diff --git a/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c b/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c index cd7feb1b25f6..a2921ace4045 100644 --- a/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c +++ b/drivers/gpu/drm/nouveau/nvkm/subdev/instmem/gk20a.c @@ -23,35 +23,42 @@ /* * GK20A does not have dedicated video memory, and to accurately represent this * fact Nouveau will not create a RAM device for it. Therefore its instmem - * implementation must be done directly on top of system memory, while providing - * coherent read and write operations. + * implementation must be done directly on top of system memory, while + * preserving coherency for read and write operations. * * Instmem can be allocated through two means: - * 1) If an IOMMU mapping has been probed, the IOMMU API is used to make memory + * 1) If an IOMMU unit has been probed, the IOMMU API is used to make memory * pages contiguous to the GPU. This is the preferred way. - * 2) If no IOMMU mapping is probed, the DMA API is used to allocate physically + * 2) If no IOMMU unit is probed, the DMA API is used to allocate physically * contiguous memory. * - * In both cases CPU read and writes are performed using PRAMIN (i.e. using the - * GPU path) to ensure these operations are coherent for the GPU. This allows us - * to use more "relaxed" allocation parameters when using the DMA API, since we - * never need a kernel mapping. + * In both cases CPU read and writes are performed by creating a write-combined + * mapping. The GPU L2 cache must thus be flushed/invalidated when required. To + * be conservative we do this every time we acquire or release an instobj, but + * ideally L2 management should be handled at a higher level. + * + * To improve performance, CPU mappings are not removed upon instobj release. + * Instead they are placed into a LRU list to be recycled when the mapped space + * goes beyond a certain threshold. At the moment this limit is 1MB. */ -#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) #include "priv.h" #include #include #include #include - -#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) +#include struct gk20a_instobj { struct nvkm_memory memory; - struct gk20a_instmem *imem; struct nvkm_mem mem; + struct gk20a_instmem *imem; + + /* CPU mapping */ + u32 *vaddr; + struct list_head vaddr_node; }; +#define gk20a_instobj(p) container_of((p), struct gk20a_instobj, memory) /* * Used for objects allocated using the DMA API @@ -59,10 +66,12 @@ struct gk20a_instobj { struct gk20a_instobj_dma { struct gk20a_instobj base; - void *cpuaddr; + u32 *cpuaddr; dma_addr_t handle; struct nvkm_mm_node r; }; +#define gk20a_instobj_dma(p) \ + container_of(gk20a_instobj(p), struct gk20a_instobj_dma, base) /* * Used for objects flattened using the IOMMU API @@ -70,15 +79,24 @@ struct gk20a_instobj_dma { struct gk20a_instobj_iommu { struct gk20a_instobj base; - /* array of base.mem->size pages */ + /* will point to the higher half of pages */ + dma_addr_t *dma_addrs; + /* array of base.mem->size pages (+ dma_addr_ts) */ struct page *pages[]; }; +#define gk20a_instobj_iommu(p) \ + container_of(gk20a_instobj(p), struct gk20a_instobj_iommu, base) struct gk20a_instmem { struct nvkm_instmem base; - unsigned long lock_flags; + + /* protects vaddr_* and gk20a_instobj::vaddr* */ spinlock_t lock; - u64 addr; + + /* CPU mappings LRU */ + unsigned int vaddr_use; + unsigned int vaddr_max; + struct list_head vaddr_lru; /* Only used if IOMMU if present */ struct mutex *mm_mutex; @@ -88,7 +106,10 @@ struct gk20a_instmem { /* Only used by DMA API */ struct dma_attrs attrs; + + void __iomem * (*cpu_map)(struct nvkm_memory *); }; +#define gk20a_instmem(p) container_of((p), struct gk20a_instmem, base) static enum nvkm_memory_target gk20a_instobj_target(struct nvkm_memory *memory) @@ -100,7 +121,6 @@ static u64 gk20a_instobj_addr(struct nvkm_memory *memory) { return gk20a_instobj(memory)->mem.offset; - } static u64 @@ -109,108 +129,218 @@ gk20a_instobj_size(struct nvkm_memory *memory) return (u64)gk20a_instobj(memory)->mem.size << 12; } +static void __iomem * +gk20a_instobj_cpu_map_dma(struct nvkm_memory *memory) +{ + struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); + struct device *dev = node->base.imem->base.subdev.device->dev; + int npages = nvkm_memory_size(memory) >> 12; + struct page *pages[npages]; + int i; + + /* phys_to_page does not exist on all platforms... */ + pages[0] = pfn_to_page(dma_to_phys(dev, node->handle) >> PAGE_SHIFT); + for (i = 1; i < npages; i++) + pages[i] = pages[0] + i; + + return vmap(pages, npages, VM_MAP, pgprot_writecombine(PAGE_KERNEL)); +} + +static void __iomem * +gk20a_instobj_cpu_map_iommu(struct nvkm_memory *memory) +{ + struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); + int npages = nvkm_memory_size(memory) >> 12; + + return vmap(node->pages, npages, VM_MAP, + pgprot_writecombine(PAGE_KERNEL)); +} + +/* + * Must be called while holding gk20a_instmem_lock + */ +static void +gk20a_instmem_vaddr_gc(struct gk20a_instmem *imem, const u64 size) +{ + while (imem->vaddr_use + size > imem->vaddr_max) { + struct gk20a_instobj *obj; + + /* no candidate that can be unmapped, abort... */ + if (list_empty(&imem->vaddr_lru)) + break; + + obj = list_first_entry(&imem->vaddr_lru, struct gk20a_instobj, + vaddr_node); + list_del(&obj->vaddr_node); + vunmap(obj->vaddr); + obj->vaddr = NULL; + imem->vaddr_use -= nvkm_memory_size(&obj->memory); + nvkm_debug(&imem->base.subdev, "(GC) vaddr used: %x/%x\n", + imem->vaddr_use, imem->vaddr_max); + + } +} + static void __iomem * gk20a_instobj_acquire(struct nvkm_memory *memory) { - struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; + struct gk20a_instobj *node = gk20a_instobj(memory); + struct gk20a_instmem *imem = node->imem; + struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; + const u64 size = nvkm_memory_size(memory); unsigned long flags; + + nvkm_ltc_flush(ltc); + spin_lock_irqsave(&imem->lock, flags); - imem->lock_flags = flags; - return NULL; + + if (node->vaddr) { + /* remove us from the LRU list since we cannot be unmapped */ + list_del(&node->vaddr_node); + + goto out; + } + + /* try to free some address space if we reached the limit */ + gk20a_instmem_vaddr_gc(imem, size); + + node->vaddr = imem->cpu_map(memory); + + if (!node->vaddr) { + nvkm_error(&imem->base.subdev, "cannot map instobj - " + "this is not going to end well...\n"); + goto out; + } + + imem->vaddr_use += size; + nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", + imem->vaddr_use, imem->vaddr_max); + +out: + spin_unlock_irqrestore(&imem->lock, flags); + + return node->vaddr; } static void gk20a_instobj_release(struct nvkm_memory *memory) { - struct gk20a_instmem *imem = gk20a_instobj(memory)->imem; - spin_unlock_irqrestore(&imem->lock, imem->lock_flags); -} + struct gk20a_instobj *node = gk20a_instobj(memory); + struct gk20a_instmem *imem = node->imem; + struct nvkm_ltc *ltc = imem->base.subdev.device->ltc; + unsigned long flags; -/* - * Use PRAMIN to read/write data and avoid coherency issues. - * PRAMIN uses the GPU path and ensures data will always be coherent. - * - * A dynamic mapping based solution would be desirable in the future, but - * the issue remains of how to maintain coherency efficiently. On ARM it is - * not easy (if possible at all?) to create uncached temporary mappings. - */ + spin_lock_irqsave(&imem->lock, flags); + + /* add ourselves to the LRU list so our CPU mapping can be freed */ + list_add_tail(&node->vaddr_node, &imem->vaddr_lru); + + spin_unlock_irqrestore(&imem->lock, flags); + + wmb(); + nvkm_ltc_invalidate(ltc); +} static u32 gk20a_instobj_rd32(struct nvkm_memory *memory, u64 offset) { struct gk20a_instobj *node = gk20a_instobj(memory); - struct gk20a_instmem *imem = node->imem; - struct nvkm_device *device = imem->base.subdev.device; - u64 base = (node->mem.offset + offset) & 0xffffff00000ULL; - u64 addr = (node->mem.offset + offset) & 0x000000fffffULL; - u32 data; - if (unlikely(imem->addr != base)) { - nvkm_wr32(device, 0x001700, base >> 16); - imem->addr = base; - } - data = nvkm_rd32(device, 0x700000 + addr); - return data; + return node->vaddr[offset / 4]; } static void gk20a_instobj_wr32(struct nvkm_memory *memory, u64 offset, u32 data) { struct gk20a_instobj *node = gk20a_instobj(memory); - struct gk20a_instmem *imem = node->imem; - struct nvkm_device *device = imem->base.subdev.device; - u64 base = (node->mem.offset + offset) & 0xffffff00000ULL; - u64 addr = (node->mem.offset + offset) & 0x000000fffffULL; - if (unlikely(imem->addr != base)) { - nvkm_wr32(device, 0x001700, base >> 16); - imem->addr = base; - } - nvkm_wr32(device, 0x700000 + addr, data); + node->vaddr[offset / 4] = data; } static void gk20a_instobj_map(struct nvkm_memory *memory, struct nvkm_vma *vma, u64 offset) { struct gk20a_instobj *node = gk20a_instobj(memory); + nvkm_vm_map_at(vma, offset, &node->mem); } +/* + * Clear the CPU mapping of an instobj if it exists + */ static void -gk20a_instobj_dtor_dma(struct gk20a_instobj *_node) +gk20a_instobj_dtor(struct gk20a_instobj *node) { - struct gk20a_instobj_dma *node = (void *)_node; - struct gk20a_instmem *imem = _node->imem; - struct device *dev = imem->base.subdev.device->dev; + struct gk20a_instmem *imem = node->imem; + struct gk20a_instobj *obj; + unsigned long flags; - if (unlikely(!node->cpuaddr)) - return; + spin_lock_irqsave(&imem->lock, flags); - dma_free_attrs(dev, _node->mem.size << PAGE_SHIFT, node->cpuaddr, - node->handle, &imem->attrs); + if (!node->vaddr) + goto out; + + list_for_each_entry(obj, &imem->vaddr_lru, vaddr_node) { + if (obj == node) { + list_del(&obj->vaddr_node); + break; + } + } + vunmap(node->vaddr); + node->vaddr = NULL; + imem->vaddr_use -= nvkm_memory_size(&node->memory); + nvkm_debug(&imem->base.subdev, "vaddr used: %x/%x\n", + imem->vaddr_use, imem->vaddr_max); + +out: + spin_unlock_irqrestore(&imem->lock, flags); } -static void -gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node) +static void * +gk20a_instobj_dtor_dma(struct nvkm_memory *memory) { - struct gk20a_instobj_iommu *node = (void *)_node; - struct gk20a_instmem *imem = _node->imem; + struct gk20a_instobj_dma *node = gk20a_instobj_dma(memory); + struct gk20a_instmem *imem = node->base.imem; + struct device *dev = imem->base.subdev.device->dev; + + gk20a_instobj_dtor(&node->base); + + if (unlikely(!node->cpuaddr)) + goto out; + + dma_free_attrs(dev, node->base.mem.size << PAGE_SHIFT, node->cpuaddr, + node->handle, &imem->attrs); + +out: + return node; +} + +static void * +gk20a_instobj_dtor_iommu(struct nvkm_memory *memory) +{ + struct gk20a_instobj_iommu *node = gk20a_instobj_iommu(memory); + struct gk20a_instmem *imem = node->base.imem; + struct device *dev = imem->base.subdev.device->dev; struct nvkm_mm_node *r; int i; - if (unlikely(list_empty(&_node->mem.regions))) - return; + gk20a_instobj_dtor(&node->base); - r = list_first_entry(&_node->mem.regions, struct nvkm_mm_node, + if (unlikely(list_empty(&node->base.mem.regions))) + goto out; + + r = list_first_entry(&node->base.mem.regions, struct nvkm_mm_node, rl_entry); /* clear bit 34 to unmap pages */ r->offset &= ~BIT(34 - imem->iommu_pgshift); /* Unmap pages from GPU address space and free them */ - for (i = 0; i < _node->mem.size; i++) { + for (i = 0; i < node->base.mem.size; i++) { iommu_unmap(imem->domain, (r->offset + i) << imem->iommu_pgshift, PAGE_SIZE); + dma_unmap_page(dev, node->dma_addrs[i], PAGE_SIZE, + DMA_BIDIRECTIONAL); __free_page(node->pages[i]); } @@ -218,25 +348,27 @@ gk20a_instobj_dtor_iommu(struct gk20a_instobj *_node) mutex_lock(imem->mm_mutex); nvkm_mm_free(imem->mm, &r); mutex_unlock(imem->mm_mutex); -} - -static void * -gk20a_instobj_dtor(struct nvkm_memory *memory) -{ - struct gk20a_instobj *node = gk20a_instobj(memory); - struct gk20a_instmem *imem = node->imem; - - if (imem->domain) - gk20a_instobj_dtor_iommu(node); - else - gk20a_instobj_dtor_dma(node); +out: return node; } static const struct nvkm_memory_func -gk20a_instobj_func = { - .dtor = gk20a_instobj_dtor, +gk20a_instobj_func_dma = { + .dtor = gk20a_instobj_dtor_dma, + .target = gk20a_instobj_target, + .addr = gk20a_instobj_addr, + .size = gk20a_instobj_size, + .acquire = gk20a_instobj_acquire, + .release = gk20a_instobj_release, + .rd32 = gk20a_instobj_rd32, + .wr32 = gk20a_instobj_wr32, + .map = gk20a_instobj_map, +}; + +static const struct nvkm_memory_func +gk20a_instobj_func_iommu = { + .dtor = gk20a_instobj_dtor_iommu, .target = gk20a_instobj_target, .addr = gk20a_instobj_addr, .size = gk20a_instobj_size, @@ -259,6 +391,8 @@ gk20a_instobj_ctor_dma(struct gk20a_instmem *imem, u32 npages, u32 align, return -ENOMEM; *_node = &node->base; + nvkm_memory_ctor(&gk20a_instobj_func_dma, &node->base.memory); + node->cpuaddr = dma_alloc_attrs(dev, npages << PAGE_SHIFT, &node->handle, GFP_KERNEL, &imem->attrs); @@ -292,24 +426,40 @@ gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, { struct gk20a_instobj_iommu *node; struct nvkm_subdev *subdev = &imem->base.subdev; + struct device *dev = subdev->device->dev; struct nvkm_mm_node *r; int ret; int i; - if (!(node = kzalloc(sizeof(*node) + - sizeof( node->pages[0]) * npages, GFP_KERNEL))) + /* + * despite their variable size, instmem allocations are small enough + * (< 1 page) to be handled by kzalloc + */ + if (!(node = kzalloc(sizeof(*node) + ((sizeof(node->pages[0]) + + sizeof(*node->dma_addrs)) * npages), GFP_KERNEL))) return -ENOMEM; *_node = &node->base; + node->dma_addrs = (void *)(node->pages + npages); + + nvkm_memory_ctor(&gk20a_instobj_func_iommu, &node->base.memory); /* Allocate backing memory */ for (i = 0; i < npages; i++) { struct page *p = alloc_page(GFP_KERNEL); + dma_addr_t dma_adr; if (p == NULL) { ret = -ENOMEM; goto free_pages; } node->pages[i] = p; + dma_adr = dma_map_page(dev, p, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); + if (dma_mapping_error(dev, dma_adr)) { + nvkm_error(subdev, "DMA mapping error!\n"); + ret = -ENOMEM; + goto free_pages; + } + node->dma_addrs[i] = dma_adr; } mutex_lock(imem->mm_mutex); @@ -318,16 +468,15 @@ gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, align >> imem->iommu_pgshift, &r); mutex_unlock(imem->mm_mutex); if (ret) { - nvkm_error(subdev, "virtual space is full!\n"); + nvkm_error(subdev, "IOMMU space is full!\n"); goto free_pages; } /* Map into GPU address space */ for (i = 0; i < npages; i++) { - struct page *p = node->pages[i]; u32 offset = (r->offset + i) << imem->iommu_pgshift; - ret = iommu_map(imem->domain, offset, page_to_phys(p), + ret = iommu_map(imem->domain, offset, node->dma_addrs[i], PAGE_SIZE, IOMMU_READ | IOMMU_WRITE); if (ret < 0) { nvkm_error(subdev, "IOMMU mapping failure: %d\n", ret); @@ -356,8 +505,13 @@ gk20a_instobj_ctor_iommu(struct gk20a_instmem *imem, u32 npages, u32 align, mutex_unlock(imem->mm_mutex); free_pages: - for (i = 0; i < npages && node->pages[i] != NULL; i++) + for (i = 0; i < npages && node->pages[i] != NULL; i++) { + dma_addr_t dma_addr = node->dma_addrs[i]; + if (dma_addr) + dma_unmap_page(dev, dma_addr, PAGE_SIZE, + DMA_BIDIRECTIONAL); __free_page(node->pages[i]); + } return ret; } @@ -367,8 +521,8 @@ gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, struct nvkm_memory **pmemory) { struct gk20a_instmem *imem = gk20a_instmem(base); - struct gk20a_instobj *node = NULL; struct nvkm_subdev *subdev = &imem->base.subdev; + struct gk20a_instobj *node = NULL; int ret; nvkm_debug(subdev, "%s (%s): size: %x align: %x\n", __func__, @@ -388,7 +542,6 @@ gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, if (ret) return ret; - nvkm_memory_ctor(&gk20a_instobj_func, &node->memory); node->imem = imem; /* present memory for being mapped using small pages */ @@ -402,15 +555,25 @@ gk20a_instobj_new(struct nvkm_instmem *base, u32 size, u32 align, bool zero, return 0; } -static void -gk20a_instmem_fini(struct nvkm_instmem *base) +static void * +gk20a_instmem_dtor(struct nvkm_instmem *base) { - gk20a_instmem(base)->addr = ~0ULL; + struct gk20a_instmem *imem = gk20a_instmem(base); + + /* perform some sanity checks... */ + if (!list_empty(&imem->vaddr_lru)) + nvkm_warn(&base->subdev, "instobj LRU not empty!\n"); + + if (imem->vaddr_use != 0) + nvkm_warn(&base->subdev, "instobj vmap area not empty! " + "0x%x bytes still mapped\n", imem->vaddr_use); + + return imem; } static const struct nvkm_instmem_func gk20a_instmem = { - .fini = gk20a_instmem_fini, + .dtor = gk20a_instmem_dtor, .memory_new = gk20a_instobj_new, .persistent = true, .zero = false, @@ -429,23 +592,27 @@ gk20a_instmem_new(struct nvkm_device *device, int index, spin_lock_init(&imem->lock); *pimem = &imem->base; + /* do not allow more than 1MB of CPU-mapped instmem */ + imem->vaddr_use = 0; + imem->vaddr_max = 0x100000; + INIT_LIST_HEAD(&imem->vaddr_lru); + if (tdev->iommu.domain) { - imem->domain = tdev->iommu.domain; - imem->mm = &tdev->iommu.mm; - imem->iommu_pgshift = tdev->iommu.pgshift; imem->mm_mutex = &tdev->iommu.mutex; + imem->mm = &tdev->iommu.mm; + imem->domain = tdev->iommu.domain; + imem->iommu_pgshift = tdev->iommu.pgshift; + imem->cpu_map = gk20a_instobj_cpu_map_iommu; nvkm_info(&imem->base.subdev, "using IOMMU\n"); } else { init_dma_attrs(&imem->attrs); - /* - * We will access instmem through PRAMIN and thus do not need a - * consistent CPU pointer or kernel mapping - */ + /* We will access the memory through our own mapping */ dma_set_attr(DMA_ATTR_NON_CONSISTENT, &imem->attrs); dma_set_attr(DMA_ATTR_WEAK_ORDERING, &imem->attrs); dma_set_attr(DMA_ATTR_WRITE_COMBINE, &imem->attrs); dma_set_attr(DMA_ATTR_NO_KERNEL_MAPPING, &imem->attrs); + imem->cpu_map = gk20a_instobj_cpu_map_dma; nvkm_info(&imem->base.subdev, "using DMA API\n"); }