mm: split deferred_init_range into initializing and freeing parts
In deferred_init_range() we initialize struct pages, and also free them to buddy allocator. We do it in separate loops, because buddy page is computed ahead, so we do not want to access a struct page that has not been initialized yet. There is still, however, a corner case where it is potentially possible to access uninitialized struct page: this is when buddy page is from the next memblock range. This patch fixes this problem by splitting deferred_init_range() into two functions: one to initialize struct pages, and another to free them. In addition, this patch brings the following improvements: - Get rid of __def_free() helper function. And simplifies loop logic by adding a new pfn validity check function: deferred_pfn_valid(). - Reduces number of variables that we track. So, there is a higher chance that we will avoid using stack to store/load variables inside hot loops. - Enables future multi-threading of these functions: do initialization in multiple threads, wait for all threads to finish, do freeing part in multithreading. Tested on x86 with 1T of memory to make sure no regressions are introduced. [akpm@linux-foundation.org: fix spello in comment] Link: http://lkml.kernel.org/r/20171107150446.32055-2-pasha.tatashin@oracle.com Signed-off-by: Pavel Tatashin <pasha.tatashin@oracle.com> Acked-by: Michal Hocko <mhocko@suse.com> Cc: Steven Sistare <steven.sistare@oracle.com> Cc: Daniel Jordan <daniel.m.jordan@oracle.com> Cc: Mel Gorman <mgorman@techsingularity.net> Signed-off-by: Andrew Morton <akpm@linux-foundation.org> Signed-off-by: Linus Torvalds <torvalds@linux-foundation.org>
This commit is contained in:
parent
9092c71bb7
commit
80b1f41c09
150
mm/page_alloc.c
150
mm/page_alloc.c
|
@ -1457,92 +1457,87 @@ static inline void __init pgdat_init_report_one_done(void)
|
|||
}
|
||||
|
||||
/*
|
||||
* Helper for deferred_init_range, free the given range, reset the counters, and
|
||||
* return number of pages freed.
|
||||
* Returns true if page needs to be initialized or freed to buddy allocator.
|
||||
*
|
||||
* First we check if pfn is valid on architectures where it is possible to have
|
||||
* holes within pageblock_nr_pages. On systems where it is not possible, this
|
||||
* function is optimized out.
|
||||
*
|
||||
* Then, we check if a current large page is valid by only checking the validity
|
||||
* of the head pfn.
|
||||
*
|
||||
* Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
|
||||
* within a node: a pfn is between start and end of a node, but does not belong
|
||||
* to this memory node.
|
||||
*/
|
||||
static inline unsigned long __init __def_free(unsigned long *nr_free,
|
||||
unsigned long *free_base_pfn,
|
||||
struct page **page)
|
||||
static inline bool __init
|
||||
deferred_pfn_valid(int nid, unsigned long pfn,
|
||||
struct mminit_pfnnid_cache *nid_init_state)
|
||||
{
|
||||
unsigned long nr = *nr_free;
|
||||
|
||||
deferred_free_range(*free_base_pfn, nr);
|
||||
*free_base_pfn = 0;
|
||||
*nr_free = 0;
|
||||
*page = NULL;
|
||||
|
||||
return nr;
|
||||
if (!pfn_valid_within(pfn))
|
||||
return false;
|
||||
if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
|
||||
return false;
|
||||
if (!meminit_pfn_in_nid(pfn, nid, nid_init_state))
|
||||
return false;
|
||||
return true;
|
||||
}
|
||||
|
||||
static unsigned long __init deferred_init_range(int nid, int zid,
|
||||
unsigned long start_pfn,
|
||||
unsigned long end_pfn)
|
||||
/*
|
||||
* Free pages to buddy allocator. Try to free aligned pages in
|
||||
* pageblock_nr_pages sizes.
|
||||
*/
|
||||
static void __init deferred_free_pages(int nid, int zid, unsigned long pfn,
|
||||
unsigned long end_pfn)
|
||||
{
|
||||
struct mminit_pfnnid_cache nid_init_state = { };
|
||||
unsigned long nr_pgmask = pageblock_nr_pages - 1;
|
||||
unsigned long free_base_pfn = 0;
|
||||
unsigned long nr_pages = 0;
|
||||
unsigned long nr_free = 0;
|
||||
struct page *page = NULL;
|
||||
unsigned long pfn;
|
||||
|
||||
/*
|
||||
* First we check if pfn is valid on architectures where it is possible
|
||||
* to have holes within pageblock_nr_pages. On systems where it is not
|
||||
* possible, this function is optimized out.
|
||||
*
|
||||
* Then, we check if a current large page is valid by only checking the
|
||||
* validity of the head pfn.
|
||||
*
|
||||
* meminit_pfn_in_nid is checked on systems where pfns can interleave
|
||||
* within a node: a pfn is between start and end of a node, but does not
|
||||
* belong to this memory node.
|
||||
*
|
||||
* Finally, we minimize pfn page lookups and scheduler checks by
|
||||
* performing it only once every pageblock_nr_pages.
|
||||
*
|
||||
* We do it in two loops: first we initialize struct page, than free to
|
||||
* buddy allocator, becuse while we are freeing pages we can access
|
||||
* pages that are ahead (computing buddy page in __free_one_page()).
|
||||
*/
|
||||
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
||||
if (!pfn_valid_within(pfn))
|
||||
continue;
|
||||
if ((pfn & nr_pgmask) || pfn_valid(pfn)) {
|
||||
if (meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
|
||||
if (page && (pfn & nr_pgmask))
|
||||
page++;
|
||||
else
|
||||
page = pfn_to_page(pfn);
|
||||
__init_single_page(page, pfn, zid, nid);
|
||||
cond_resched();
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
page = NULL;
|
||||
for (pfn = start_pfn; pfn < end_pfn; pfn++) {
|
||||
if (!pfn_valid_within(pfn)) {
|
||||
nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
|
||||
} else if (!(pfn & nr_pgmask) && !pfn_valid(pfn)) {
|
||||
nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
|
||||
} else if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
|
||||
nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
|
||||
} else if (page && (pfn & nr_pgmask)) {
|
||||
page++;
|
||||
nr_free++;
|
||||
} else {
|
||||
nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
|
||||
page = pfn_to_page(pfn);
|
||||
free_base_pfn = pfn;
|
||||
for (; pfn < end_pfn; pfn++) {
|
||||
if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
|
||||
deferred_free_range(pfn - nr_free, nr_free);
|
||||
nr_free = 0;
|
||||
} else if (!(pfn & nr_pgmask)) {
|
||||
deferred_free_range(pfn - nr_free, nr_free);
|
||||
nr_free = 1;
|
||||
cond_resched();
|
||||
} else {
|
||||
nr_free++;
|
||||
}
|
||||
}
|
||||
/* Free the last block of pages to allocator */
|
||||
nr_pages += __def_free(&nr_free, &free_base_pfn, &page);
|
||||
deferred_free_range(pfn - nr_free, nr_free);
|
||||
}
|
||||
|
||||
return nr_pages;
|
||||
/*
|
||||
* Initialize struct pages. We minimize pfn page lookups and scheduler checks
|
||||
* by performing it only once every pageblock_nr_pages.
|
||||
* Return number of pages initialized.
|
||||
*/
|
||||
static unsigned long __init deferred_init_pages(int nid, int zid,
|
||||
unsigned long pfn,
|
||||
unsigned long end_pfn)
|
||||
{
|
||||
struct mminit_pfnnid_cache nid_init_state = { };
|
||||
unsigned long nr_pgmask = pageblock_nr_pages - 1;
|
||||
unsigned long nr_pages = 0;
|
||||
struct page *page = NULL;
|
||||
|
||||
for (; pfn < end_pfn; pfn++) {
|
||||
if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) {
|
||||
page = NULL;
|
||||
continue;
|
||||
} else if (!page || !(pfn & nr_pgmask)) {
|
||||
page = pfn_to_page(pfn);
|
||||
cond_resched();
|
||||
} else {
|
||||
page++;
|
||||
}
|
||||
__init_single_page(page, pfn, zid, nid);
|
||||
nr_pages++;
|
||||
}
|
||||
return (nr_pages);
|
||||
}
|
||||
|
||||
/* Initialise remaining memory on a node */
|
||||
|
@ -1582,10 +1577,21 @@ static int __init deferred_init_memmap(void *data)
|
|||
}
|
||||
first_init_pfn = max(zone->zone_start_pfn, first_init_pfn);
|
||||
|
||||
/*
|
||||
* Initialize and free pages. We do it in two loops: first we initialize
|
||||
* struct page, than free to buddy allocator, because while we are
|
||||
* freeing pages we can access pages that are ahead (computing buddy
|
||||
* page in __free_one_page()).
|
||||
*/
|
||||
for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
|
||||
spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
|
||||
epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
|
||||
nr_pages += deferred_init_range(nid, zid, spfn, epfn);
|
||||
nr_pages += deferred_init_pages(nid, zid, spfn, epfn);
|
||||
}
|
||||
for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) {
|
||||
spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa));
|
||||
epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa));
|
||||
deferred_free_pages(nid, zid, spfn, epfn);
|
||||
}
|
||||
|
||||
/* Sanity check that the next zone really is unpopulated */
|
||||
|
|
Loading…
Reference in New Issue