static int gemini_rtc_remove(struct platform_device *pdev)
return 0;
}
static const struct of_device_id gemini_rtc_dt_match[] = {
{ .compatible = "cortina,gemini-rtc" },
{ }
};
MODULE_DEVICE_TABLE(of, gemini_rtc_dt_match);
static struct platform_driver gemini_rtc_driver = {
.driver = {
.name = DRV_NAME,
.of_match_table = gemini_rtc_dt_match,
},
.probe = gemini_rtc_probe,
.remove = gemini_rtc_remove,

View File

@ -108,7 +108,6 @@
* @pdev: pionter to platform dev
* @rtc: pointer to rtc struct
* @ioaddr: IO registers pointer
* @irq: dryice normal interrupt
* @clk: input reference clock
* @dsr: copy of the DSR register
* @irq_lock: interrupt enable register (DIER) lock
@ -120,7 +119,6 @@ struct imxdi_dev {
struct platform_device *pdev;
struct rtc_device *rtc;
void __iomem *ioaddr;
int irq;
struct clk *clk;
u32 dsr;
spinlock_t irq_lock;
@ -668,7 +666,7 @@ static int dryice_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
return 0;
}
static struct rtc_class_ops dryice_rtc_ops = {
static const struct rtc_class_ops dryice_rtc_ops = {
.read_time = dryice_rtc_read_time,
.set_mmss = dryice_rtc_set_mmss,
.alarm_irq_enable = dryice_rtc_alarm_irq_enable,
@ -677,9 +675,9 @@ static struct rtc_class_ops dryice_rtc_ops = {
};
/*
* dryice "normal" interrupt handler
* interrupt handler for dryice "normal" and security violation interrupt
*/
static irqreturn_t dryice_norm_irq(int irq, void *dev_id)
static irqreturn_t dryice_irq(int irq, void *dev_id)
{
struct imxdi_dev *imxdi = dev_id;
u32 dsr, dier;
@ -765,6 +763,7 @@ static int __init dryice_rtc_probe(struct platform_device *pdev)
{
struct resource *res;
struct imxdi_dev *imxdi;
int norm_irq, sec_irq;
int rc;
imxdi = devm_kzalloc(&pdev->dev, sizeof(*imxdi), GFP_KERNEL);
@ -780,9 +779,16 @@ static int __init dryice_rtc_probe(struct platform_device *pdev)
spin_lock_init(&imxdi->irq_lock);
imxdi->irq = platform_get_irq(pdev, 0);
if (imxdi->irq < 0)
return imxdi->irq;
norm_irq = platform_get_irq(pdev, 0);
if (norm_irq < 0)
return norm_irq;
/* the 2nd irq is the security violation irq
* make this optional, don't break the device tree ABI
*/
sec_irq = platform_get_irq(pdev, 1);
if (sec_irq <= 0)
sec_irq = IRQ_NOTCONNECTED;
init_waitqueue_head(&imxdi->write_wait);
@ -808,13 +814,20 @@ static int __init dryice_rtc_probe(struct platform_device *pdev)
if (rc != 0)
goto err;
rc = devm_request_irq(&pdev->dev, imxdi->irq, dryice_norm_irq,
IRQF_SHARED, pdev->name, imxdi);
rc = devm_request_irq(&pdev->dev, norm_irq, dryice_irq,
IRQF_SHARED, pdev->name, imxdi);
if (rc) {
dev_warn(&pdev->dev, "interrupt not available.\n");
goto err;
}
rc = devm_request_irq(&pdev->dev, sec_irq, dryice_irq,
IRQF_SHARED, pdev->name, imxdi);
if (rc) {
dev_warn(&pdev->dev, "security violation interrupt not available.\n");
/* this is not an error, see above */
}
platform_set_drvdata(pdev, imxdi);
imxdi->rtc = devm_rtc_device_register(&pdev->dev, pdev->name,
&dryice_rtc_ops, THIS_MODULE);

View File

@ -138,7 +138,7 @@ static int ls1x_rtc_set_time(struct device *dev, struct rtc_time *rtm)
return ret;
}
static struct rtc_class_ops ls1x_rtc_ops = {
static const struct rtc_class_ops ls1x_rtc_ops = {
.read_time = ls1x_rtc_read_time,
.set_time = ls1x_rtc_set_time,
};

View File

@ -16,62 +16,88 @@
#include <linux/module.h>
#include <linux/rtc.h>
#include <linux/platform_device.h>
#include <linux/platform_data/rtc-m48t86.h>
#include <linux/bcd.h>
#include <linux/io.h>
#define M48T86_REG_SEC 0x00
#define M48T86_REG_SECALRM 0x01
#define M48T86_REG_MIN 0x02
#define M48T86_REG_MINALRM 0x03
#define M48T86_REG_HOUR 0x04
#define M48T86_REG_HOURALRM 0x05
#define M48T86_REG_DOW 0x06 /* 1 = sunday */
#define M48T86_REG_DOM 0x07
#define M48T86_REG_MONTH 0x08 /* 1 - 12 */
#define M48T86_REG_YEAR 0x09 /* 0 - 99 */
#define M48T86_REG_A 0x0A
#define M48T86_REG_B 0x0B
#define M48T86_REG_C 0x0C
#define M48T86_REG_D 0x0D
#define M48T86_SEC 0x00
#define M48T86_SECALRM 0x01
#define M48T86_MIN 0x02
#define M48T86_MINALRM 0x03
#define M48T86_HOUR 0x04
#define M48T86_HOURALRM 0x05
#define M48T86_DOW 0x06 /* 1 = sunday */
#define M48T86_DOM 0x07
#define M48T86_MONTH 0x08 /* 1 - 12 */
#define M48T86_YEAR 0x09 /* 0 - 99 */
#define M48T86_A 0x0a
#define M48T86_B 0x0b
#define M48T86_B_SET BIT(7)
#define M48T86_B_DM BIT(2)
#define M48T86_B_H24 BIT(1)
#define M48T86_C 0x0c
#define M48T86_D 0x0d
#define M48T86_D_VRT BIT(7)
#define M48T86_NVRAM(x) (0x0e + (x))
#define M48T86_NVRAM_LEN 114
#define M48T86_REG_B_H24 (1 << 1)
#define M48T86_REG_B_DM (1 << 2)
#define M48T86_REG_B_SET (1 << 7)
#define M48T86_REG_D_VRT (1 << 7)
struct m48t86_rtc_info {
void __iomem *index_reg;
void __iomem *data_reg;
struct rtc_device *rtc;
};
static unsigned char m48t86_readb(struct device *dev, unsigned long addr)
{
struct m48t86_rtc_info *info = dev_get_drvdata(dev);
unsigned char value;
writeb(addr, info->index_reg);
value = readb(info->data_reg);
return value;
}
static void m48t86_writeb(struct device *dev,
unsigned char value, unsigned long addr)
{
struct m48t86_rtc_info *info = dev_get_drvdata(dev);
writeb(addr, info->index_reg);
writeb(value, info->data_reg);
}
static int m48t86_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
unsigned char reg;
struct platform_device *pdev = to_platform_device(dev);
struct m48t86_ops *ops = dev_get_platdata(&pdev->dev);
reg = ops->readbyte(M48T86_REG_B);
reg = m48t86_readb(dev, M48T86_B);
if (reg & M48T86_REG_B_DM) {
if (reg & M48T86_B_DM) {
/* data (binary) mode */
tm->tm_sec = ops->readbyte(M48T86_REG_SEC);
tm->tm_min = ops->readbyte(M48T86_REG_MIN);
tm->tm_hour = ops->readbyte(M48T86_REG_HOUR) & 0x3F;
tm->tm_mday = ops->readbyte(M48T86_REG_DOM);
tm->tm_sec = m48t86_readb(dev, M48T86_SEC);
tm->tm_min = m48t86_readb(dev, M48T86_MIN);
tm->tm_hour = m48t86_readb(dev, M48T86_HOUR) & 0x3f;
tm->tm_mday = m48t86_readb(dev, M48T86_DOM);
/* tm_mon is 0-11 */
tm->tm_mon = ops->readbyte(M48T86_REG_MONTH) - 1;
tm->tm_year = ops->readbyte(M48T86_REG_YEAR) + 100;
tm->tm_wday = ops->readbyte(M48T86_REG_DOW);
tm->tm_mon = m48t86_readb(dev, M48T86_MONTH) - 1;
tm->tm_year = m48t86_readb(dev, M48T86_YEAR) + 100;
tm->tm_wday = m48t86_readb(dev, M48T86_DOW);
} else {
/* bcd mode */
tm->tm_sec = bcd2bin(ops->readbyte(M48T86_REG_SEC));
tm->tm_min = bcd2bin(ops->readbyte(M48T86_REG_MIN));
tm->tm_hour = bcd2bin(ops->readbyte(M48T86_REG_HOUR) & 0x3F);
tm->tm_mday = bcd2bin(ops->readbyte(M48T86_REG_DOM));
tm->tm_sec = bcd2bin(m48t86_readb(dev, M48T86_SEC));
tm->tm_min = bcd2bin(m48t86_readb(dev, M48T86_MIN));
tm->tm_hour = bcd2bin(m48t86_readb(dev, M48T86_HOUR) &
0x3f);
tm->tm_mday = bcd2bin(m48t86_readb(dev, M48T86_DOM));
/* tm_mon is 0-11 */
tm->tm_mon = bcd2bin(ops->readbyte(M48T86_REG_MONTH)) - 1;
tm->tm_year = bcd2bin(ops->readbyte(M48T86_REG_YEAR)) + 100;
tm->tm_wday = bcd2bin(ops->readbyte(M48T86_REG_DOW));
tm->tm_mon = bcd2bin(m48t86_readb(dev, M48T86_MONTH)) - 1;
tm->tm_year = bcd2bin(m48t86_readb(dev, M48T86_YEAR)) + 100;
tm->tm_wday = bcd2bin(m48t86_readb(dev, M48T86_DOW));
}
/* correct the hour if the clock is in 12h mode */
if (!(reg & M48T86_REG_B_H24))
if (ops->readbyte(M48T86_REG_HOUR) & 0x80)
if (!(reg & M48T86_B_H24))
if (m48t86_readb(dev, M48T86_HOUR) & 0x80)
tm->tm_hour += 12;
return rtc_valid_tm(tm);
@ -80,38 +106,36 @@ static int m48t86_rtc_read_time(struct device *dev, struct rtc_time *tm)
static int m48t86_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
unsigned char reg;
struct platform_device *pdev = to_platform_device(dev);
struct m48t86_ops *ops = dev_get_platdata(&pdev->dev);
reg = ops->readbyte(M48T86_REG_B);
reg = m48t86_readb(dev, M48T86_B);
/* update flag and 24h mode */
reg |= M48T86_REG_B_SET | M48T86_REG_B_H24;
ops->writebyte(reg, M48T86_REG_B);
reg |= M48T86_B_SET | M48T86_B_H24;
m48t86_writeb(dev, reg, M48T86_B);
if (reg & M48T86_REG_B_DM) {
if (reg & M48T86_B_DM) {
/* data (binary) mode */
ops->writebyte(tm->tm_sec, M48T86_REG_SEC);
ops->writebyte(tm->tm_min, M48T86_REG_MIN);
ops->writebyte(tm->tm_hour, M48T86_REG_HOUR);
ops->writebyte(tm->tm_mday, M48T86_REG_DOM);
ops->writebyte(tm->tm_mon + 1, M48T86_REG_MONTH);
ops->writebyte(tm->tm_year % 100, M48T86_REG_YEAR);
ops->writebyte(tm->tm_wday, M48T86_REG_DOW);
m48t86_writeb(dev, tm->tm_sec, M48T86_SEC);
m48t86_writeb(dev, tm->tm_min, M48T86_MIN);
m48t86_writeb(dev, tm->tm_hour, M48T86_HOUR);
m48t86_writeb(dev, tm->tm_mday, M48T86_DOM);
m48t86_writeb(dev, tm->tm_mon + 1, M48T86_MONTH);
m48t86_writeb(dev, tm->tm_year % 100, M48T86_YEAR);
m48t86_writeb(dev, tm->tm_wday, M48T86_DOW);
} else {
/* bcd mode */
ops->writebyte(bin2bcd(tm->tm_sec), M48T86_REG_SEC);
ops->writebyte(bin2bcd(tm->tm_min), M48T86_REG_MIN);
ops->writebyte(bin2bcd(tm->tm_hour), M48T86_REG_HOUR);
ops->writebyte(bin2bcd(tm->tm_mday), M48T86_REG_DOM);
ops->writebyte(bin2bcd(tm->tm_mon + 1), M48T86_REG_MONTH);
ops->writebyte(bin2bcd(tm->tm_year % 100), M48T86_REG_YEAR);
ops->writebyte(bin2bcd(tm->tm_wday), M48T86_REG_DOW);
m48t86_writeb(dev, bin2bcd(tm->tm_sec), M48T86_SEC);
m48t86_writeb(dev, bin2bcd(tm->tm_min), M48T86_MIN);
m48t86_writeb(dev, bin2bcd(tm->tm_hour), M48T86_HOUR);
m48t86_writeb(dev, bin2bcd(tm->tm_mday), M48T86_DOM);
m48t86_writeb(dev, bin2bcd(tm->tm_mon + 1), M48T86_MONTH);
m48t86_writeb(dev, bin2bcd(tm->tm_year % 100), M48T86_YEAR);
m48t86_writeb(dev, bin2bcd(tm->tm_wday), M48T86_DOW);
}
/* update ended */
reg &= ~M48T86_REG_B_SET;
ops->writebyte(reg, M48T86_REG_B);
reg &= ~M48T86_B_SET;
m48t86_writeb(dev, reg, M48T86_B);
return 0;
}
@ -119,18 +143,16 @@ static int m48t86_rtc_set_time(struct device *dev, struct rtc_time *tm)
static int m48t86_rtc_proc(struct device *dev, struct seq_file *seq)
{
unsigned char reg;
struct platform_device *pdev = to_platform_device(dev);
struct m48t86_ops *ops = dev_get_platdata(&pdev->dev);
reg = ops->readbyte(M48T86_REG_B);
reg = m48t86_readb(dev, M48T86_B);
seq_printf(seq, "mode\t\t: %s\n",
(reg & M48T86_REG_B_DM) ? "binary" : "bcd");
(reg & M48T86_B_DM) ? "binary" : "bcd");
reg = ops->readbyte(M48T86_REG_D);
reg = m48t86_readb(dev, M48T86_D);
seq_printf(seq, "battery\t\t: %s\n",
(reg & M48T86_REG_D_VRT) ? "ok" : "exhausted");
(reg & M48T86_D_VRT) ? "ok" : "exhausted");
return 0;
}
@ -141,25 +163,116 @@ static const struct rtc_class_ops m48t86_rtc_ops = {
.proc = m48t86_rtc_proc,
};
static int m48t86_rtc_probe(struct platform_device *dev)
static ssize_t m48t86_nvram_read(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct device *dev = kobj_to_dev(kobj);
unsigned int i;
for (i = 0; i < count; i++)
buf[i] = m48t86_readb(dev, M48T86_NVRAM(off + i));
return count;
}
static ssize_t m48t86_nvram_write(struct file *filp, struct kobject *kobj,
struct bin_attribute *attr,
char *buf, loff_t off, size_t count)
{
struct device *dev = kobj_to_dev(kobj);
unsigned int i;
for (i = 0; i < count; i++)
m48t86_writeb(dev, buf[i], M48T86_NVRAM(off + i));
return count;
}
static BIN_ATTR(nvram, 0644, m48t86_nvram_read, m48t86_nvram_write,
M48T86_NVRAM_LEN);
/*
* The RTC is an optional feature at purchase time on some Technologic Systems
* boards. Verify that it actually exists by checking if the last two bytes
* of the NVRAM can be changed.
*
* This is based on the method used in their rtc7800.c example.
*/
static bool m48t86_verify_chip(struct platform_device *pdev)
{
unsigned int offset0 = M48T86_NVRAM(M48T86_NVRAM_LEN - 2);
unsigned int offset1 = M48T86_NVRAM(M48T86_NVRAM_LEN - 1);
unsigned char tmp0, tmp1;
tmp0 = m48t86_readb(&pdev->dev, offset0);
tmp1 = m48t86_readb(&pdev->dev, offset1);
m48t86_writeb(&pdev->dev, 0x00, offset0);
m48t86_writeb(&pdev->dev, 0x55, offset1);
if (m48t86_readb(&pdev->dev, offset1) == 0x55) {
m48t86_writeb(&pdev->dev, 0xaa, offset1);
if (m48t86_readb(&pdev->dev, offset1) == 0xaa &&
m48t86_readb(&pdev->dev, offset0) == 0x00) {
m48t86_writeb(&pdev->dev, tmp0, offset0);
m48t86_writeb(&pdev->dev, tmp1, offset1);
return true;
}
}
return false;
}
static int m48t86_rtc_probe(struct platform_device *pdev)
{
struct m48t86_rtc_info *info;
struct resource *res;
unsigned char reg;
struct m48t86_ops *ops = dev_get_platdata(&dev->dev);
struct rtc_device *rtc;
rtc = devm_rtc_device_register(&dev->dev, "m48t86",
&m48t86_rtc_ops, THIS_MODULE);
info = devm_kzalloc(&pdev->dev, sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
if (IS_ERR(rtc))
return PTR_ERR(rtc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!res)
return -ENODEV;
info->index_reg = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(info->index_reg))
return PTR_ERR(info->index_reg);
platform_set_drvdata(dev, rtc);
res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
if (!res)
return -ENODEV;
info->data_reg = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(info->data_reg))
return PTR_ERR(info->data_reg);
dev_set_drvdata(&pdev->dev, info);
if (!m48t86_verify_chip(pdev)) {
dev_info(&pdev->dev, "RTC not present\n");
return -ENODEV;
}
info->rtc = devm_rtc_device_register(&pdev->dev, "m48t86",
&m48t86_rtc_ops, THIS_MODULE);
if (IS_ERR(info->rtc))
return PTR_ERR(info->rtc);
/* read battery status */
reg = ops->readbyte(M48T86_REG_D);
dev_info(&dev->dev, "battery %s\n",
(reg & M48T86_REG_D_VRT) ? "ok" : "exhausted");
reg = m48t86_readb(&pdev->dev, M48T86_D);
dev_info(&pdev->dev, "battery %s\n",
(reg & M48T86_D_VRT) ? "ok" : "exhausted");
if (device_create_bin_file(&pdev->dev, &bin_attr_nvram))
dev_err(&pdev->dev, "failed to create nvram sysfs entry\n");
return 0;
}
static int m48t86_rtc_remove(struct platform_device *pdev)
{
device_remove_bin_file(&pdev->dev, &bin_attr_nvram);
return 0;
}
@ -168,6 +281,7 @@ static struct platform_driver m48t86_rtc_platform_driver = {
.name = "rtc-m48t86",
},
.probe = m48t86_rtc_probe,
.remove = m48t86_rtc_remove,
};
module_platform_driver(m48t86_rtc_platform_driver);

View File

@ -44,12 +44,22 @@
#define MCP795_REG_DAY 0x04
#define MCP795_REG_MONTH 0x06
#define MCP795_REG_CONTROL 0x08
#define MCP795_REG_ALM0_SECONDS 0x0C
#define MCP795_REG_ALM0_DAY 0x0F
#define MCP795_ST_BIT BIT(7)
#define MCP795_24_BIT BIT(6)
#define MCP795_LP_BIT BIT(5)
#define MCP795_EXTOSC_BIT BIT(3)
#define MCP795_OSCON_BIT BIT(5)
#define MCP795_ALM0_BIT BIT(4)
#define MCP795_ALM1_BIT BIT(5)
#define MCP795_ALM0IF_BIT BIT(3)
#define MCP795_ALM0C0_BIT BIT(4)
#define MCP795_ALM0C1_BIT BIT(5)
#define MCP795_ALM0C2_BIT BIT(6)
#define SEC_PER_DAY (24 * 60 * 60)
static int mcp795_rtcc_read(struct device *dev, u8 addr, u8 *buf, u8 count)
{
@ -150,6 +160,30 @@ static int mcp795_start_oscillator(struct device *dev, bool *extosc)
dev, MCP795_REG_SECONDS, MCP795_ST_BIT, MCP795_ST_BIT);
}
/* Enable or disable Alarm 0 in RTC */
static int mcp795_update_alarm(struct device *dev, bool enable)
{
int ret;
dev_dbg(dev, "%s alarm\n", enable ? "Enable" : "Disable");
if (enable) {
/* clear ALM0IF (Alarm 0 Interrupt Flag) bit */
ret = mcp795_rtcc_set_bits(dev, MCP795_REG_ALM0_DAY,
MCP795_ALM0IF_BIT, 0);
if (ret)
return ret;
/* enable alarm 0 */
ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
MCP795_ALM0_BIT, MCP795_ALM0_BIT);
} else {
/* disable alarm 0 and alarm 1 */
ret = mcp795_rtcc_set_bits(dev, MCP795_REG_CONTROL,
MCP795_ALM0_BIT | MCP795_ALM1_BIT, 0);
}
return ret;
}
static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
{
int ret;
@ -170,6 +204,7 @@ static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
data[0] = (data[0] & 0x80) | bin2bcd(tim->tm_sec);
data[1] = (data[1] & 0x80) | bin2bcd(tim->tm_min);
data[2] = bin2bcd(tim->tm_hour);
data[3] = (data[3] & 0xF8) | bin2bcd(tim->tm_wday + 1);
data[4] = bin2bcd(tim->tm_mday);
data[5] = (data[5] & MCP795_LP_BIT) | bin2bcd(tim->tm_mon + 1);
@ -198,9 +233,9 @@ static int mcp795_set_time(struct device *dev, struct rtc_time *tim)
if (ret)
return ret;
dev_dbg(dev, "Set mcp795: %04d-%02d-%02d %02d:%02d:%02d\n",
dev_dbg(dev, "Set mcp795: %04d-%02d-%02d(%d) %02d:%02d:%02d\n",
tim->tm_year + 1900, tim->tm_mon, tim->tm_mday,
tim->tm_hour, tim->tm_min, tim->tm_sec);
tim->tm_wday, tim->tm_hour, tim->tm_min, tim->tm_sec);
return 0;
}
@ -218,20 +253,139 @@ static int mcp795_read_time(struct device *dev, struct rtc_time *tim)
tim->tm_sec = bcd2bin(data[0] & 0x7F);
tim->tm_min = bcd2bin(data[1] & 0x7F);
tim->tm_hour = bcd2bin(data[2] & 0x3F);
tim->tm_wday = bcd2bin(data[3] & 0x07) - 1;
tim->tm_mday = bcd2bin(data[4] & 0x3F);
tim->tm_mon = bcd2bin(data[5] & 0x1F) - 1;
tim->tm_year = bcd2bin(data[6]) + 100; /* Assume we are in 20xx */
dev_dbg(dev, "Read from mcp795: %04d-%02d-%02d %02d:%02d:%02d\n",
tim->tm_year + 1900, tim->tm_mon, tim->tm_mday,
tim->tm_hour, tim->tm_min, tim->tm_sec);
dev_dbg(dev, "Read from mcp795: %04d-%02d-%02d(%d) %02d:%02d:%02d\n",
tim->tm_year + 1900, tim->tm_mon, tim->tm_mday,
tim->tm_wday, tim->tm_hour, tim->tm_min, tim->tm_sec);
return rtc_valid_tm(tim);
}
static int mcp795_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
struct rtc_time now_tm;
time64_t now;
time64_t later;
u8 tmp[6];
int ret;
/* Read current time from RTC hardware */
ret = mcp795_read_time(dev, &now_tm);
if (ret)
return ret;
/* Get the number of seconds since 1970 */
now = rtc_tm_to_time64(&now_tm);
later = rtc_tm_to_time64(&alm->time);
if (later <= now)
return -EINVAL;
/* make sure alarm fires within the next one year */
if ((later - now) >=
(SEC_PER_DAY * (365 + is_leap_year(alm->time.tm_year))))
return -EDOM;
/* disable alarm */
ret = mcp795_update_alarm(dev, false);
if (ret)
return ret;
/* Read registers, so we can leave configuration bits untouched */
ret = mcp795_rtcc_read(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
if (ret)
return ret;
alm->time.tm_year = -1;
alm->time.tm_isdst = -1;
alm->time.tm_yday = -1;
tmp[0] = (tmp[0] & 0x80) | bin2bcd(alm->time.tm_sec);
tmp[1] = (tmp[1] & 0x80) | bin2bcd(alm->time.tm_min);
tmp[2] = (tmp[2] & 0xE0) | bin2bcd(alm->time.tm_hour);
tmp[3] = (tmp[3] & 0x80) | bin2bcd(alm->time.tm_wday + 1);
/* set alarm match: seconds, minutes, hour, day, date and month */
tmp[3] |= (MCP795_ALM0C2_BIT | MCP795_ALM0C1_BIT | MCP795_ALM0C0_BIT);
tmp[4] = (tmp[4] & 0xC0) | bin2bcd(alm->time.tm_mday);
tmp[5] = (tmp[5] & 0xE0) | bin2bcd(alm->time.tm_mon + 1);
ret = mcp795_rtcc_write(dev, MCP795_REG_ALM0_SECONDS, tmp, sizeof(tmp));
if (ret)
return ret;
/* enable alarm if requested */
if (alm->enabled) {
ret = mcp795_update_alarm(dev, true);
if (ret)
return ret;
dev_dbg(dev, "Alarm IRQ armed\n");
}
dev_dbg(dev, "Set alarm: %02d-%02d(%d) %02d:%02d:%02d\n",
alm->time.tm_mon, alm->time.tm_mday, alm->time.tm_wday,
alm->time.tm_hour, alm->time.tm_min, alm->time.tm_sec);
return 0;
}
static int mcp795_read_alarm(struct device *dev, struct rtc_wkalrm *alm)
{
u8 data[6];
int ret;
ret = mcp795_rtcc_read(
dev, MCP795_REG_ALM0_SECONDS, data, sizeof(data));
if (ret)
return ret;
alm->time.tm_sec = bcd2bin(data[0] & 0x7F);
alm->time.tm_min = bcd2bin(data[1] & 0x7F);
alm->time.tm_hour = bcd2bin(data[2] & 0x1F);
alm->time.tm_wday = bcd2bin(data[3] & 0x07) - 1;
alm->time.tm_mday = bcd2bin(data[4] & 0x3F);
alm->time.tm_mon = bcd2bin(data[5] & 0x1F) - 1;
alm->time.tm_year = -1;
alm->time.tm_isdst = -1;
alm->time.tm_yday = -1;
dev_dbg(dev, "Read alarm: %02d-%02d(%d) %02d:%02d:%02d\n",
alm->time.tm_mon, alm->time.tm_mday, alm->time.tm_wday,
alm->time.tm_hour, alm->time.tm_min, alm->time.tm_sec);
return 0;
}
static int mcp795_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
return mcp795_update_alarm(dev, !!enabled);
}
static irqreturn_t mcp795_irq(int irq, void *data)
{
struct spi_device *spi = data;
struct rtc_device *rtc = spi_get_drvdata(spi);
struct mutex *lock = &rtc->ops_lock;
int ret;
mutex_lock(lock);
/* Disable alarm.
* There is no need to clear ALM0IF (Alarm 0 Interrupt Flag) bit,
* because it is done every time when alarm is enabled.
*/
ret = mcp795_update_alarm(&spi->dev, false);
if (ret)
dev_err(&spi->dev,
"Failed to disable alarm in IRQ (ret=%d)\n", ret);
rtc_update_irq(rtc, 1, RTC_AF | RTC_IRQF);
mutex_unlock(lock);
return IRQ_HANDLED;
}
static const struct rtc_class_ops mcp795_rtc_ops = {
.read_time = mcp795_read_time,
.set_time = mcp795_set_time
.set_time = mcp795_set_time,
.read_alarm = mcp795_read_alarm,
.set_alarm = mcp795_set_alarm,
.alarm_irq_enable = mcp795_alarm_irq_enable
};
static int mcp795_probe(struct spi_device *spi)
@ -259,6 +413,23 @@ static int mcp795_probe(struct spi_device *spi)
spi_set_drvdata(spi, rtc);
if (spi->irq > 0) {
dev_dbg(&spi->dev, "Alarm support enabled\n");
/* Clear any pending alarm (ALM0IF bit) before requesting
* the interrupt.
*/
mcp795_rtcc_set_bits(&spi->dev, MCP795_REG_ALM0_DAY,
MCP795_ALM0IF_BIT, 0);
ret = devm_request_threaded_irq(&spi->dev, spi->irq, NULL,
mcp795_irq, IRQF_TRIGGER_FALLING | IRQF_ONESHOT,
dev_name(&rtc->dev), spi);
if (ret)
dev_err(&spi->dev, "Failed to request IRQ: %d: %d\n",
spi->irq, ret);
else
device_init_wakeup(&spi->dev, true);
}
return 0;
}

View File

@ -353,7 +353,7 @@ static int mxc_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
}
/* RTC layer */
static struct rtc_class_ops mxc_rtc_ops = {
static const struct rtc_class_ops mxc_rtc_ops = {
.release = mxc_rtc_release,
.read_time = mxc_rtc_read_time,
.set_mmss64 = mxc_rtc_set_mmss,

View File

@ -52,9 +52,20 @@ static int pcf2127_rtc_read_time(struct device *dev, struct rtc_time *tm)
struct pcf2127 *pcf2127 = dev_get_drvdata(dev);
unsigned char buf[10];
int ret;
int i;
ret = regmap_bulk_read(pcf2127->regmap, PCF2127_REG_CTRL1, buf,
sizeof(buf));
for (i = 0; i <= PCF2127_REG_CTRL3; i++) {
ret = regmap_read(pcf2127->regmap, PCF2127_REG_CTRL1 + i,
(unsigned int *)(buf + i));
if (ret) {
dev_err(dev, "%s: read error\n", __func__);
return ret;
}
}
ret = regmap_bulk_read(pcf2127->regmap, PCF2127_REG_SC,
(buf + PCF2127_REG_SC),
ARRAY_SIZE(buf) - PCF2127_REG_SC);
if (ret) {
dev_err(dev, "%s: read error\n", __func__);
return ret;

View File

@ -63,7 +63,6 @@ struct rx8010_data {
struct i2c_client *client;
struct rtc_device *rtc;
u8 ctrlreg;
spinlock_t flags_lock;
};
static irqreturn_t rx8010_irq_1_handler(int irq, void *dev_id)
@ -72,12 +71,12 @@ static irqreturn_t rx8010_irq_1_handler(int irq, void *dev_id)
struct rx8010_data *rx8010 = i2c_get_clientdata(client);
int flagreg;
spin_lock(&rx8010->flags_lock);
mutex_lock(&rx8010->rtc->ops_lock);
flagreg = i2c_smbus_read_byte_data(client, RX8010_FLAG);
if (flagreg <= 0) {
spin_unlock(&rx8010->flags_lock);
mutex_unlock(&rx8010->rtc->ops_lock);
return IRQ_NONE;
}
@ -101,7 +100,7 @@ static irqreturn_t rx8010_irq_1_handler(int irq, void *dev_id)
i2c_smbus_write_byte_data(client, RX8010_FLAG, flagreg);
spin_unlock(&rx8010->flags_lock);
mutex_unlock(&rx8010->rtc->ops_lock);
return IRQ_HANDLED;
}
@ -143,7 +142,6 @@ static int rx8010_set_time(struct device *dev, struct rtc_time *dt)
u8 date[7];
int ctrl, flagreg;
int ret;
unsigned long irqflags;
if ((dt->tm_year < 100) || (dt->tm_year > 199))
return -EINVAL;
@ -181,11 +179,8 @@ static int rx8010_set_time(struct device *dev, struct rtc_time *dt)
if (ret < 0)
return ret;
spin_lock_irqsave(&rx8010->flags_lock, irqflags);
flagreg = i2c_smbus_read_byte_data(rx8010->client, RX8010_FLAG);
if (flagreg < 0) {
spin_unlock_irqrestore(&rx8010->flags_lock, irqflags);
return flagreg;
}
@ -193,8 +188,6 @@ static int rx8010_set_time(struct device *dev, struct rtc_time *dt)
ret = i2c_smbus_write_byte_data(rx8010->client, RX8010_FLAG,
flagreg & ~RX8010_FLAG_VLF);
spin_unlock_irqrestore(&rx8010->flags_lock, irqflags);
return 0;
}
@ -288,12 +281,9 @@ static int rx8010_set_alarm(struct device *dev, struct rtc_wkalrm *t)
u8 alarmvals[3];
int extreg, flagreg;
int err;
unsigned long irqflags;
spin_lock_irqsave(&rx8010->flags_lock, irqflags);
flagreg = i2c_smbus_read_byte_data(client, RX8010_FLAG);
if (flagreg < 0) {
spin_unlock_irqrestore(&rx8010->flags_lock, irqflags);
return flagreg;
}
@ -302,14 +292,12 @@ static int rx8010_set_alarm(struct device *dev, struct rtc_wkalrm *t)
err = i2c_smbus_write_byte_data(rx8010->client, RX8010_CTRL,
rx8010->ctrlreg);
if (err < 0) {
spin_unlock_irqrestore(&rx8010->flags_lock, irqflags);
return err;
}
}
flagreg &= ~RX8010_FLAG_AF;
err = i2c_smbus_write_byte_data(rx8010->client, RX8010_FLAG, flagreg);
spin_unlock_irqrestore(&rx8010->flags_lock, irqflags);
if (err < 0)
return err;
@ -404,7 +392,6 @@ static int rx8010_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
struct rx8010_data *rx8010 = dev_get_drvdata(dev);
int ret, tmp;
int flagreg;
unsigned long irqflags;
switch (cmd) {
case RTC_VL_READ:
@ -419,16 +406,13 @@ static int rx8010_ioctl(struct device *dev, unsigned int cmd, unsigned long arg)
return 0;
case RTC_VL_CLR:
spin_lock_irqsave(&rx8010->flags_lock, irqflags);
flagreg = i2c_smbus_read_byte_data(rx8010->client, RX8010_FLAG);
if (flagreg < 0) {
spin_unlock_irqrestore(&rx8010->flags_lock, irqflags);
return flagreg;
}
flagreg &= ~RX8010_FLAG_VLF;
ret = i2c_smbus_write_byte_data(client, RX8010_FLAG, flagreg);
spin_unlock_irqrestore(&rx8010->flags_lock, irqflags);
if (ret < 0)
return ret;
@ -466,8 +450,6 @@ static int rx8010_probe(struct i2c_client *client,
rx8010->client = client;
i2c_set_clientdata(client, rx8010);
spin_lock_init(&rx8010->flags_lock);
err = rx8010_init_client(client);
if (err)
return err;

View File

@ -535,7 +535,7 @@ static int sh_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *wkalrm)
return 0;
}
static struct rtc_class_ops sh_rtc_ops = {
static const struct rtc_class_ops sh_rtc_ops = {
.read_time = sh_rtc_read_time,
.set_time = sh_rtc_set_time,
.read_alarm = sh_rtc_read_alarm,

View File

@ -184,6 +184,7 @@ static int snvs_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
rtc_tm_to_time(alrm_tm, &time);
regmap_update_bits(data->regmap, data->offset + SNVS_LPCR, SNVS_LPCR_LPTA_EN, 0);
rtc_write_sync_lp(data);
regmap_write(data->regmap, data->offset + SNVS_LPTAR, time);
/* Clear alarm interrupt status bit */

725
drivers/rtc/rtc-stm32.c Normal file
View File

@ -0,0 +1,725 @@
/*
* Copyright (C) Amelie Delaunay 2016
* Author: Amelie Delaunay <amelie.delaunay@st.com>
* License terms: GNU General Public License (GPL), version 2
*/
#include <linux/bcd.h>
#include <linux/clk.h>
#include <linux/iopoll.h>
#include <linux/ioport.h>
#include <linux/mfd/syscon.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#define DRIVER_NAME "stm32_rtc"
/* STM32 RTC registers */
#define STM32_RTC_TR 0x00
#define STM32_RTC_DR 0x04
#define STM32_RTC_CR 0x08
#define STM32_RTC_ISR 0x0C
#define STM32_RTC_PRER 0x10
#define STM32_RTC_ALRMAR 0x1C
#define STM32_RTC_WPR 0x24
/* STM32_RTC_TR bit fields */
#define STM32_RTC_TR_SEC_SHIFT 0
#define STM32_RTC_TR_SEC GENMASK(6, 0)
#define STM32_RTC_TR_MIN_SHIFT 8
#define STM32_RTC_TR_MIN GENMASK(14, 8)
#define STM32_RTC_TR_HOUR_SHIFT 16
#define STM32_RTC_TR_HOUR GENMASK(21, 16)
/* STM32_RTC_DR bit fields */
#define STM32_RTC_DR_DATE_SHIFT 0
#define STM32_RTC_DR_DATE GENMASK(5, 0)
#define STM32_RTC_DR_MONTH_SHIFT 8
#define STM32_RTC_DR_MONTH GENMASK(12, 8)
#define STM32_RTC_DR_WDAY_SHIFT 13
#define STM32_RTC_DR_WDAY GENMASK(15, 13)
#define STM32_RTC_DR_YEAR_SHIFT 16
#define STM32_RTC_DR_YEAR GENMASK(23, 16)
/* STM32_RTC_CR bit fields */
#define STM32_RTC_CR_FMT BIT(6)
#define STM32_RTC_CR_ALRAE BIT(8)
#define STM32_RTC_CR_ALRAIE BIT(12)
/* STM32_RTC_ISR bit fields */
#define STM32_RTC_ISR_ALRAWF BIT(0)
#define STM32_RTC_ISR_INITS BIT(4)
#define STM32_RTC_ISR_RSF BIT(5)
#define STM32_RTC_ISR_INITF BIT(6)
#define STM32_RTC_ISR_INIT BIT(7)
#define STM32_RTC_ISR_ALRAF BIT(8)
/* STM32_RTC_PRER bit fields */
#define STM32_RTC_PRER_PRED_S_SHIFT 0
#define STM32_RTC_PRER_PRED_S GENMASK(14, 0)
#define STM32_RTC_PRER_PRED_A_SHIFT 16
#define STM32_RTC_PRER_PRED_A GENMASK(22, 16)
/* STM32_RTC_ALRMAR and STM32_RTC_ALRMBR bit fields */
#define STM32_RTC_ALRMXR_SEC_SHIFT 0
#define STM32_RTC_ALRMXR_SEC GENMASK(6, 0)
#define STM32_RTC_ALRMXR_SEC_MASK BIT(7)
#define STM32_RTC_ALRMXR_MIN_SHIFT 8
#define STM32_RTC_ALRMXR_MIN GENMASK(14, 8)
#define STM32_RTC_ALRMXR_MIN_MASK BIT(15)
#define STM32_RTC_ALRMXR_HOUR_SHIFT 16
#define STM32_RTC_ALRMXR_HOUR GENMASK(21, 16)
#define STM32_RTC_ALRMXR_PM BIT(22)
#define STM32_RTC_ALRMXR_HOUR_MASK BIT(23)
#define STM32_RTC_ALRMXR_DATE_SHIFT 24
#define STM32_RTC_ALRMXR_DATE GENMASK(29, 24)
#define STM32_RTC_ALRMXR_WDSEL BIT(30)
#define STM32_RTC_ALRMXR_WDAY_SHIFT 24
#define STM32_RTC_ALRMXR_WDAY GENMASK(27, 24)
#define STM32_RTC_ALRMXR_DATE_MASK BIT(31)
/* STM32_RTC_WPR key constants */
#define RTC_WPR_1ST_KEY 0xCA
#define RTC_WPR_2ND_KEY 0x53
#define RTC_WPR_WRONG_KEY 0xFF
/*
* RTC registers are protected against parasitic write access.
* PWR_CR_DBP bit must be set to enable write access to RTC registers.
*/
/* STM32_PWR_CR */
#define PWR_CR 0x00
/* STM32_PWR_CR bit field */
#define PWR_CR_DBP BIT(8)
struct stm32_rtc {
struct rtc_device *rtc_dev;
void __iomem *base;
struct regmap *dbp;
struct clk *ck_rtc;
int irq_alarm;
};
static void stm32_rtc_wpr_unlock(struct stm32_rtc *rtc)
{
writel_relaxed(RTC_WPR_1ST_KEY, rtc->base + STM32_RTC_WPR);
writel_relaxed(RTC_WPR_2ND_KEY, rtc->base + STM32_RTC_WPR);
}
static void stm32_rtc_wpr_lock(struct stm32_rtc *rtc)
{
writel_relaxed(RTC_WPR_WRONG_KEY, rtc->base + STM32_RTC_WPR);
}
static int stm32_rtc_enter_init_mode(struct stm32_rtc *rtc)
{
unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
if (!(isr & STM32_RTC_ISR_INITF)) {
isr |= STM32_RTC_ISR_INIT;
writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
/*
* It takes around 2 ck_rtc clock cycles to enter in
* initialization phase mode (and have INITF flag set). As
* slowest ck_rtc frequency may be 32kHz and highest should be
* 1MHz, we poll every 10 us with a timeout of 100ms.
*/
return readl_relaxed_poll_timeout_atomic(
rtc->base + STM32_RTC_ISR,
isr, (isr & STM32_RTC_ISR_INITF),
10, 100000);
}
return 0;
}
static void stm32_rtc_exit_init_mode(struct stm32_rtc *rtc)
{
unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
isr &= ~STM32_RTC_ISR_INIT;
writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
}
static int stm32_rtc_wait_sync(struct stm32_rtc *rtc)
{
unsigned int isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
isr &= ~STM32_RTC_ISR_RSF;
writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
/*
* Wait for RSF to be set to ensure the calendar registers are
* synchronised, it takes around 2 ck_rtc clock cycles
*/
return readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
isr,
(isr & STM32_RTC_ISR_RSF),
10, 100000);
}
static irqreturn_t stm32_rtc_alarm_irq(int irq, void *dev_id)
{
struct stm32_rtc *rtc = (struct stm32_rtc *)dev_id;
unsigned int isr, cr;
mutex_lock(&rtc->rtc_dev->ops_lock);
isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
cr = readl_relaxed(rtc->base + STM32_RTC_CR);
if ((isr & STM32_RTC_ISR_ALRAF) &&
(cr & STM32_RTC_CR_ALRAIE)) {
/* Alarm A flag - Alarm interrupt */
dev_dbg(&rtc->rtc_dev->dev, "Alarm occurred\n");
/* Pass event to the kernel */
rtc_update_irq(rtc->rtc_dev, 1, RTC_IRQF | RTC_AF);
/* Clear event flag, otherwise new events won't be received */
writel_relaxed(isr & ~STM32_RTC_ISR_ALRAF,
rtc->base + STM32_RTC_ISR);
}
mutex_unlock(&rtc->rtc_dev->ops_lock);
return IRQ_HANDLED;
}
/* Convert rtc_time structure from bin to bcd format */
static void tm2bcd(struct rtc_time *tm)
{
tm->tm_sec = bin2bcd(tm->tm_sec);
tm->tm_min = bin2bcd(tm->tm_min);
tm->tm_hour = bin2bcd(tm->tm_hour);
tm->tm_mday = bin2bcd(tm->tm_mday);
tm->tm_mon = bin2bcd(tm->tm_mon + 1);
tm->tm_year = bin2bcd(tm->tm_year - 100);
/*
* Number of days since Sunday
* - on kernel side, 0=Sunday...6=Saturday
* - on rtc side, 0=invalid,1=Monday...7=Sunday
*/
tm->tm_wday = (!tm->tm_wday) ? 7 : tm->tm_wday;
}
/* Convert rtc_time structure from bcd to bin format */
static void bcd2tm(struct rtc_time *tm)
{
tm->tm_sec = bcd2bin(tm->tm_sec);
tm->tm_min = bcd2bin(tm->tm_min);
tm->tm_hour = bcd2bin(tm->tm_hour);
tm->tm_mday = bcd2bin(tm->tm_mday);
tm->tm_mon = bcd2bin(tm->tm_mon) - 1;
tm->tm_year = bcd2bin(tm->tm_year) + 100;
/*
* Number of days since Sunday
* - on kernel side, 0=Sunday...6=Saturday
* - on rtc side, 0=invalid,1=Monday...7=Sunday
*/
tm->tm_wday %= 7;
}
static int stm32_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct stm32_rtc *rtc = dev_get_drvdata(dev);
unsigned int tr, dr;
/* Time and Date in BCD format */
tr = readl_relaxed(rtc->base + STM32_RTC_TR);
dr = readl_relaxed(rtc->base + STM32_RTC_DR);
tm->tm_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
tm->tm_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
tm->tm_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
tm->tm_mday = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
tm->tm_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
tm->tm_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
tm->tm_wday = (dr & STM32_RTC_DR_WDAY) >> STM32_RTC_DR_WDAY_SHIFT;
/* We don't report tm_yday and tm_isdst */
bcd2tm(tm);
return 0;
}
static int stm32_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct stm32_rtc *rtc = dev_get_drvdata(dev);
unsigned int tr, dr;
int ret = 0;
tm2bcd(tm);
/* Time in BCD format */
tr = ((tm->tm_sec << STM32_RTC_TR_SEC_SHIFT) & STM32_RTC_TR_SEC) |
((tm->tm_min << STM32_RTC_TR_MIN_SHIFT) & STM32_RTC_TR_MIN) |
((tm->tm_hour << STM32_RTC_TR_HOUR_SHIFT) & STM32_RTC_TR_HOUR);
/* Date in BCD format */
dr = ((tm->tm_mday << STM32_RTC_DR_DATE_SHIFT) & STM32_RTC_DR_DATE) |
((tm->tm_mon << STM32_RTC_DR_MONTH_SHIFT) & STM32_RTC_DR_MONTH) |
((tm->tm_year << STM32_RTC_DR_YEAR_SHIFT) & STM32_RTC_DR_YEAR) |
((tm->tm_wday << STM32_RTC_DR_WDAY_SHIFT) & STM32_RTC_DR_WDAY);
stm32_rtc_wpr_unlock(rtc);
ret = stm32_rtc_enter_init_mode(rtc);
if (ret) {
dev_err(dev, "Can't enter in init mode. Set time aborted.\n");
goto end;
}
writel_relaxed(tr, rtc->base + STM32_RTC_TR);
writel_relaxed(dr, rtc->base + STM32_RTC_DR);
stm32_rtc_exit_init_mode(rtc);
ret = stm32_rtc_wait_sync(rtc);
end:
stm32_rtc_wpr_lock(rtc);
return ret;
}
static int stm32_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct stm32_rtc *rtc = dev_get_drvdata(dev);
struct rtc_time *tm = &alrm->time;
unsigned int alrmar, cr, isr;
alrmar = readl_relaxed(rtc->base + STM32_RTC_ALRMAR);
cr = readl_relaxed(rtc->base + STM32_RTC_CR);
isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
if (alrmar & STM32_RTC_ALRMXR_DATE_MASK) {
/*
* Date/day doesn't matter in Alarm comparison so alarm
* triggers every day
*/
tm->tm_mday = -1;
tm->tm_wday = -1;
} else {
if (alrmar & STM32_RTC_ALRMXR_WDSEL) {
/* Alarm is set to a day of week */
tm->tm_mday = -1;
tm->tm_wday = (alrmar & STM32_RTC_ALRMXR_WDAY) >>
STM32_RTC_ALRMXR_WDAY_SHIFT;
tm->tm_wday %= 7;
} else {
/* Alarm is set to a day of month */
tm->tm_wday = -1;
tm->tm_mday = (alrmar & STM32_RTC_ALRMXR_DATE) >>
STM32_RTC_ALRMXR_DATE_SHIFT;
}
}
if (alrmar & STM32_RTC_ALRMXR_HOUR_MASK) {
/* Hours don't matter in Alarm comparison */
tm->tm_hour = -1;
} else {
tm->tm_hour = (alrmar & STM32_RTC_ALRMXR_HOUR) >>
STM32_RTC_ALRMXR_HOUR_SHIFT;
if (alrmar & STM32_RTC_ALRMXR_PM)
tm->tm_hour += 12;
}
if (alrmar & STM32_RTC_ALRMXR_MIN_MASK) {
/* Minutes don't matter in Alarm comparison */
tm->tm_min = -1;
} else {
tm->tm_min = (alrmar & STM32_RTC_ALRMXR_MIN) >>
STM32_RTC_ALRMXR_MIN_SHIFT;
}
if (alrmar & STM32_RTC_ALRMXR_SEC_MASK) {
/* Seconds don't matter in Alarm comparison */
tm->tm_sec = -1;
} else {
tm->tm_sec = (alrmar & STM32_RTC_ALRMXR_SEC) >>
STM32_RTC_ALRMXR_SEC_SHIFT;
}
bcd2tm(tm);
alrm->enabled = (cr & STM32_RTC_CR_ALRAE) ? 1 : 0;
alrm->pending = (isr & STM32_RTC_ISR_ALRAF) ? 1 : 0;
return 0;
}
static int stm32_rtc_alarm_irq_enable(struct device *dev, unsigned int enabled)
{
struct stm32_rtc *rtc = dev_get_drvdata(dev);
unsigned int isr, cr;
cr = readl_relaxed(rtc->base + STM32_RTC_CR);
stm32_rtc_wpr_unlock(rtc);
/* We expose Alarm A to the kernel */
if (enabled)
cr |= (STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
else
cr &= ~(STM32_RTC_CR_ALRAIE | STM32_RTC_CR_ALRAE);
writel_relaxed(cr, rtc->base + STM32_RTC_CR);
/* Clear event flag, otherwise new events won't be received */
isr = readl_relaxed(rtc->base + STM32_RTC_ISR);
isr &= ~STM32_RTC_ISR_ALRAF;
writel_relaxed(isr, rtc->base + STM32_RTC_ISR);
stm32_rtc_wpr_lock(rtc);
return 0;
}
static int stm32_rtc_valid_alrm(struct stm32_rtc *rtc, struct rtc_time *tm)
{
int cur_day, cur_mon, cur_year, cur_hour, cur_min, cur_sec;
unsigned int dr = readl_relaxed(rtc->base + STM32_RTC_DR);
unsigned int tr = readl_relaxed(rtc->base + STM32_RTC_TR);
cur_day = (dr & STM32_RTC_DR_DATE) >> STM32_RTC_DR_DATE_SHIFT;
cur_mon = (dr & STM32_RTC_DR_MONTH) >> STM32_RTC_DR_MONTH_SHIFT;
cur_year = (dr & STM32_RTC_DR_YEAR) >> STM32_RTC_DR_YEAR_SHIFT;
cur_sec = (tr & STM32_RTC_TR_SEC) >> STM32_RTC_TR_SEC_SHIFT;
cur_min = (tr & STM32_RTC_TR_MIN) >> STM32_RTC_TR_MIN_SHIFT;
cur_hour = (tr & STM32_RTC_TR_HOUR) >> STM32_RTC_TR_HOUR_SHIFT;
/*
* Assuming current date is M-D-Y H:M:S.
* RTC alarm can't be set on a specific month and year.
* So the valid alarm range is:
* M-D-Y H:M:S < alarm <= (M+1)-D-Y H:M:S
* with a specific case for December...
*/
if ((((tm->tm_year > cur_year) &&
(tm->tm_mon == 0x1) && (cur_mon == 0x12)) ||
((tm->tm_year == cur_year) &&
(tm->tm_mon <= cur_mon + 1))) &&
((tm->tm_mday > cur_day) ||
((tm->tm_mday == cur_day) &&
((tm->tm_hour > cur_hour) ||
((tm->tm_hour == cur_hour) && (tm->tm_min > cur_min)) ||
((tm->tm_hour == cur_hour) && (tm->tm_min == cur_min) &&
(tm->tm_sec >= cur_sec))))))
return 0;
return -EINVAL;
}
static int stm32_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alrm)
{
struct stm32_rtc *rtc = dev_get_drvdata(dev);
struct rtc_time *tm = &alrm->time;
unsigned int cr, isr, alrmar;
int ret = 0;
tm2bcd(tm);
/*
* RTC alarm can't be set on a specific date, unless this date is
* up to the same day of month next month.
*/
if (stm32_rtc_valid_alrm(rtc, tm) < 0) {
dev_err(dev, "Alarm can be set only on upcoming month.\n");
return -EINVAL;
}
alrmar = 0;
/* tm_year and tm_mon are not used because not supported by RTC */
alrmar |= (tm->tm_mday << STM32_RTC_ALRMXR_DATE_SHIFT) &
STM32_RTC_ALRMXR_DATE;
/* 24-hour format */
alrmar &= ~STM32_RTC_ALRMXR_PM;
alrmar |= (tm->tm_hour << STM32_RTC_ALRMXR_HOUR_SHIFT) &
STM32_RTC_ALRMXR_HOUR;
alrmar |= (tm->tm_min << STM32_RTC_ALRMXR_MIN_SHIFT) &
STM32_RTC_ALRMXR_MIN;
alrmar |= (tm->tm_sec << STM32_RTC_ALRMXR_SEC_SHIFT) &
STM32_RTC_ALRMXR_SEC;
stm32_rtc_wpr_unlock(rtc);
/* Disable Alarm */
cr = readl_relaxed(rtc->base + STM32_RTC_CR);
cr &= ~STM32_RTC_CR_ALRAE;
writel_relaxed(cr, rtc->base + STM32_RTC_CR);
/*
* Poll Alarm write flag to be sure that Alarm update is allowed: it
* takes around 2 ck_rtc clock cycles
*/
ret = readl_relaxed_poll_timeout_atomic(rtc->base + STM32_RTC_ISR,
isr,
(isr & STM32_RTC_ISR_ALRAWF),
10, 100000);
if (ret) {
dev_err(dev, "Alarm update not allowed\n");
goto end;
}
/* Write to Alarm register */
writel_relaxed(alrmar, rtc->base + STM32_RTC_ALRMAR);
if (alrm->enabled)
stm32_rtc_alarm_irq_enable(dev, 1);
else
stm32_rtc_alarm_irq_enable(dev, 0);
end:
stm32_rtc_wpr_lock(rtc);
return ret;
}
static const struct rtc_class_ops stm32_rtc_ops = {
.read_time = stm32_rtc_read_time,
.set_time = stm32_rtc_set_time,
.read_alarm = stm32_rtc_read_alarm,
.set_alarm = stm32_rtc_set_alarm,
.alarm_irq_enable = stm32_rtc_alarm_irq_enable,
};
static const struct of_device_id stm32_rtc_of_match[] = {
{ .compatible = "st,stm32-rtc" },
{}
};
MODULE_DEVICE_TABLE(of, stm32_rtc_of_match);
static int stm32_rtc_init(struct platform_device *pdev,
struct stm32_rtc *rtc)
{
unsigned int prer, pred_a, pred_s, pred_a_max, pred_s_max, cr;
unsigned int rate;
int ret = 0;
rate = clk_get_rate(rtc->ck_rtc);
/* Find prediv_a and prediv_s to obtain the 1Hz calendar clock */
pred_a_max = STM32_RTC_PRER_PRED_A >> STM32_RTC_PRER_PRED_A_SHIFT;
pred_s_max = STM32_RTC_PRER_PRED_S >> STM32_RTC_PRER_PRED_S_SHIFT;
for (pred_a = pred_a_max; pred_a + 1 > 0; pred_a--) {
pred_s = (rate / (pred_a + 1)) - 1;
if (((pred_s + 1) * (pred_a + 1)) == rate)
break;
}
/*
* Can't find a 1Hz, so give priority to RTC power consumption
* by choosing the higher possible value for prediv_a
*/
if ((pred_s > pred_s_max) || (pred_a > pred_a_max)) {
pred_a = pred_a_max;
pred_s = (rate / (pred_a + 1)) - 1;
dev_warn(&pdev->dev, "ck_rtc is %s\n",
(rate < ((pred_a + 1) * (pred_s + 1))) ?
"fast" : "slow");
}
stm32_rtc_wpr_unlock(rtc);
ret = stm32_rtc_enter_init_mode(rtc);
if (ret) {
dev_err(&pdev->dev,
"Can't enter in init mode. Prescaler config failed.\n");
goto end;
}
prer = (pred_s << STM32_RTC_PRER_PRED_S_SHIFT) & STM32_RTC_PRER_PRED_S;
writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
prer |= (pred_a << STM32_RTC_PRER_PRED_A_SHIFT) & STM32_RTC_PRER_PRED_A;
writel_relaxed(prer, rtc->base + STM32_RTC_PRER);
/* Force 24h time format */
cr = readl_relaxed(rtc->base + STM32_RTC_CR);
cr &= ~STM32_RTC_CR_FMT;
writel_relaxed(cr, rtc->base + STM32_RTC_CR);
stm32_rtc_exit_init_mode(rtc);
ret = stm32_rtc_wait_sync(rtc);
end:
stm32_rtc_wpr_lock(rtc);
return ret;
}
static int stm32_rtc_probe(struct platform_device *pdev)
{
struct stm32_rtc *rtc;
struct resource *res;
int ret;
rtc = devm_kzalloc(&pdev->dev, sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rtc->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rtc->base))
return PTR_ERR(rtc->base);
rtc->dbp = syscon_regmap_lookup_by_phandle(pdev->dev.of_node,
"st,syscfg");
if (IS_ERR(rtc->dbp)) {
dev_err(&pdev->dev, "no st,syscfg\n");
return PTR_ERR(rtc->dbp);
}
rtc->ck_rtc = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(rtc->ck_rtc)) {
dev_err(&pdev->dev, "no ck_rtc clock");
return PTR_ERR(rtc->ck_rtc);
}
ret = clk_prepare_enable(rtc->ck_rtc);
if (ret)
return ret;
regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, PWR_CR_DBP);
/*
* After a system reset, RTC_ISR.INITS flag can be read to check if
* the calendar has been initalized or not. INITS flag is reset by a
* power-on reset (no vbat, no power-supply). It is not reset if
* ck_rtc parent clock has changed (so RTC prescalers need to be
* changed). That's why we cannot rely on this flag to know if RTC
* init has to be done.
*/
ret = stm32_rtc_init(pdev, rtc);
if (ret)
goto err;
rtc->irq_alarm = platform_get_irq(pdev, 0);
if (rtc->irq_alarm <= 0) {
dev_err(&pdev->dev, "no alarm irq\n");
ret = rtc->irq_alarm;
goto err;
}
platform_set_drvdata(pdev, rtc);
ret = device_init_wakeup(&pdev->dev, true);
if (ret)
dev_warn(&pdev->dev,
"alarm won't be able to wake up the system");
rtc->rtc_dev = devm_rtc_device_register(&pdev->dev, pdev->name,
&stm32_rtc_ops, THIS_MODULE);
if (IS_ERR(rtc->rtc_dev)) {
ret = PTR_ERR(rtc->rtc_dev);
dev_err(&pdev->dev, "rtc device registration failed, err=%d\n",
ret);
goto err;
}
/* Handle RTC alarm interrupts */
ret = devm_request_threaded_irq(&pdev->dev, rtc->irq_alarm, NULL,
stm32_rtc_alarm_irq,
IRQF_TRIGGER_RISING | IRQF_ONESHOT,
pdev->name, rtc);
if (ret) {
dev_err(&pdev->dev, "IRQ%d (alarm interrupt) already claimed\n",
rtc->irq_alarm);
goto err;
}
/*
* If INITS flag is reset (calendar year field set to 0x00), calendar
* must be initialized
*/
if (!(readl_relaxed(rtc->base + STM32_RTC_ISR) & STM32_RTC_ISR_INITS))
dev_warn(&pdev->dev, "Date/Time must be initialized\n");
return 0;
err:
clk_disable_unprepare(rtc->ck_rtc);
regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, 0);
device_init_wakeup(&pdev->dev, false);
return ret;
}
static int stm32_rtc_remove(struct platform_device *pdev)
{
struct stm32_rtc *rtc = platform_get_drvdata(pdev);
unsigned int cr;
/* Disable interrupts */
stm32_rtc_wpr_unlock(rtc);
cr = readl_relaxed(rtc->base + STM32_RTC_CR);
cr &= ~STM32_RTC_CR_ALRAIE;
writel_relaxed(cr, rtc->base + STM32_RTC_CR);
stm32_rtc_wpr_lock(rtc);
clk_disable_unprepare(rtc->ck_rtc);
/* Enable backup domain write protection */
regmap_update_bits(rtc->dbp, PWR_CR, PWR_CR_DBP, 0);
device_init_wakeup(&pdev->dev, false);
return 0;
}
#ifdef CONFIG_PM_SLEEP
static int stm32_rtc_suspend(struct device *dev)
{
struct stm32_rtc *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
return enable_irq_wake(rtc->irq_alarm);
return 0;
}
static int stm32_rtc_resume(struct device *dev)
{
struct stm32_rtc *rtc = dev_get_drvdata(dev);
int ret = 0;
ret = stm32_rtc_wait_sync(rtc);
if (ret < 0)
return ret;
if (device_may_wakeup(dev))
return disable_irq_wake(rtc->irq_alarm);
return ret;
}
#endif
static SIMPLE_DEV_PM_OPS(stm32_rtc_pm_ops,
stm32_rtc_suspend, stm32_rtc_resume);
static struct platform_driver stm32_rtc_driver = {
.probe = stm32_rtc_probe,
.remove = stm32_rtc_remove,
.driver = {
.name = DRIVER_NAME,
.pm = &stm32_rtc_pm_ops,
.of_match_table = stm32_rtc_of_match,
},
};
module_platform_driver(stm32_rtc_driver);
MODULE_ALIAS("platform:" DRIVER_NAME);
MODULE_AUTHOR("Amelie Delaunay <amelie.delaunay@st.com>");
MODULE_DESCRIPTION("STMicroelectronics STM32 Real Time Clock driver");
MODULE_LICENSE("GPL v2");

View File

@ -20,6 +20,8 @@
* more details.
*/
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/fs.h>
@ -33,15 +35,20 @@
#include <linux/of_device.h>
#include <linux/platform_device.h>
#include <linux/rtc.h>
#include <linux/slab.h>
#include <linux/types.h>
/* Control register */
#define SUN6I_LOSC_CTRL 0x0000
#define SUN6I_LOSC_CTRL_KEY (0x16aa << 16)
#define SUN6I_LOSC_CTRL_ALM_DHMS_ACC BIT(9)
#define SUN6I_LOSC_CTRL_RTC_HMS_ACC BIT(8)
#define SUN6I_LOSC_CTRL_RTC_YMD_ACC BIT(7)
#define SUN6I_LOSC_CTRL_EXT_OSC BIT(0)
#define SUN6I_LOSC_CTRL_ACC_MASK GENMASK(9, 7)
#define SUN6I_LOSC_CLK_PRESCAL 0x0008
/* RTC */
#define SUN6I_RTC_YMD 0x0010
#define SUN6I_RTC_HMS 0x0014
@ -114,13 +121,142 @@ struct sun6i_rtc_dev {
void __iomem *base;
int irq;
unsigned long alarm;
struct clk_hw hw;
struct clk_hw *int_osc;
struct clk *losc;
spinlock_t lock;
};
static struct sun6i_rtc_dev *sun6i_rtc;
static unsigned long sun6i_rtc_osc_recalc_rate(struct clk_hw *hw,
unsigned long parent_rate)
{
struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
u32 val;
val = readl(rtc->base + SUN6I_LOSC_CTRL);
if (val & SUN6I_LOSC_CTRL_EXT_OSC)
return parent_rate;
val = readl(rtc->base + SUN6I_LOSC_CLK_PRESCAL);
val &= GENMASK(4, 0);
return parent_rate / (val + 1);
}
static u8 sun6i_rtc_osc_get_parent(struct clk_hw *hw)
{
struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
return readl(rtc->base + SUN6I_LOSC_CTRL) & SUN6I_LOSC_CTRL_EXT_OSC;
}
static int sun6i_rtc_osc_set_parent(struct clk_hw *hw, u8 index)
{
struct sun6i_rtc_dev *rtc = container_of(hw, struct sun6i_rtc_dev, hw);
unsigned long flags;
u32 val;
if (index > 1)
return -EINVAL;
spin_lock_irqsave(&rtc->lock, flags);
val = readl(rtc->base + SUN6I_LOSC_CTRL);
val &= ~SUN6I_LOSC_CTRL_EXT_OSC;
val |= SUN6I_LOSC_CTRL_KEY;
val |= index ? SUN6I_LOSC_CTRL_EXT_OSC : 0;
writel(val, rtc->base + SUN6I_LOSC_CTRL);
spin_unlock_irqrestore(&rtc->lock, flags);
return 0;
}
static const struct clk_ops sun6i_rtc_osc_ops = {
.recalc_rate = sun6i_rtc_osc_recalc_rate,
.get_parent = sun6i_rtc_osc_get_parent,
.set_parent = sun6i_rtc_osc_set_parent,
};
static void __init sun6i_rtc_clk_init(struct device_node *node)
{
struct clk_hw_onecell_data *clk_data;
struct sun6i_rtc_dev *rtc;
struct clk_init_data init = {
.ops = &sun6i_rtc_osc_ops,
};
const char *parents[2];
rtc = kzalloc(sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return;
spin_lock_init(&rtc->lock);
clk_data = kzalloc(sizeof(*clk_data) + sizeof(*clk_data->hws),
GFP_KERNEL);
if (!clk_data)
return;
spin_lock_init(&rtc->lock);
rtc->base = of_io_request_and_map(node, 0, of_node_full_name(node));
if (IS_ERR(rtc->base)) {
pr_crit("Can't map RTC registers");
return;
}
/* Switch to the external, more precise, oscillator */
writel(SUN6I_LOSC_CTRL_KEY | SUN6I_LOSC_CTRL_EXT_OSC,
rtc->base + SUN6I_LOSC_CTRL);
/* Yes, I know, this is ugly. */
sun6i_rtc = rtc;
/* Deal with old DTs */
if (!of_get_property(node, "clocks", NULL))
return;
rtc->int_osc = clk_hw_register_fixed_rate_with_accuracy(NULL,
"rtc-int-osc",
NULL, 0,
667000,
300000000);
if (IS_ERR(rtc->int_osc)) {
pr_crit("Couldn't register the internal oscillator\n");
return;
}
parents[0] = clk_hw_get_name(rtc->int_osc);
parents[1] = of_clk_get_parent_name(node, 0);
rtc->hw.init = &init;
init.parent_names = parents;
init.num_parents = of_clk_get_parent_count(node) + 1;
of_property_read_string(node, "clock-output-names", &init.name);
rtc->losc = clk_register(NULL, &rtc->hw);
if (IS_ERR(rtc->losc)) {
pr_crit("Couldn't register the LOSC clock\n");
return;
}
clk_data->num = 1;
clk_data->hws[0] = &rtc->hw;
of_clk_add_hw_provider(node, of_clk_hw_onecell_get, clk_data);
}
CLK_OF_DECLARE_DRIVER(sun6i_rtc_clk, "allwinner,sun6i-a31-rtc",
sun6i_rtc_clk_init);
static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
{
struct sun6i_rtc_dev *chip = (struct sun6i_rtc_dev *) id;
irqreturn_t ret = IRQ_NONE;
u32 val;
spin_lock(&chip->lock);
val = readl(chip->base + SUN6I_ALRM_IRQ_STA);
if (val & SUN6I_ALRM_IRQ_STA_CNT_IRQ_PEND) {
@ -129,10 +265,11 @@ static irqreturn_t sun6i_rtc_alarmirq(int irq, void *id)
rtc_update_irq(chip->rtc, 1, RTC_AF | RTC_IRQF);
return IRQ_HANDLED;
ret = IRQ_HANDLED;
}
spin_unlock(&chip->lock);
return IRQ_NONE;
return ret;
}
static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
@ -140,6 +277,7 @@ static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
u32 alrm_val = 0;
u32 alrm_irq_val = 0;
u32 alrm_wake_val = 0;
unsigned long flags;
if (to) {
alrm_val = SUN6I_ALRM_EN_CNT_EN;
@ -150,9 +288,11 @@ static void sun6i_rtc_setaie(int to, struct sun6i_rtc_dev *chip)
chip->base + SUN6I_ALRM_IRQ_STA);
}
spin_lock_irqsave(&chip->lock, flags);
writel(alrm_val, chip->base + SUN6I_ALRM_EN);
writel(alrm_irq_val, chip->base + SUN6I_ALRM_IRQ_EN);
writel(alrm_wake_val, chip->base + SUN6I_ALARM_CONFIG);
spin_unlock_irqrestore(&chip->lock, flags);
}
static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
@ -191,11 +331,15 @@ static int sun6i_rtc_gettime(struct device *dev, struct rtc_time *rtc_tm)
static int sun6i_rtc_getalarm(struct device *dev, struct rtc_wkalrm *wkalrm)
{
struct sun6i_rtc_dev *chip = dev_get_drvdata(dev);
unsigned long flags;
u32 alrm_st;
u32 alrm_en;
spin_lock_irqsave(&chip->lock, flags);
alrm_en = readl(chip->base + SUN6I_ALRM_IRQ_EN);
alrm_st = readl(chip->base + SUN6I_ALRM_IRQ_STA);
spin_unlock_irqrestore(&chip->lock, flags);
wkalrm->enabled = !!(alrm_en & SUN6I_ALRM_EN_CNT_EN);
wkalrm->pending = !!(alrm_st & SUN6I_ALRM_EN_CNT_EN);
rtc_time_to_tm(chip->alarm, &wkalrm->time);
@ -349,22 +493,15 @@ static const struct rtc_class_ops sun6i_rtc_ops = {
static int sun6i_rtc_probe(struct platform_device *pdev)
{
struct sun6i_rtc_dev *chip;
struct resource *res;
struct sun6i_rtc_dev *chip = sun6i_rtc;
int ret;
chip = devm_kzalloc(&pdev->dev, sizeof(*chip), GFP_KERNEL);
if (!chip)
return -ENOMEM;
return -ENODEV;
platform_set_drvdata(pdev, chip);
chip->dev = &pdev->dev;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
chip->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(chip->base))
return PTR_ERR(chip->base);
chip->irq = platform_get_irq(pdev, 0);
if (chip->irq < 0) {
dev_err(&pdev->dev, "No IRQ resource\n");
@ -404,8 +541,10 @@ static int sun6i_rtc_probe(struct platform_device *pdev)
/* disable alarm wakeup */
writel(0, chip->base + SUN6I_ALARM_CONFIG);
chip->rtc = rtc_device_register("rtc-sun6i", &pdev->dev,
&sun6i_rtc_ops, THIS_MODULE);
clk_prepare_enable(chip->losc);
chip->rtc = devm_rtc_device_register(&pdev->dev, "rtc-sun6i",
&sun6i_rtc_ops, THIS_MODULE);
if (IS_ERR(chip->rtc)) {
dev_err(&pdev->dev, "unable to register device\n");
return PTR_ERR(chip->rtc);
@ -416,15 +555,6 @@ static int sun6i_rtc_probe(struct platform_device *pdev)
return 0;
}
static int sun6i_rtc_remove(struct platform_device *pdev)
{
struct sun6i_rtc_dev *chip = platform_get_drvdata(pdev);
rtc_device_unregister(chip->rtc);
return 0;
}
static const struct of_device_id sun6i_rtc_dt_ids[] = {
{ .compatible = "allwinner,sun6i-a31-rtc" },
{ /* sentinel */ },
@ -433,15 +563,9 @@ MODULE_DEVICE_TABLE(of, sun6i_rtc_dt_ids);
static struct platform_driver sun6i_rtc_driver = {
.probe = sun6i_rtc_probe,
.remove = sun6i_rtc_remove,
.driver = {
.name = "sun6i-rtc",
.of_match_table = sun6i_rtc_dt_ids,
},
};
module_platform_driver(sun6i_rtc_driver);
MODULE_DESCRIPTION("sun6i RTC driver");
MODULE_AUTHOR("Chen-Yu Tsai <wens@csie.org>");
MODULE_LICENSE("GPL");
builtin_platform_driver(sun6i_rtc_driver);

View File

@ -17,16 +17,18 @@
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/irq.h>
#include <linux/io.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/rtc.h>
#include <linux/init.h>
#include <linux/io.h>
#include <linux/irq.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/rtc.h>
#include <linux/slab.h>
/* set to 1 = busy every eight 32kHz clocks during copy of sec+msec to AHB */
#define TEGRA_RTC_REG_BUSY 0x004
@ -59,6 +61,7 @@ struct tegra_rtc_info {
struct platform_device *pdev;
struct rtc_device *rtc_dev;
void __iomem *rtc_base; /* NULL if not initialized. */
struct clk *clk;
int tegra_rtc_irq; /* alarm and periodic irq */
spinlock_t tegra_rtc_lock;
};
@ -326,6 +329,14 @@ static int __init tegra_rtc_probe(struct platform_device *pdev)
if (info->tegra_rtc_irq <= 0)
return -EBUSY;
info->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(info->clk))
return PTR_ERR(info->clk);
ret = clk_prepare_enable(info->clk);
if (ret < 0)
return ret;
/* set context info. */
info->pdev = pdev;
spin_lock_init(&info->tegra_rtc_lock);
@ -346,7 +357,7 @@ static int __init tegra_rtc_probe(struct platform_device *pdev)
ret = PTR_ERR(info->rtc_dev);
dev_err(&pdev->dev, "Unable to register device (err=%d).\n",
ret);
return ret;
goto disable_clk;
}
ret = devm_request_irq(&pdev->dev, info->tegra_rtc_irq,
@ -356,11 +367,24 @@ static int __init tegra_rtc_probe(struct platform_device *pdev)
dev_err(&pdev->dev,
"Unable to request interrupt for device (err=%d).\n",
ret);
return ret;
goto disable_clk;
}
dev_notice(&pdev->dev, "Tegra internal Real Time Clock\n");
return 0;
disable_clk:
clk_disable_unprepare(info->clk);
return ret;
}
static int tegra_rtc_remove(struct platform_device *pdev)
{
struct tegra_rtc_info *info = platform_get_drvdata(pdev);
clk_disable_unprepare(info->clk);
return 0;
}
@ -413,6 +437,7 @@ static void tegra_rtc_shutdown(struct platform_device *pdev)
MODULE_ALIAS("platform:tegra_rtc");
static struct platform_driver tegra_rtc_driver = {
.remove = tegra_rtc_remove,
.shutdown = tegra_rtc_shutdown,
.driver = {
.name = "tegra_rtc",

View File

@ -21,6 +21,7 @@
#include <linux/types.h>
#include <linux/rtc.h>
#include <linux/bcd.h>
#include <linux/math64.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/mfd/tps65910.h>
@ -33,7 +34,21 @@ struct tps65910_rtc {
/* Total number of RTC registers needed to set time*/
#define NUM_TIME_REGS (TPS65910_YEARS - TPS65910_SECONDS + 1)
static int tps65910_rtc_alarm_irq_enable(struct device *dev, unsigned enabled)
/* Total number of RTC registers needed to set compensation registers */
#define NUM_COMP_REGS (TPS65910_RTC_COMP_MSB - TPS65910_RTC_COMP_LSB + 1)
/* Min and max values supported with 'offset' interface (swapped sign) */
#define MIN_OFFSET (-277761)
#define MAX_OFFSET (277778)
/* Number of ticks per hour */
#define TICKS_PER_HOUR (32768 * 3600)
/* Multiplier for ppb conversions */
#define PPB_MULT (1000000000LL)
static int tps65910_rtc_alarm_irq_enable(struct device *dev,
unsigned int enabled)
{
struct tps65910 *tps = dev_get_drvdata(dev->parent);
u8 val = 0;
@ -187,6 +202,133 @@ static int tps65910_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alm)
return ret;
}
static int tps65910_rtc_set_calibration(struct device *dev, int calibration)
{
unsigned char comp_data[NUM_COMP_REGS];
struct tps65910 *tps = dev_get_drvdata(dev->parent);
s16 value;
int ret;
/*
* TPS65910 uses two's complement 16 bit value for compensation for RTC
* crystal inaccuracies. One time every hour when seconds counter
* increments from 0 to 1 compensation value will be added to internal
* RTC counter value.
*
* Compensation value 0x7FFF is prohibited value.
*
* Valid range for compensation value: [-32768 .. 32766]
*/
if ((calibration < -32768) || (calibration > 32766)) {
dev_err(dev, "RTC calibration value out of range: %d\n",
calibration);
return -EINVAL;
}
value = (s16)calibration;
comp_data[0] = (u16)value & 0xFF;
comp_data[1] = ((u16)value >> 8) & 0xFF;
/* Update all the compensation registers in one shot */
ret = regmap_bulk_write(tps->regmap, TPS65910_RTC_COMP_LSB,
comp_data, NUM_COMP_REGS);
if (ret < 0) {
dev_err(dev, "rtc_set_calibration error: %d\n", ret);
return ret;
}
/* Enable automatic compensation */
ret = regmap_update_bits(tps->regmap, TPS65910_RTC_CTRL,
TPS65910_RTC_CTRL_AUTO_COMP, TPS65910_RTC_CTRL_AUTO_COMP);
if (ret < 0)
dev_err(dev, "auto_comp enable failed with error: %d\n", ret);
return ret;
}
static int tps65910_rtc_get_calibration(struct device *dev, int *calibration)
{
unsigned char comp_data[NUM_COMP_REGS];
struct tps65910 *tps = dev_get_drvdata(dev->parent);
unsigned int ctrl;
u16 value;
int ret;
ret = regmap_read(tps->regmap, TPS65910_RTC_CTRL, &ctrl);
if (ret < 0)
return ret;
/* If automatic compensation is not enabled report back zero */
if (!(ctrl & TPS65910_RTC_CTRL_AUTO_COMP)) {
*calibration = 0;
return 0;
}
ret = regmap_bulk_read(tps->regmap, TPS65910_RTC_COMP_LSB, comp_data,
NUM_COMP_REGS);
if (ret < 0) {
dev_err(dev, "rtc_get_calibration error: %d\n", ret);
return ret;
}
value = (u16)comp_data[0] | ((u16)comp_data[1] << 8);
*calibration = (s16)value;
return 0;
}
static int tps65910_read_offset(struct device *dev, long *offset)
{
int calibration;
s64 tmp;
int ret;
ret = tps65910_rtc_get_calibration(dev, &calibration);
if (ret < 0)
return ret;
/* Convert from RTC calibration register format to ppb format */
tmp = calibration * (s64)PPB_MULT;
if (tmp < 0)
tmp -= TICKS_PER_HOUR / 2LL;
else
tmp += TICKS_PER_HOUR / 2LL;
tmp = div_s64(tmp, TICKS_PER_HOUR);
/* Offset value operates in negative way, so swap sign */
*offset = (long)-tmp;
return 0;
}
static int tps65910_set_offset(struct device *dev, long offset)
{
int calibration;
s64 tmp;
int ret;
/* Make sure offset value is within supported range */
if (offset < MIN_OFFSET || offset > MAX_OFFSET)
return -ERANGE;
/* Convert from ppb format to RTC calibration register format */
tmp = offset * (s64)TICKS_PER_HOUR;
if (tmp < 0)
tmp -= PPB_MULT / 2LL;
else
tmp += PPB_MULT / 2LL;
tmp = div_s64(tmp, PPB_MULT);
/* Offset value operates in negative way, so swap sign */
calibration = (int)-tmp;
ret = tps65910_rtc_set_calibration(dev, calibration);
return ret;
}
static irqreturn_t tps65910_rtc_interrupt(int irq, void *rtc)
{
struct device *dev = rtc;
@ -219,6 +361,8 @@ static const struct rtc_class_ops tps65910_rtc_ops = {
.read_alarm = tps65910_rtc_read_alarm,
.set_alarm = tps65910_rtc_set_alarm,
.alarm_irq_enable = tps65910_rtc_alarm_irq_enable,
.read_offset = tps65910_read_offset,
.set_offset = tps65910_set_offset,
};
static int tps65910_rtc_probe(struct platform_device *pdev)

View File

@ -134,6 +134,7 @@
/* RTC_CTRL_REG bitfields */
#define TPS65910_RTC_CTRL_STOP_RTC 0x01 /*0=stop, 1=run */
#define TPS65910_RTC_CTRL_AUTO_COMP 0x04
#define TPS65910_RTC_CTRL_GET_TIME 0x40
/* RTC_STATUS_REG bitfields */

View File

@ -1,16 +0,0 @@
/*
* ST M48T86 / Dallas DS12887 RTC driver
* Copyright (c) 2006 Tower Technologies
*
* Author: Alessandro Zummo <a.zummo@towertech.it>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
struct m48t86_ops
{
void (*writebyte)(unsigned char value, unsigned long addr);
unsigned char (*readbyte)(unsigned long addr);
};