f2fs: introduce struct inode_management to wrap inner fields
Now in f2fs, we have three inode cache: ORPHAN_INO, APPEND_INO, UPDATE_INO, and we manage fields related to inode cache separately in struct f2fs_sb_info for each inode cache type. This makes codes a bit messy, so that this patch intorduce a new struct inode_management to wrap inner fields as following which make codes more neat. /* for inner inode cache management */ struct inode_management { struct radix_tree_root ino_root; /* ino entry array */ spinlock_t ino_lock; /* for ino entry lock */ struct list_head ino_list; /* inode list head */ unsigned long ino_num; /* number of entries */ }; struct f2fs_sb_info { ... struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */ ... } Signed-off-by: Chao Yu <chao2.yu@samsung.com> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This commit is contained in:
parent
aba291b3d8
commit
67298804f3
|
@ -298,47 +298,49 @@ const struct address_space_operations f2fs_meta_aops = {
|
|||
|
||||
static void __add_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
||||
{
|
||||
struct inode_management *im = &sbi->im[type];
|
||||
struct ino_entry *e;
|
||||
retry:
|
||||
spin_lock(&sbi->ino_lock[type]);
|
||||
spin_lock(&im->ino_lock);
|
||||
|
||||
e = radix_tree_lookup(&sbi->ino_root[type], ino);
|
||||
e = radix_tree_lookup(&im->ino_root, ino);
|
||||
if (!e) {
|
||||
e = kmem_cache_alloc(ino_entry_slab, GFP_ATOMIC);
|
||||
if (!e) {
|
||||
spin_unlock(&sbi->ino_lock[type]);
|
||||
spin_unlock(&im->ino_lock);
|
||||
goto retry;
|
||||
}
|
||||
if (radix_tree_insert(&sbi->ino_root[type], ino, e)) {
|
||||
spin_unlock(&sbi->ino_lock[type]);
|
||||
if (radix_tree_insert(&im->ino_root, ino, e)) {
|
||||
spin_unlock(&im->ino_lock);
|
||||
kmem_cache_free(ino_entry_slab, e);
|
||||
goto retry;
|
||||
}
|
||||
memset(e, 0, sizeof(struct ino_entry));
|
||||
e->ino = ino;
|
||||
|
||||
list_add_tail(&e->list, &sbi->ino_list[type]);
|
||||
list_add_tail(&e->list, &im->ino_list);
|
||||
if (type != ORPHAN_INO)
|
||||
sbi->ino_num[type]++;
|
||||
im->ino_num++;
|
||||
}
|
||||
spin_unlock(&sbi->ino_lock[type]);
|
||||
spin_unlock(&im->ino_lock);
|
||||
}
|
||||
|
||||
static void __remove_ino_entry(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
||||
{
|
||||
struct inode_management *im = &sbi->im[type];
|
||||
struct ino_entry *e;
|
||||
|
||||
spin_lock(&sbi->ino_lock[type]);
|
||||
e = radix_tree_lookup(&sbi->ino_root[type], ino);
|
||||
spin_lock(&im->ino_lock);
|
||||
e = radix_tree_lookup(&im->ino_root, ino);
|
||||
if (e) {
|
||||
list_del(&e->list);
|
||||
radix_tree_delete(&sbi->ino_root[type], ino);
|
||||
sbi->ino_num[type]--;
|
||||
spin_unlock(&sbi->ino_lock[type]);
|
||||
radix_tree_delete(&im->ino_root, ino);
|
||||
im->ino_num--;
|
||||
spin_unlock(&im->ino_lock);
|
||||
kmem_cache_free(ino_entry_slab, e);
|
||||
return;
|
||||
}
|
||||
spin_unlock(&sbi->ino_lock[type]);
|
||||
spin_unlock(&im->ino_lock);
|
||||
}
|
||||
|
||||
void add_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
||||
|
@ -356,10 +358,12 @@ void remove_dirty_inode(struct f2fs_sb_info *sbi, nid_t ino, int type)
|
|||
/* mode should be APPEND_INO or UPDATE_INO */
|
||||
bool exist_written_data(struct f2fs_sb_info *sbi, nid_t ino, int mode)
|
||||
{
|
||||
struct inode_management *im = &sbi->im[mode];
|
||||
struct ino_entry *e;
|
||||
spin_lock(&sbi->ino_lock[mode]);
|
||||
e = radix_tree_lookup(&sbi->ino_root[mode], ino);
|
||||
spin_unlock(&sbi->ino_lock[mode]);
|
||||
|
||||
spin_lock(&im->ino_lock);
|
||||
e = radix_tree_lookup(&im->ino_root, ino);
|
||||
spin_unlock(&im->ino_lock);
|
||||
return e ? true : false;
|
||||
}
|
||||
|
||||
|
@ -369,37 +373,42 @@ void release_dirty_inode(struct f2fs_sb_info *sbi)
|
|||
int i;
|
||||
|
||||
for (i = APPEND_INO; i <= UPDATE_INO; i++) {
|
||||
spin_lock(&sbi->ino_lock[i]);
|
||||
list_for_each_entry_safe(e, tmp, &sbi->ino_list[i], list) {
|
||||
struct inode_management *im = &sbi->im[i];
|
||||
|
||||
spin_lock(&im->ino_lock);
|
||||
list_for_each_entry_safe(e, tmp, &im->ino_list, list) {
|
||||
list_del(&e->list);
|
||||
radix_tree_delete(&sbi->ino_root[i], e->ino);
|
||||
radix_tree_delete(&im->ino_root, e->ino);
|
||||
kmem_cache_free(ino_entry_slab, e);
|
||||
sbi->ino_num[i]--;
|
||||
im->ino_num--;
|
||||
}
|
||||
spin_unlock(&sbi->ino_lock[i]);
|
||||
spin_unlock(&im->ino_lock);
|
||||
}
|
||||
}
|
||||
|
||||
int acquire_orphan_inode(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
||||
int err = 0;
|
||||
|
||||
spin_lock(&sbi->ino_lock[ORPHAN_INO]);
|
||||
if (unlikely(sbi->ino_num[ORPHAN_INO] >= sbi->max_orphans))
|
||||
spin_lock(&im->ino_lock);
|
||||
if (unlikely(im->ino_num >= sbi->max_orphans))
|
||||
err = -ENOSPC;
|
||||
else
|
||||
sbi->ino_num[ORPHAN_INO]++;
|
||||
spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
|
||||
im->ino_num++;
|
||||
spin_unlock(&im->ino_lock);
|
||||
|
||||
return err;
|
||||
}
|
||||
|
||||
void release_orphan_inode(struct f2fs_sb_info *sbi)
|
||||
{
|
||||
spin_lock(&sbi->ino_lock[ORPHAN_INO]);
|
||||
f2fs_bug_on(sbi, sbi->ino_num[ORPHAN_INO] == 0);
|
||||
sbi->ino_num[ORPHAN_INO]--;
|
||||
spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
|
||||
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
||||
|
||||
spin_lock(&im->ino_lock);
|
||||
f2fs_bug_on(sbi, im->ino_num == 0);
|
||||
im->ino_num--;
|
||||
spin_unlock(&im->ino_lock);
|
||||
}
|
||||
|
||||
void add_orphan_inode(struct f2fs_sb_info *sbi, nid_t ino)
|
||||
|
@ -465,15 +474,16 @@ static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
|
|||
unsigned short orphan_blocks;
|
||||
struct page *page = NULL;
|
||||
struct ino_entry *orphan = NULL;
|
||||
struct inode_management *im = &sbi->im[ORPHAN_INO];
|
||||
|
||||
orphan_blocks = GET_ORPHAN_BLOCKS(sbi->ino_num[ORPHAN_INO]);
|
||||
orphan_blocks = GET_ORPHAN_BLOCKS(im->ino_num);
|
||||
|
||||
for (index = 0; index < orphan_blocks; index++)
|
||||
grab_meta_page(sbi, start_blk + index);
|
||||
|
||||
index = 1;
|
||||
spin_lock(&sbi->ino_lock[ORPHAN_INO]);
|
||||
head = &sbi->ino_list[ORPHAN_INO];
|
||||
spin_lock(&im->ino_lock);
|
||||
head = &im->ino_list;
|
||||
|
||||
/* loop for each orphan inode entry and write them in Jornal block */
|
||||
list_for_each_entry(orphan, head, list) {
|
||||
|
@ -513,7 +523,7 @@ static void write_orphan_inodes(struct f2fs_sb_info *sbi, block_t start_blk)
|
|||
f2fs_put_page(page, 1);
|
||||
}
|
||||
|
||||
spin_unlock(&sbi->ino_lock[ORPHAN_INO]);
|
||||
spin_unlock(&im->ino_lock);
|
||||
}
|
||||
|
||||
static struct page *validate_checkpoint(struct f2fs_sb_info *sbi,
|
||||
|
@ -836,6 +846,7 @@ static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|||
struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
|
||||
struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_WARM_NODE);
|
||||
struct f2fs_nm_info *nm_i = NM_I(sbi);
|
||||
unsigned long orphan_num = sbi->im[ORPHAN_INO].ino_num;
|
||||
nid_t last_nid = nm_i->next_scan_nid;
|
||||
block_t start_blk;
|
||||
struct page *cp_page;
|
||||
|
@ -895,7 +906,7 @@ static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|||
else
|
||||
clear_ckpt_flags(ckpt, CP_COMPACT_SUM_FLAG);
|
||||
|
||||
orphan_blocks = GET_ORPHAN_BLOCKS(sbi->ino_num[ORPHAN_INO]);
|
||||
orphan_blocks = GET_ORPHAN_BLOCKS(orphan_num);
|
||||
ckpt->cp_pack_start_sum = cpu_to_le32(1 + cp_payload_blks +
|
||||
orphan_blocks);
|
||||
|
||||
|
@ -911,7 +922,7 @@ static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|||
orphan_blocks);
|
||||
}
|
||||
|
||||
if (sbi->ino_num[ORPHAN_INO])
|
||||
if (orphan_num)
|
||||
set_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
||||
else
|
||||
clear_ckpt_flags(ckpt, CP_ORPHAN_PRESENT_FLAG);
|
||||
|
@ -946,7 +957,7 @@ static void do_checkpoint(struct f2fs_sb_info *sbi, struct cp_control *cpc)
|
|||
f2fs_put_page(cp_page, 1);
|
||||
}
|
||||
|
||||
if (sbi->ino_num[ORPHAN_INO]) {
|
||||
if (orphan_num) {
|
||||
write_orphan_inodes(sbi, start_blk);
|
||||
start_blk += orphan_blocks;
|
||||
}
|
||||
|
@ -1045,10 +1056,12 @@ void init_ino_entry_info(struct f2fs_sb_info *sbi)
|
|||
int i;
|
||||
|
||||
for (i = 0; i < MAX_INO_ENTRY; i++) {
|
||||
INIT_RADIX_TREE(&sbi->ino_root[i], GFP_ATOMIC);
|
||||
spin_lock_init(&sbi->ino_lock[i]);
|
||||
INIT_LIST_HEAD(&sbi->ino_list[i]);
|
||||
sbi->ino_num[i] = 0;
|
||||
struct inode_management *im = &sbi->im[i];
|
||||
|
||||
INIT_RADIX_TREE(&im->ino_root, GFP_ATOMIC);
|
||||
spin_lock_init(&im->ino_lock);
|
||||
INIT_LIST_HEAD(&im->ino_list);
|
||||
im->ino_num = 0;
|
||||
}
|
||||
|
||||
/*
|
||||
|
|
|
@ -171,7 +171,7 @@ static void update_mem_info(struct f2fs_sb_info *sbi)
|
|||
si->cache_mem += npages << PAGE_CACHE_SHIFT;
|
||||
si->cache_mem += sbi->n_dirty_dirs * sizeof(struct dir_inode_entry);
|
||||
for (i = 0; i <= UPDATE_INO; i++)
|
||||
si->cache_mem += sbi->ino_num[i] * sizeof(struct ino_entry);
|
||||
si->cache_mem += sbi->im[i].ino_num * sizeof(struct ino_entry);
|
||||
}
|
||||
|
||||
static int stat_show(struct seq_file *s, void *v)
|
||||
|
|
|
@ -499,6 +499,14 @@ struct f2fs_bio_info {
|
|||
struct rw_semaphore io_rwsem; /* blocking op for bio */
|
||||
};
|
||||
|
||||
/* for inner inode cache management */
|
||||
struct inode_management {
|
||||
struct radix_tree_root ino_root; /* ino entry array */
|
||||
spinlock_t ino_lock; /* for ino entry lock */
|
||||
struct list_head ino_list; /* inode list head */
|
||||
unsigned long ino_num; /* number of entries */
|
||||
};
|
||||
|
||||
struct f2fs_sb_info {
|
||||
struct super_block *sb; /* pointer to VFS super block */
|
||||
struct proc_dir_entry *s_proc; /* proc entry */
|
||||
|
@ -528,11 +536,7 @@ struct f2fs_sb_info {
|
|||
bool por_doing; /* recovery is doing or not */
|
||||
wait_queue_head_t cp_wait;
|
||||
|
||||
/* for inode management */
|
||||
struct radix_tree_root ino_root[MAX_INO_ENTRY]; /* ino entry array */
|
||||
spinlock_t ino_lock[MAX_INO_ENTRY]; /* for ino entry lock */
|
||||
struct list_head ino_list[MAX_INO_ENTRY]; /* inode list head */
|
||||
unsigned long ino_num[MAX_INO_ENTRY]; /* number of entries */
|
||||
struct inode_management im[MAX_INO_ENTRY]; /* manage inode cache */
|
||||
|
||||
/* for orphan inode, use 0'th array */
|
||||
unsigned int max_orphans; /* max orphan inodes */
|
||||
|
|
|
@ -60,8 +60,8 @@ bool available_free_memory(struct f2fs_sb_info *sbi, int type)
|
|||
if (sbi->sb->s_bdi->dirty_exceeded)
|
||||
return false;
|
||||
for (i = 0; i <= UPDATE_INO; i++)
|
||||
mem_size += (sbi->ino_num[i] * sizeof(struct ino_entry))
|
||||
>> PAGE_CACHE_SHIFT;
|
||||
mem_size += (sbi->im[i].ino_num *
|
||||
sizeof(struct ino_entry)) >> PAGE_CACHE_SHIFT;
|
||||
res = mem_size < ((avail_ram * nm_i->ram_thresh / 100) >> 1);
|
||||
}
|
||||
return res;
|
||||
|
|
Loading…
Reference in New Issue