exec: separate MM_ANONPAGES and RLIMIT_STACK accounting
get_arg_page() checks bprm->rlim_stack.rlim_cur and re-calculates the "extra" size for argv/envp pointers every time, this is a bit ugly and even not strictly correct: acct_arg_size() must not account this size. Remove all the rlimit code in get_arg_page(). Instead, add bprm->argmin calculated once at the start of __do_execve_file() and change copy_strings to check bprm->p >= bprm->argmin. The patch adds the new helper, prepare_arg_pages() which initializes bprm->argc/envc and bprm->argmin. [oleg@redhat.com: fix !CONFIG_MMU version of get_arg_page()] Link: http://lkml.kernel.org/r/20181126122307.GA1660@redhat.com [akpm@linux-foundation.org: use max_t] Link: http://lkml.kernel.org/r/20181112160910.GA28440@redhat.com Signed-off-by: Oleg Nesterov <oleg@redhat.com> Acked-by: Kees Cook <keescook@chromium.org> Tested-by: Guenter Roeck <linux@roeck-us.net> Cc: "Eric W. Biederman" <ebiederm@xmission.com> Cc: Michal Hocko <mhocko@suse.com> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
8099b047ec
commit
655c16a8ce
105
fs/exec.c
105
fs/exec.c
|
@ -218,55 +218,10 @@ static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
|
|||
if (ret <= 0)
|
||||
return NULL;
|
||||
|
||||
if (write) {
|
||||
unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
|
||||
unsigned long ptr_size, limit;
|
||||
|
||||
/*
|
||||
* Since the stack will hold pointers to the strings, we
|
||||
* must account for them as well.
|
||||
*
|
||||
* The size calculation is the entire vma while each arg page is
|
||||
* built, so each time we get here it's calculating how far it
|
||||
* is currently (rather than each call being just the newly
|
||||
* added size from the arg page). As a result, we need to
|
||||
* always add the entire size of the pointers, so that on the
|
||||
* last call to get_arg_page() we'll actually have the entire
|
||||
* correct size.
|
||||
*/
|
||||
ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
|
||||
if (ptr_size > ULONG_MAX - size)
|
||||
goto fail;
|
||||
size += ptr_size;
|
||||
|
||||
acct_arg_size(bprm, size / PAGE_SIZE);
|
||||
|
||||
/*
|
||||
* We've historically supported up to 32 pages (ARG_MAX)
|
||||
* of argument strings even with small stacks
|
||||
*/
|
||||
if (size <= ARG_MAX)
|
||||
return page;
|
||||
|
||||
/*
|
||||
* Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
|
||||
* (whichever is smaller) for the argv+env strings.
|
||||
* This ensures that:
|
||||
* - the remaining binfmt code will not run out of stack space,
|
||||
* - the program will have a reasonable amount of stack left
|
||||
* to work from.
|
||||
*/
|
||||
limit = _STK_LIM / 4 * 3;
|
||||
limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
|
||||
if (size > limit)
|
||||
goto fail;
|
||||
}
|
||||
if (write)
|
||||
acct_arg_size(bprm, vma_pages(bprm->vma));
|
||||
|
||||
return page;
|
||||
|
||||
fail:
|
||||
put_page(page);
|
||||
return NULL;
|
||||
}
|
||||
|
||||
static void put_arg_page(struct page *page)
|
||||
|
@ -492,6 +447,50 @@ static int count(struct user_arg_ptr argv, int max)
|
|||
return i;
|
||||
}
|
||||
|
||||
static int prepare_arg_pages(struct linux_binprm *bprm,
|
||||
struct user_arg_ptr argv, struct user_arg_ptr envp)
|
||||
{
|
||||
unsigned long limit, ptr_size;
|
||||
|
||||
bprm->argc = count(argv, MAX_ARG_STRINGS);
|
||||
if (bprm->argc < 0)
|
||||
return bprm->argc;
|
||||
|
||||
bprm->envc = count(envp, MAX_ARG_STRINGS);
|
||||
if (bprm->envc < 0)
|
||||
return bprm->envc;
|
||||
|
||||
/*
|
||||
* Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
|
||||
* (whichever is smaller) for the argv+env strings.
|
||||
* This ensures that:
|
||||
* - the remaining binfmt code will not run out of stack space,
|
||||
* - the program will have a reasonable amount of stack left
|
||||
* to work from.
|
||||
*/
|
||||
limit = _STK_LIM / 4 * 3;
|
||||
limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
|
||||
/*
|
||||
* We've historically supported up to 32 pages (ARG_MAX)
|
||||
* of argument strings even with small stacks
|
||||
*/
|
||||
limit = max_t(unsigned long, limit, ARG_MAX);
|
||||
/*
|
||||
* We must account for the size of all the argv and envp pointers to
|
||||
* the argv and envp strings, since they will also take up space in
|
||||
* the stack. They aren't stored until much later when we can't
|
||||
* signal to the parent that the child has run out of stack space.
|
||||
* Instead, calculate it here so it's possible to fail gracefully.
|
||||
*/
|
||||
ptr_size = (bprm->argc + bprm->envc) * sizeof(void *);
|
||||
if (limit <= ptr_size)
|
||||
return -E2BIG;
|
||||
limit -= ptr_size;
|
||||
|
||||
bprm->argmin = bprm->p - limit;
|
||||
return 0;
|
||||
}
|
||||
|
||||
/*
|
||||
* 'copy_strings()' copies argument/environment strings from the old
|
||||
* processes's memory to the new process's stack. The call to get_user_pages()
|
||||
|
@ -527,6 +526,10 @@ static int copy_strings(int argc, struct user_arg_ptr argv,
|
|||
pos = bprm->p;
|
||||
str += len;
|
||||
bprm->p -= len;
|
||||
#ifdef CONFIG_MMU
|
||||
if (bprm->p < bprm->argmin)
|
||||
goto out;
|
||||
#endif
|
||||
|
||||
while (len > 0) {
|
||||
int offset, bytes_to_copy;
|
||||
|
@ -1789,12 +1792,8 @@ static int __do_execve_file(int fd, struct filename *filename,
|
|||
if (retval)
|
||||
goto out_unmark;
|
||||
|
||||
bprm->argc = count(argv, MAX_ARG_STRINGS);
|
||||
if ((retval = bprm->argc) < 0)
|
||||
goto out;
|
||||
|
||||
bprm->envc = count(envp, MAX_ARG_STRINGS);
|
||||
if ((retval = bprm->envc) < 0)
|
||||
retval = prepare_arg_pages(bprm, argv, envp);
|
||||
if (retval < 0)
|
||||
goto out;
|
||||
|
||||
retval = prepare_binprm(bprm);
|
||||
|
|
|
@ -25,6 +25,7 @@ struct linux_binprm {
|
|||
#endif
|
||||
struct mm_struct *mm;
|
||||
unsigned long p; /* current top of mem */
|
||||
unsigned long argmin; /* rlimit marker for copy_strings() */
|
||||
unsigned int
|
||||
/*
|
||||
* True after the bprm_set_creds hook has been called once
|
||||
|
|
Loading…
Reference in New Issue