drm/nouveau/clk/gk20a: improve MNP programming

Split the MNP programming function into two functions for the cases
where we allow sliding or not, instead of making it take a parameter for
this. This results in less conditionals in the code and makes it easier
to read.

Also make the MNP programming functions take the PLL parameters as
arguments, and move bits of code to more relevant places (previous
programming tended to be just-in-time, which added more conditionnals in
the code).

Signed-off-by: Alexandre Courbot <acourbot@nvidia.com>
Signed-off-by: Ben Skeggs <bskeggs@redhat.com>
This commit is contained in:
Alexandre Courbot 2016-06-01 17:39:27 +09:00 committed by Ben Skeggs
parent afea21c917
commit 6ed7e74219
1 changed files with 103 additions and 96 deletions

View File

@ -72,6 +72,7 @@
#define GPC2CLK_OUT_VCODIV_WIDTH 6
#define GPC2CLK_OUT_VCODIV_SHIFT 8
#define GPC2CLK_OUT_VCODIV1 0
#define GPC2CLK_OUT_VCODIV2 2
#define GPC2CLK_OUT_VCODIV_MASK (MASK(GPC2CLK_OUT_VCODIV_WIDTH) << \
GPC2CLK_OUT_VCODIV_SHIFT)
#define GPC2CLK_OUT_BYPDIV_WIDTH 6
@ -322,13 +323,42 @@ gk20a_pllg_slide(struct gk20a_clk *clk, u32 n)
return ret;
}
static void
static bool
gk20a_pllg_is_enabled(struct gk20a_clk *clk)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 val;
val = nvkm_rd32(device, GPCPLL_CFG);
return val & GPCPLL_CFG_ENABLE;
}
static int
gk20a_pllg_enable(struct gk20a_clk *clk)
{
struct nvkm_device *device = clk->base.subdev.device;
u32 val;
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, GPCPLL_CFG_ENABLE);
nvkm_rd32(device, GPCPLL_CFG);
/* enable lock detection */
val = nvkm_rd32(device, GPCPLL_CFG);
if (val & GPCPLL_CFG_LOCK_DET_OFF) {
val &= ~GPCPLL_CFG_LOCK_DET_OFF;
nvkm_wr32(device, GPCPLL_CFG, val);
}
/* wait for lock */
if (nvkm_wait_usec(device, 300, GPCPLL_CFG, GPCPLL_CFG_LOCK,
GPCPLL_CFG_LOCK) < 0)
return -ETIMEDOUT;
/* switch to VCO mode */
nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
return 0;
}
static void
@ -336,112 +366,81 @@ gk20a_pllg_disable(struct gk20a_clk *clk)
{
struct nvkm_device *device = clk->base.subdev.device;
/* put PLL in bypass before disabling it */
nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_ENABLE, 0);
nvkm_rd32(device, GPCPLL_CFG);
}
static int
_gk20a_pllg_program_mnp(struct gk20a_clk *clk, struct gk20a_pll *pll,
bool allow_slide)
gk20a_pllg_program_mnp(struct gk20a_clk *clk, const struct gk20a_pll *pll)
{
struct nvkm_subdev *subdev = &clk->base.subdev;
struct nvkm_device *device = subdev->device;
u32 val, cfg;
struct gk20a_pll old_pll;
struct gk20a_pll cur_pll;
int ret;
/* get old coefficients */
gk20a_pllg_read_mnp(clk, &old_pll);
gk20a_pllg_read_mnp(clk, &cur_pll);
/* do NDIV slide if there is no change in M and PL */
cfg = nvkm_rd32(device, GPCPLL_CFG);
if (allow_slide && pll->m == old_pll.m &&
pll->pl == old_pll.pl && (cfg & GPCPLL_CFG_ENABLE)) {
return gk20a_pllg_slide(clk, pll->n);
}
/* split VCO-to-bypass jump in half by setting out divider 1:2 */
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
/* Intentional 2nd write to assure linear divider operation */
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
GPC2CLK_OUT_VCODIV2 << GPC2CLK_OUT_VCODIV_SHIFT);
nvkm_rd32(device, GPC2CLK_OUT);
udelay(2);
/* slide down to NDIV_LO */
if (allow_slide && (cfg & GPCPLL_CFG_ENABLE)) {
int ret;
gk20a_pllg_disable(clk);
ret = gk20a_pllg_slide(clk, gk20a_pllg_n_lo(clk, &old_pll));
gk20a_pllg_write_mnp(clk, pll);
ret = gk20a_pllg_enable(clk);
if (ret)
return ret;
/* restore out divider 1:1 */
udelay(2);
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
/* Intentional 2nd write to assure linear divider operation */
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT);
nvkm_rd32(device, GPC2CLK_OUT);
return 0;
}
static int
gk20a_pllg_program_mnp_slide(struct gk20a_clk *clk, const struct gk20a_pll *pll)
{
struct gk20a_pll cur_pll;
int ret;
if (gk20a_pllg_is_enabled(clk)) {
gk20a_pllg_read_mnp(clk, &cur_pll);
/* just do NDIV slide if there is no change to M and PL */
if (pll->m == cur_pll.m && pll->pl == cur_pll.pl)
return gk20a_pllg_slide(clk, pll->n);
/* slide down to current NDIV_LO */
cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
ret = gk20a_pllg_slide(clk, cur_pll.n);
if (ret)
return ret;
}
/* split FO-to-bypass jump in halfs by setting out divider 1:2 */
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_VCODIV_MASK,
0x2 << GPC2CLK_OUT_VCODIV_SHIFT);
/* put PLL in bypass before programming it */
val = nvkm_rd32(device, SEL_VCO);
val &= ~(BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
udelay(2);
nvkm_wr32(device, SEL_VCO, val);
/* get out from IDDQ */
val = nvkm_rd32(device, GPCPLL_CFG);
if (val & GPCPLL_CFG_IDDQ) {
val &= ~GPCPLL_CFG_IDDQ;
nvkm_wr32(device, GPCPLL_CFG, val);
nvkm_rd32(device, GPCPLL_CFG);
udelay(2);
}
gk20a_pllg_disable(clk);
nvkm_debug(subdev, "%s: m=%d n=%d pl=%d\n", __func__,
pll->m, pll->n, pll->pl);
old_pll = *pll;
if (allow_slide)
old_pll.n = gk20a_pllg_n_lo(clk, pll);
gk20a_pllg_write_mnp(clk, &old_pll);
gk20a_pllg_enable(clk);
val = nvkm_rd32(device, GPCPLL_CFG);
if (val & GPCPLL_CFG_LOCK_DET_OFF) {
val &= ~GPCPLL_CFG_LOCK_DET_OFF;
nvkm_wr32(device, GPCPLL_CFG, val);
}
if (nvkm_usec(device, 300,
if (nvkm_rd32(device, GPCPLL_CFG) & GPCPLL_CFG_LOCK)
break;
) < 0)
return -ETIMEDOUT;
/* switch to VCO mode */
nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT),
BIT(SEL_VCO_GPC2CLK_OUT_SHIFT));
/* restore out divider 1:1 */
val = nvkm_rd32(device, GPC2CLK_OUT);
if ((val & GPC2CLK_OUT_VCODIV_MASK) !=
(GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT)) {
val &= ~GPC2CLK_OUT_VCODIV_MASK;
val |= GPC2CLK_OUT_VCODIV1 << GPC2CLK_OUT_VCODIV_SHIFT;
udelay(2);
nvkm_wr32(device, GPC2CLK_OUT, val);
/* Intentional 2nd write to assure linear divider operation */
nvkm_wr32(device, GPC2CLK_OUT, val);
nvkm_rd32(device, GPC2CLK_OUT);
}
/* program MNP with the new clock parameters and new NDIV_LO */
cur_pll = *pll;
cur_pll.n = gk20a_pllg_n_lo(clk, &cur_pll);
ret = gk20a_pllg_program_mnp(clk, &cur_pll);
if (ret)
return ret;
/* slide up to new NDIV */
return allow_slide ? gk20a_pllg_slide(clk, pll->n) : 0;
}
static int
gk20a_pllg_program_mnp(struct gk20a_clk *clk)
{
int err;
err = _gk20a_pllg_program_mnp(clk, &clk->pll, true);
if (err)
err = _gk20a_pllg_program_mnp(clk, &clk->pll, false);
return err;
return gk20a_pllg_slide(clk, pll->n);
}
static struct nvkm_pstate
@ -571,8 +570,13 @@ int
gk20a_clk_prog(struct nvkm_clk *base)
{
struct gk20a_clk *clk = gk20a_clk(base);
int ret;
return gk20a_pllg_program_mnp(clk);
ret = gk20a_pllg_program_mnp_slide(clk, &clk->pll);
if (ret)
ret = gk20a_pllg_program_mnp(clk, &clk->pll);
return ret;
}
void
@ -621,11 +625,9 @@ gk20a_clk_fini(struct nvkm_clk *base)
{
struct nvkm_device *device = base->subdev.device;
struct gk20a_clk *clk = gk20a_clk(base);
u32 val;
/* slide to VCO min */
val = nvkm_rd32(device, GPCPLL_CFG);
if (val & GPCPLL_CFG_ENABLE) {
if (gk20a_pllg_is_enabled(clk)) {
struct gk20a_pll pll;
u32 n_lo;
@ -634,10 +636,10 @@ gk20a_clk_fini(struct nvkm_clk *base)
gk20a_pllg_slide(clk, n_lo);
}
/* put PLL in bypass before disabling it */
nvkm_mask(device, SEL_VCO, BIT(SEL_VCO_GPC2CLK_OUT_SHIFT), 0);
gk20a_pllg_disable(clk);
/* set IDDQ */
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 1);
}
static int
@ -648,6 +650,11 @@ gk20a_clk_init(struct nvkm_clk *base)
struct nvkm_device *device = subdev->device;
int ret;
/* get out from IDDQ */
nvkm_mask(device, GPCPLL_CFG, GPCPLL_CFG_IDDQ, 0);
nvkm_rd32(device, GPCPLL_CFG);
udelay(5);
nvkm_mask(device, GPC2CLK_OUT, GPC2CLK_OUT_INIT_MASK,
GPC2CLK_OUT_INIT_VAL);