Merge branch 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6

Pull crypto updates from Herbert Xu:
 "Here is the crypto update for 4.14:

  API:
   - Defer scompress scratch buffer allocation to first use.
   - Add __crypto_xor that takes separte src and dst operands.
   - Add ahash multiple registration interface.
   - Revamped aead/skcipher algif code to fix async IO properly.

  Drivers:
   - Add non-SIMD fallback code path on ARM for SVE.
   - Add AMD Security Processor framework for ccp.
   - Add support for RSA in ccp.
   - Add XTS-AES-256 support for CCP version 5.
   - Add support for PRNG in sun4i-ss.
   - Add support for DPAA2 in caam.
   - Add ARTPEC crypto support.
   - Add Freescale RNGC hwrng support.
   - Add Microchip / Atmel ECC driver.
   - Add support for STM32 HASH module"

* 'linus' of git://git.kernel.org/pub/scm/linux/kernel/git/herbert/crypto-2.6: (116 commits)
  crypto: af_alg - get_page upon reassignment to TX SGL
  crypto: cavium/nitrox - Fix an error handling path in 'nitrox_probe()'
  crypto: inside-secure - fix an error handling path in safexcel_probe()
  crypto: rockchip - Don't dequeue the request when device is busy
  crypto: cavium - add release_firmware to all return case
  crypto: sahara - constify platform_device_id
  MAINTAINERS: Add ARTPEC crypto maintainer
  crypto: axis - add ARTPEC-6/7 crypto accelerator driver
  crypto: hash - add crypto_(un)register_ahashes()
  dt-bindings: crypto: add ARTPEC crypto
  crypto: algif_aead - fix comment regarding memory layout
  crypto: ccp - use dma_mapping_error to check map error
  lib/mpi: fix build with clang
  crypto: sahara - Remove leftover from previous used spinlock
  crypto: sahara - Fix dma unmap direction
  crypto: af_alg - consolidation of duplicate code
  crypto: caam - Remove unused dentry members
  crypto: ccp - select CONFIG_CRYPTO_RSA
  crypto: ccp - avoid uninitialized variable warning
  crypto: serpent - improve __serpent_setkey with UBSAN
  ...
This commit is contained in:
Linus Torvalds 2017-09-06 15:17:17 -07:00
commit 80cee03bf1
136 changed files with 11778 additions and 3189 deletions

View File

@ -0,0 +1,16 @@
Axis crypto engine with PDMA interface.
Required properties:
- compatible : Should be one of the following strings:
"axis,artpec6-crypto" for the version in the Axis ARTPEC-6 SoC
"axis,artpec7-crypto" for the version in the Axis ARTPEC-7 SoC.
- reg: Base address and size for the PDMA register area.
- interrupts: Interrupt handle for the PDMA interrupt line.
Example:
crypto@f4264000 {
compatible = "axis,artpec6-crypto";
reg = <0xf4264000 0x1000>;
interrupts = <GIC_SPI 19 IRQ_TYPE_LEVEL_HIGH>;
};

View File

@ -66,3 +66,16 @@ sha@f8034000 {
dmas = <&dma1 2 17>;
dma-names = "tx";
};
* Eliptic Curve Cryptography (I2C)
Required properties:
- compatible : must be "atmel,atecc508a".
- reg: I2C bus address of the device.
- clock-frequency: must be present in the i2c controller node.
Example:
atecc508a@C0 {
compatible = "atmel,atecc508a";
reg = <0xC0>;
};

View File

@ -0,0 +1,30 @@
* STMicroelectronics STM32 HASH
Required properties:
- compatible: Should contain entries for this and backward compatible
HASH versions:
- "st,stm32f456-hash" for stm32 F456.
- "st,stm32f756-hash" for stm32 F756.
- reg: The address and length of the peripheral registers space
- interrupts: the interrupt specifier for the HASH
- clocks: The input clock of the HASH instance
Optional properties:
- resets: The input reset of the HASH instance
- dmas: DMA specifiers for the HASH. See the DMA client binding,
Documentation/devicetree/bindings/dma/dma.txt
- dma-names: DMA request name. Should be "in" if a dma is present.
- dma-maxburst: Set number of maximum dma burst supported
Example:
hash1: hash@50060400 {
compatible = "st,stm32f756-hash";
reg = <0x50060400 0x400>;
interrupts = <80>;
clocks = <&rcc 0 STM32F7_AHB2_CLOCK(HASH)>;
resets = <&rcc STM32F7_AHB2_RESET(HASH)>;
dmas = <&dma2 7 2 0x400 0x0>;
dma-names = "in";
dma-maxburst = <0>;
};

View File

@ -0,0 +1,21 @@
Freescale RNGC (Random Number Generator Version C)
The driver also supports version B, which is mostly compatible
to version C.
Required properties:
- compatible : should be one of
"fsl,imx25-rngb"
"fsl,imx35-rngc"
- reg : offset and length of the register set of this block
- interrupts : the interrupt number for the RNGC block
- clocks : the RNGC clk source
Example:
rng@53fb0000 {
compatible = "fsl,imx25-rngb";
reg = <0x53fb0000 0x4000>;
interrupts = <22>;
clocks = <&trng_clk>;
};

View File

@ -1162,6 +1162,7 @@ L: linux-arm-kernel@axis.com
F: arch/arm/mach-artpec
F: arch/arm/boot/dts/artpec6*
F: drivers/clk/axis
F: drivers/crypto/axis
F: drivers/pinctrl/pinctrl-artpec*
F: Documentation/devicetree/bindings/pinctrl/axis,artpec6-pinctrl.txt
@ -8770,6 +8771,12 @@ F: drivers/dma/at_hdmac.c
F: drivers/dma/at_hdmac_regs.h
F: include/linux/platform_data/dma-atmel.h
MICROCHIP / ATMEL ECC DRIVER
M: Tudor Ambarus <tudor.ambarus@microchip.com>
L: linux-crypto@vger.kernel.org
S: Maintained
F: drivers/crypto/atmel-ecc.*
MICROCHIP / ATMEL ISC DRIVER
M: Songjun Wu <songjun.wu@microchip.com>
L: linux-media@vger.kernel.org

View File

@ -94,14 +94,15 @@ config CRYPTO_AES_ARM_CE
ARMv8 Crypto Extensions
config CRYPTO_GHASH_ARM_CE
tristate "PMULL-accelerated GHASH using ARMv8 Crypto Extensions"
tristate "PMULL-accelerated GHASH using NEON/ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_CRYPTD
help
Use an implementation of GHASH (used by the GCM AEAD chaining mode)
that uses the 64x64 to 128 bit polynomial multiplication (vmull.p64)
that is part of the ARMv8 Crypto Extensions
that is part of the ARMv8 Crypto Extensions, or a slower variant that
uses the vmull.p8 instruction that is part of the basic NEON ISA.
config CRYPTO_CRCT10DIF_ARM_CE
tristate "CRCT10DIF digest algorithm using PMULL instructions"

View File

@ -285,9 +285,7 @@ static int ctr_encrypt(struct skcipher_request *req)
ce_aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc,
num_rounds(ctx), blocks, walk.iv);
if (tdst != tsrc)
memcpy(tdst, tsrc, nbytes);
crypto_xor(tdst, tail, nbytes);
crypto_xor_cpy(tdst, tsrc, tail, nbytes);
err = skcipher_walk_done(&walk, 0);
}
kernel_neon_end();

View File

@ -10,6 +10,7 @@
*/
#include <linux/linkage.h>
#include <asm/cache.h>
.text
.align 5
@ -32,19 +33,19 @@
.endif
.endm
.macro __load, out, in, idx
.macro __load, out, in, idx, sz, op
.if __LINUX_ARM_ARCH__ < 7 && \idx > 0
ldr \out, [ttab, \in, lsr #(8 * \idx) - 2]
ldr\op \out, [ttab, \in, lsr #(8 * \idx) - \sz]
.else
ldr \out, [ttab, \in, lsl #2]
ldr\op \out, [ttab, \in, lsl #\sz]
.endif
.endm
.macro __hround, out0, out1, in0, in1, in2, in3, t3, t4, enc
.macro __hround, out0, out1, in0, in1, in2, in3, t3, t4, enc, sz, op
__select \out0, \in0, 0
__select t0, \in1, 1
__load \out0, \out0, 0
__load t0, t0, 1
__load \out0, \out0, 0, \sz, \op
__load t0, t0, 1, \sz, \op
.if \enc
__select \out1, \in1, 0
@ -53,10 +54,10 @@
__select \out1, \in3, 0
__select t1, \in0, 1
.endif
__load \out1, \out1, 0
__load \out1, \out1, 0, \sz, \op
__select t2, \in2, 2
__load t1, t1, 1
__load t2, t2, 2
__load t1, t1, 1, \sz, \op
__load t2, t2, 2, \sz, \op
eor \out0, \out0, t0, ror #24
@ -68,9 +69,9 @@
__select \t3, \in1, 2
__select \t4, \in2, 3
.endif
__load \t3, \t3, 2
__load t0, t0, 3
__load \t4, \t4, 3
__load \t3, \t3, 2, \sz, \op
__load t0, t0, 3, \sz, \op
__load \t4, \t4, 3, \sz, \op
eor \out1, \out1, t1, ror #24
eor \out0, \out0, t2, ror #16
@ -82,14 +83,14 @@
eor \out1, \out1, t2
.endm
.macro fround, out0, out1, out2, out3, in0, in1, in2, in3
__hround \out0, \out1, \in0, \in1, \in2, \in3, \out2, \out3, 1
__hround \out2, \out3, \in2, \in3, \in0, \in1, \in1, \in2, 1
.macro fround, out0, out1, out2, out3, in0, in1, in2, in3, sz=2, op
__hround \out0, \out1, \in0, \in1, \in2, \in3, \out2, \out3, 1, \sz, \op
__hround \out2, \out3, \in2, \in3, \in0, \in1, \in1, \in2, 1, \sz, \op
.endm
.macro iround, out0, out1, out2, out3, in0, in1, in2, in3
__hround \out0, \out1, \in0, \in3, \in2, \in1, \out2, \out3, 0
__hround \out2, \out3, \in2, \in1, \in0, \in3, \in1, \in0, 0
.macro iround, out0, out1, out2, out3, in0, in1, in2, in3, sz=2, op
__hround \out0, \out1, \in0, \in3, \in2, \in1, \out2, \out3, 0, \sz, \op
__hround \out2, \out3, \in2, \in1, \in0, \in3, \in1, \in0, 0, \sz, \op
.endm
.macro __rev, out, in
@ -114,7 +115,7 @@
.endif
.endm
.macro do_crypt, round, ttab, ltab
.macro do_crypt, round, ttab, ltab, bsz
push {r3-r11, lr}
ldr r4, [in]
@ -146,9 +147,12 @@
1: subs rounds, rounds, #4
\round r8, r9, r10, r11, r4, r5, r6, r7
__adrl ttab, \ltab, ls
bls 2f
\round r4, r5, r6, r7, r8, r9, r10, r11
bhi 0b
b 0b
2: __adrl ttab, \ltab
\round r4, r5, r6, r7, r8, r9, r10, r11, \bsz, b
#ifdef CONFIG_CPU_BIG_ENDIAN
__rev r4, r4
@ -170,10 +174,48 @@
.ltorg
.endm
.align L1_CACHE_SHIFT
.type __aes_arm_inverse_sbox, %object
__aes_arm_inverse_sbox:
.byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38
.byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
.byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87
.byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
.byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d
.byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
.byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2
.byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
.byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16
.byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
.byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda
.byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
.byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a
.byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
.byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02
.byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
.byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea
.byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
.byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85
.byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
.byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89
.byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
.byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20
.byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
.byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31
.byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
.byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d
.byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
.byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0
.byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
.byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26
.byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
.size __aes_arm_inverse_sbox, . - __aes_arm_inverse_sbox
ENTRY(__aes_arm_encrypt)
do_crypt fround, crypto_ft_tab, crypto_fl_tab
do_crypt fround, crypto_ft_tab, crypto_ft_tab + 1, 2
ENDPROC(__aes_arm_encrypt)
.align 5
ENTRY(__aes_arm_decrypt)
do_crypt iround, crypto_it_tab, crypto_il_tab
do_crypt iround, crypto_it_tab, __aes_arm_inverse_sbox, 0
ENDPROC(__aes_arm_decrypt)

View File

@ -221,9 +221,8 @@ static int ctr_encrypt(struct skcipher_request *req)
u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
if (dst != src)
memcpy(dst, src, walk.total % AES_BLOCK_SIZE);
crypto_xor(dst, final, walk.total % AES_BLOCK_SIZE);
crypto_xor_cpy(dst, src, final,
walk.total % AES_BLOCK_SIZE);
err = skcipher_walk_done(&walk, 0);
break;

View File

@ -1,7 +1,7 @@
/*
* Accelerated GHASH implementation with ARMv8 vmull.p64 instructions.
* Accelerated GHASH implementation with NEON/ARMv8 vmull.p8/64 instructions.
*
* Copyright (C) 2015 Linaro Ltd. <ard.biesheuvel@linaro.org>
* Copyright (C) 2015 - 2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
@ -12,40 +12,162 @@
#include <asm/assembler.h>
SHASH .req q0
SHASH2 .req q1
T1 .req q2
T2 .req q3
MASK .req q4
XL .req q5
XM .req q6
XH .req q7
IN1 .req q7
T1 .req q1
XL .req q2
XM .req q3
XH .req q4
IN1 .req q4
SHASH_L .req d0
SHASH_H .req d1
SHASH2_L .req d2
T1_L .req d4
MASK_L .req d8
XL_L .req d10
XL_H .req d11
XM_L .req d12
XM_H .req d13
XH_L .req d14
T1_L .req d2
T1_H .req d3
XL_L .req d4
XL_H .req d5
XM_L .req d6
XM_H .req d7
XH_L .req d8
t0l .req d10
t0h .req d11
t1l .req d12
t1h .req d13
t2l .req d14
t2h .req d15
t3l .req d16
t3h .req d17
t4l .req d18
t4h .req d19
t0q .req q5
t1q .req q6
t2q .req q7
t3q .req q8
t4q .req q9
T2 .req q9
s1l .req d20
s1h .req d21
s2l .req d22
s2h .req d23
s3l .req d24
s3h .req d25
s4l .req d26
s4h .req d27
MASK .req d28
SHASH2_p8 .req d28
k16 .req d29
k32 .req d30
k48 .req d31
SHASH2_p64 .req d31
.text
.fpu crypto-neon-fp-armv8
.macro __pmull_p64, rd, rn, rm, b1, b2, b3, b4
vmull.p64 \rd, \rn, \rm
.endm
/*
* void pmull_ghash_update(int blocks, u64 dg[], const char *src,
* struct ghash_key const *k, const char *head)
* This implementation of 64x64 -> 128 bit polynomial multiplication
* using vmull.p8 instructions (8x8 -> 16) is taken from the paper
* "Fast Software Polynomial Multiplication on ARM Processors Using
* the NEON Engine" by Danilo Camara, Conrado Gouvea, Julio Lopez and
* Ricardo Dahab (https://hal.inria.fr/hal-01506572)
*
* It has been slightly tweaked for in-order performance, and to allow
* 'rq' to overlap with 'ad' or 'bd'.
*/
ENTRY(pmull_ghash_update)
vld1.64 {SHASH}, [r3]
.macro __pmull_p8, rq, ad, bd, b1=t4l, b2=t3l, b3=t4l, b4=t3l
vext.8 t0l, \ad, \ad, #1 @ A1
.ifc \b1, t4l
vext.8 t4l, \bd, \bd, #1 @ B1
.endif
vmull.p8 t0q, t0l, \bd @ F = A1*B
vext.8 t1l, \ad, \ad, #2 @ A2
vmull.p8 t4q, \ad, \b1 @ E = A*B1
.ifc \b2, t3l
vext.8 t3l, \bd, \bd, #2 @ B2
.endif
vmull.p8 t1q, t1l, \bd @ H = A2*B
vext.8 t2l, \ad, \ad, #3 @ A3
vmull.p8 t3q, \ad, \b2 @ G = A*B2
veor t0q, t0q, t4q @ L = E + F
.ifc \b3, t4l
vext.8 t4l, \bd, \bd, #3 @ B3
.endif
vmull.p8 t2q, t2l, \bd @ J = A3*B
veor t0l, t0l, t0h @ t0 = (L) (P0 + P1) << 8
veor t1q, t1q, t3q @ M = G + H
.ifc \b4, t3l
vext.8 t3l, \bd, \bd, #4 @ B4
.endif
vmull.p8 t4q, \ad, \b3 @ I = A*B3
veor t1l, t1l, t1h @ t1 = (M) (P2 + P3) << 16
vmull.p8 t3q, \ad, \b4 @ K = A*B4
vand t0h, t0h, k48
vand t1h, t1h, k32
veor t2q, t2q, t4q @ N = I + J
veor t0l, t0l, t0h
veor t1l, t1l, t1h
veor t2l, t2l, t2h @ t2 = (N) (P4 + P5) << 24
vand t2h, t2h, k16
veor t3l, t3l, t3h @ t3 = (K) (P6 + P7) << 32
vmov.i64 t3h, #0
vext.8 t0q, t0q, t0q, #15
veor t2l, t2l, t2h
vext.8 t1q, t1q, t1q, #14
vmull.p8 \rq, \ad, \bd @ D = A*B
vext.8 t2q, t2q, t2q, #13
vext.8 t3q, t3q, t3q, #12
veor t0q, t0q, t1q
veor t2q, t2q, t3q
veor \rq, \rq, t0q
veor \rq, \rq, t2q
.endm
//
// PMULL (64x64->128) based reduction for CPUs that can do
// it in a single instruction.
//
.macro __pmull_reduce_p64
vmull.p64 T1, XL_L, MASK
veor XH_L, XH_L, XM_H
vext.8 T1, T1, T1, #8
veor XL_H, XL_H, XM_L
veor T1, T1, XL
vmull.p64 XL, T1_H, MASK
.endm
//
// Alternative reduction for CPUs that lack support for the
// 64x64->128 PMULL instruction
//
.macro __pmull_reduce_p8
veor XL_H, XL_H, XM_L
veor XH_L, XH_L, XM_H
vshl.i64 T1, XL, #57
vshl.i64 T2, XL, #62
veor T1, T1, T2
vshl.i64 T2, XL, #63
veor T1, T1, T2
veor XL_H, XL_H, T1_L
veor XH_L, XH_L, T1_H
vshr.u64 T1, XL, #1
veor XH, XH, XL
veor XL, XL, T1
vshr.u64 T1, T1, #6
vshr.u64 XL, XL, #1
.endm
.macro ghash_update, pn
vld1.64 {XL}, [r1]
vmov.i8 MASK, #0xe1
vext.8 SHASH2, SHASH, SHASH, #8
vshl.u64 MASK, MASK, #57
veor SHASH2, SHASH2, SHASH
/* do the head block first, if supplied */
ldr ip, [sp]
@ -62,33 +184,59 @@ ENTRY(pmull_ghash_update)
#ifndef CONFIG_CPU_BIG_ENDIAN
vrev64.8 T1, T1
#endif
vext.8 T2, XL, XL, #8
vext.8 IN1, T1, T1, #8
veor T1, T1, T2
veor T1_L, T1_L, XL_H
veor XL, XL, IN1
vmull.p64 XH, SHASH_H, XL_H @ a1 * b1
__pmull_\pn XH, XL_H, SHASH_H, s1h, s2h, s3h, s4h @ a1 * b1
veor T1, T1, XL
vmull.p64 XL, SHASH_L, XL_L @ a0 * b0
vmull.p64 XM, SHASH2_L, T1_L @ (a1 + a0)(b1 + b0)
__pmull_\pn XL, XL_L, SHASH_L, s1l, s2l, s3l, s4l @ a0 * b0
__pmull_\pn XM, T1_L, SHASH2_\pn @ (a1+a0)(b1+b0)
vext.8 T1, XL, XH, #8
veor T2, XL, XH
veor T1, XL, XH
veor XM, XM, T1
veor XM, XM, T2
vmull.p64 T2, XL_L, MASK_L
vmov XH_L, XM_H
vmov XM_H, XL_L
__pmull_reduce_\pn
veor XL, XM, T2
vext.8 T2, XL, XL, #8
vmull.p64 XL, XL_L, MASK_L
veor T2, T2, XH
veor XL, XL, T2
veor T1, T1, XH
veor XL, XL, T1
bne 0b
vst1.64 {XL}, [r1]
bx lr
ENDPROC(pmull_ghash_update)
.endm
/*
* void pmull_ghash_update(int blocks, u64 dg[], const char *src,
* struct ghash_key const *k, const char *head)
*/
ENTRY(pmull_ghash_update_p64)
vld1.64 {SHASH}, [r3]
veor SHASH2_p64, SHASH_L, SHASH_H
vmov.i8 MASK, #0xe1
vshl.u64 MASK, MASK, #57
ghash_update p64
ENDPROC(pmull_ghash_update_p64)
ENTRY(pmull_ghash_update_p8)
vld1.64 {SHASH}, [r3]
veor SHASH2_p8, SHASH_L, SHASH_H
vext.8 s1l, SHASH_L, SHASH_L, #1
vext.8 s2l, SHASH_L, SHASH_L, #2
vext.8 s3l, SHASH_L, SHASH_L, #3
vext.8 s4l, SHASH_L, SHASH_L, #4
vext.8 s1h, SHASH_H, SHASH_H, #1
vext.8 s2h, SHASH_H, SHASH_H, #2
vext.8 s3h, SHASH_H, SHASH_H, #3
vext.8 s4h, SHASH_H, SHASH_H, #4
vmov.i64 k16, #0xffff
vmov.i64 k32, #0xffffffff
vmov.i64 k48, #0xffffffffffff
ghash_update p8
ENDPROC(pmull_ghash_update_p8)

View File

@ -22,6 +22,7 @@
MODULE_DESCRIPTION("GHASH secure hash using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("ghash");
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
@ -41,8 +42,17 @@ struct ghash_async_ctx {
struct cryptd_ahash *cryptd_tfm;
};
asmlinkage void pmull_ghash_update(int blocks, u64 dg[], const char *src,
struct ghash_key const *k, const char *head);
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
static int ghash_init(struct shash_desc *desc)
{
@ -312,6 +322,14 @@ static int __init ghash_ce_mod_init(void)
{
int err;
if (!(elf_hwcap & HWCAP_NEON))
return -ENODEV;
if (elf_hwcap2 & HWCAP2_PMULL)
pmull_ghash_update = pmull_ghash_update_p64;
else
pmull_ghash_update = pmull_ghash_update_p8;
err = crypto_register_shash(&ghash_alg);
if (err)
return err;
@ -332,5 +350,5 @@ static void __exit ghash_ce_mod_exit(void)
crypto_unregister_shash(&ghash_alg);
}
module_cpu_feature_match(PMULL, ghash_ce_mod_init);
module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);

View File

@ -18,18 +18,23 @@ config CRYPTO_SHA512_ARM64
config CRYPTO_SHA1_ARM64_CE
tristate "SHA-1 digest algorithm (ARMv8 Crypto Extensions)"
depends on ARM64 && KERNEL_MODE_NEON
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_SHA1
config CRYPTO_SHA2_ARM64_CE
tristate "SHA-224/SHA-256 digest algorithm (ARMv8 Crypto Extensions)"
depends on ARM64 && KERNEL_MODE_NEON
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_SHA256_ARM64
config CRYPTO_GHASH_ARM64_CE
tristate "GHASH (for GCM chaining mode) using ARMv8 Crypto Extensions"
depends on ARM64 && KERNEL_MODE_NEON
tristate "GHASH/AES-GCM using ARMv8 Crypto Extensions"
depends on KERNEL_MODE_NEON
select CRYPTO_HASH
select CRYPTO_GF128MUL
select CRYPTO_AES
select CRYPTO_AES_ARM64
config CRYPTO_CRCT10DIF_ARM64_CE
tristate "CRCT10DIF digest algorithm using PMULL instructions"
@ -49,25 +54,29 @@ config CRYPTO_AES_ARM64_CE
tristate "AES core cipher using ARMv8 Crypto Extensions"
depends on ARM64 && KERNEL_MODE_NEON
select CRYPTO_ALGAPI
select CRYPTO_AES_ARM64
config CRYPTO_AES_ARM64_CE_CCM
tristate "AES in CCM mode using ARMv8 Crypto Extensions"
depends on ARM64 && KERNEL_MODE_NEON
select CRYPTO_ALGAPI
select CRYPTO_AES_ARM64_CE
select CRYPTO_AES_ARM64
select CRYPTO_AEAD
config CRYPTO_AES_ARM64_CE_BLK
tristate "AES in ECB/CBC/CTR/XTS modes using ARMv8 Crypto Extensions"
depends on ARM64 && KERNEL_MODE_NEON
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_AES_ARM64_CE
select CRYPTO_AES_ARM64
select CRYPTO_SIMD
config CRYPTO_AES_ARM64_NEON_BLK
tristate "AES in ECB/CBC/CTR/XTS modes using NEON instructions"
depends on ARM64 && KERNEL_MODE_NEON
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_AES_ARM64
select CRYPTO_AES
select CRYPTO_SIMD
@ -82,6 +91,7 @@ config CRYPTO_AES_ARM64_BS
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_AES_ARM64_NEON_BLK
select CRYPTO_AES_ARM64
select CRYPTO_SIMD
endif

View File

@ -1,7 +1,7 @@
/*
* aesce-ccm-core.S - AES-CCM transform for ARMv8 with Crypto Extensions
*
* Copyright (C) 2013 - 2014 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -32,7 +32,7 @@ ENTRY(ce_aes_ccm_auth_data)
beq 8f /* out of input? */
cbnz w8, 0b
eor v0.16b, v0.16b, v1.16b
1: ld1 {v3.16b}, [x4] /* load first round key */
1: ld1 {v3.4s}, [x4] /* load first round key */
prfm pldl1strm, [x1]
cmp w5, #12 /* which key size? */
add x6, x4, #16
@ -42,17 +42,17 @@ ENTRY(ce_aes_ccm_auth_data)
mov v5.16b, v3.16b
b 4f
2: mov v4.16b, v3.16b
ld1 {v5.16b}, [x6], #16 /* load 2nd round key */
ld1 {v5.4s}, [x6], #16 /* load 2nd round key */
3: aese v0.16b, v4.16b
aesmc v0.16b, v0.16b
4: ld1 {v3.16b}, [x6], #16 /* load next round key */
4: ld1 {v3.4s}, [x6], #16 /* load next round key */
aese v0.16b, v5.16b
aesmc v0.16b, v0.16b
5: ld1 {v4.16b}, [x6], #16 /* load next round key */
5: ld1 {v4.4s}, [x6], #16 /* load next round key */
subs w7, w7, #3
aese v0.16b, v3.16b
aesmc v0.16b, v0.16b
ld1 {v5.16b}, [x6], #16 /* load next round key */
ld1 {v5.4s}, [x6], #16 /* load next round key */
bpl 3b
aese v0.16b, v4.16b
subs w2, w2, #16 /* last data? */
@ -90,7 +90,7 @@ ENDPROC(ce_aes_ccm_auth_data)
* u32 rounds);
*/
ENTRY(ce_aes_ccm_final)
ld1 {v3.16b}, [x2], #16 /* load first round key */
ld1 {v3.4s}, [x2], #16 /* load first round key */
ld1 {v0.16b}, [x0] /* load mac */
cmp w3, #12 /* which key size? */
sub w3, w3, #2 /* modified # of rounds */
@ -100,17 +100,17 @@ ENTRY(ce_aes_ccm_final)
mov v5.16b, v3.16b
b 2f
0: mov v4.16b, v3.16b
1: ld1 {v5.16b}, [x2], #16 /* load next round key */
1: ld1 {v5.4s}, [x2], #16 /* load next round key */
aese v0.16b, v4.16b
aesmc v0.16b, v0.16b
aese v1.16b, v4.16b
aesmc v1.16b, v1.16b
2: ld1 {v3.16b}, [x2], #16 /* load next round key */
2: ld1 {v3.4s}, [x2], #16 /* load next round key */
aese v0.16b, v5.16b
aesmc v0.16b, v0.16b
aese v1.16b, v5.16b
aesmc v1.16b, v1.16b
3: ld1 {v4.16b}, [x2], #16 /* load next round key */
3: ld1 {v4.4s}, [x2], #16 /* load next round key */
subs w3, w3, #3
aese v0.16b, v3.16b
aesmc v0.16b, v0.16b
@ -137,31 +137,31 @@ CPU_LE( rev x8, x8 ) /* keep swabbed ctr in reg */
cmp w4, #12 /* which key size? */
sub w7, w4, #2 /* get modified # of rounds */
ins v1.d[1], x9 /* no carry in lower ctr */
ld1 {v3.16b}, [x3] /* load first round key */
ld1 {v3.4s}, [x3] /* load first round key */
add x10, x3, #16
bmi 1f
bne 4f
mov v5.16b, v3.16b
b 3f
1: mov v4.16b, v3.16b
ld1 {v5.16b}, [x10], #16 /* load 2nd round key */
ld1 {v5.4s}, [x10], #16 /* load 2nd round key */
2: /* inner loop: 3 rounds, 2x interleaved */
aese v0.16b, v4.16b
aesmc v0.16b, v0.16b
aese v1.16b, v4.16b
aesmc v1.16b, v1.16b
3: ld1 {v3.16b}, [x10], #16 /* load next round key */
3: ld1 {v3.4s}, [x10], #16 /* load next round key */
aese v0.16b, v5.16b
aesmc v0.16b, v0.16b
aese v1.16b, v5.16b
aesmc v1.16b, v1.16b
4: ld1 {v4.16b}, [x10], #16 /* load next round key */
4: ld1 {v4.4s}, [x10], #16 /* load next round key */
subs w7, w7, #3
aese v0.16b, v3.16b
aesmc v0.16b, v0.16b
aese v1.16b, v3.16b
aesmc v1.16b, v1.16b
ld1 {v5.16b}, [x10], #16 /* load next round key */
ld1 {v5.4s}, [x10], #16 /* load next round key */
bpl 2b
aese v0.16b, v4.16b
aese v1.16b, v4.16b

View File

@ -1,7 +1,7 @@
/*
* aes-ccm-glue.c - AES-CCM transform for ARMv8 with Crypto Extensions
*
* Copyright (C) 2013 - 2014 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -9,6 +9,7 @@
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/aes.h>
#include <crypto/scatterwalk.h>
@ -44,6 +45,8 @@ asmlinkage void ce_aes_ccm_decrypt(u8 out[], u8 const in[], u32 cbytes,
asmlinkage void ce_aes_ccm_final(u8 mac[], u8 const ctr[], u32 const rk[],
u32 rounds);
asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
static int ccm_setkey(struct crypto_aead *tfm, const u8 *in_key,
unsigned int key_len)
{
@ -103,7 +106,45 @@ static int ccm_init_mac(struct aead_request *req, u8 maciv[], u32 msglen)
return 0;
}
static void ccm_calculate_auth_mac(struct aead_request *req, u8 mac[])
static void ccm_update_mac(struct crypto_aes_ctx *key, u8 mac[], u8 const in[],
u32 abytes, u32 *macp, bool use_neon)
{
if (likely(use_neon)) {
ce_aes_ccm_auth_data(mac, in, abytes, macp, key->key_enc,
num_rounds(key));
} else {
if (*macp > 0 && *macp < AES_BLOCK_SIZE) {
int added = min(abytes, AES_BLOCK_SIZE - *macp);
crypto_xor(&mac[*macp], in, added);
*macp += added;
in += added;
abytes -= added;
}
while (abytes > AES_BLOCK_SIZE) {
__aes_arm64_encrypt(key->key_enc, mac, mac,
num_rounds(key));
crypto_xor(mac, in, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
abytes -= AES_BLOCK_SIZE;
}
if (abytes > 0) {
__aes_arm64_encrypt(key->key_enc, mac, mac,
num_rounds(key));
crypto_xor(mac, in, abytes);
*macp = abytes;
} else {
*macp = 0;
}
}
}
static void ccm_calculate_auth_mac(struct aead_request *req, u8 mac[],
bool use_neon)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_aead_ctx(aead);
@ -122,8 +163,7 @@ static void ccm_calculate_auth_mac(struct aead_request *req, u8 mac[])
ltag.len = 6;
}
ce_aes_ccm_auth_data(mac, (u8 *)&ltag, ltag.len, &macp, ctx->key_enc,
num_rounds(ctx));
ccm_update_mac(ctx, mac, (u8 *)&ltag, ltag.len, &macp, use_neon);
scatterwalk_start(&walk, req->src);
do {
@ -135,8 +175,7 @@ static void ccm_calculate_auth_mac(struct aead_request *req, u8 mac[])
n = scatterwalk_clamp(&walk, len);
}
p = scatterwalk_map(&walk);
ce_aes_ccm_auth_data(mac, p, n, &macp, ctx->key_enc,
num_rounds(ctx));
ccm_update_mac(ctx, mac, p, n, &macp, use_neon);
len -= n;
scatterwalk_unmap(p);
@ -145,6 +184,56 @@ static void ccm_calculate_auth_mac(struct aead_request *req, u8 mac[])
} while (len);
}
static int ccm_crypt_fallback(struct skcipher_walk *walk, u8 mac[], u8 iv0[],
struct crypto_aes_ctx *ctx, bool enc)
{
u8 buf[AES_BLOCK_SIZE];
int err = 0;
while (walk->nbytes) {
int blocks = walk->nbytes / AES_BLOCK_SIZE;
u32 tail = walk->nbytes % AES_BLOCK_SIZE;
u8 *dst = walk->dst.virt.addr;
u8 *src = walk->src.virt.addr;
u32 nbytes = walk->nbytes;
if (nbytes == walk->total && tail > 0) {
blocks++;
tail = 0;
}
do {
u32 bsize = AES_BLOCK_SIZE;
if (nbytes < AES_BLOCK_SIZE)
bsize = nbytes;
crypto_inc(walk->iv, AES_BLOCK_SIZE);
__aes_arm64_encrypt(ctx->key_enc, buf, walk->iv,
num_rounds(ctx));
__aes_arm64_encrypt(ctx->key_enc, mac, mac,
num_rounds(ctx));
if (enc)
crypto_xor(mac, src, bsize);
crypto_xor_cpy(dst, src, buf, bsize);
if (!enc)
crypto_xor(mac, dst, bsize);
dst += bsize;
src += bsize;
nbytes -= bsize;
} while (--blocks);
err = skcipher_walk_done(walk, tail);
}
if (!err) {
__aes_arm64_encrypt(ctx->key_enc, buf, iv0, num_rounds(ctx));
__aes_arm64_encrypt(ctx->key_enc, mac, mac, num_rounds(ctx));
crypto_xor(mac, buf, AES_BLOCK_SIZE);
}
return err;
}
static int ccm_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
@ -153,39 +242,46 @@ static int ccm_encrypt(struct aead_request *req)
u8 __aligned(8) mac[AES_BLOCK_SIZE];
u8 buf[AES_BLOCK_SIZE];
u32 len = req->cryptlen;
bool use_neon = may_use_simd();
int err;
err = ccm_init_mac(req, mac, len);
if (err)
return err;
kernel_neon_begin_partial(6);
if (likely(use_neon))
kernel_neon_begin();
if (req->assoclen)
ccm_calculate_auth_mac(req, mac);
ccm_calculate_auth_mac(req, mac, use_neon);
/* preserve the original iv for the final round */
memcpy(buf, req->iv, AES_BLOCK_SIZE);
err = skcipher_walk_aead_encrypt(&walk, req, true);
while (walk.nbytes) {
u32 tail = walk.nbytes % AES_BLOCK_SIZE;
if (likely(use_neon)) {
while (walk.nbytes) {
u32 tail = walk.nbytes % AES_BLOCK_SIZE;
if (walk.nbytes == walk.total)
tail = 0;
if (walk.nbytes == walk.total)
tail = 0;
ce_aes_ccm_encrypt(walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes - tail, ctx->key_enc,
num_rounds(ctx), mac, walk.iv);
ce_aes_ccm_encrypt(walk.dst.virt.addr,
walk.src.virt.addr,
walk.nbytes - tail, ctx->key_enc,
num_rounds(ctx), mac, walk.iv);
err = skcipher_walk_done(&walk, tail);
err = skcipher_walk_done(&walk, tail);
}
if (!err)
ce_aes_ccm_final(mac, buf, ctx->key_enc,
num_rounds(ctx));
kernel_neon_end();
} else {
err = ccm_crypt_fallback(&walk, mac, buf, ctx, true);
}
if (!err)
ce_aes_ccm_final(mac, buf, ctx->key_enc, num_rounds(ctx));
kernel_neon_end();
if (err)
return err;
@ -205,38 +301,46 @@ static int ccm_decrypt(struct aead_request *req)
u8 __aligned(8) mac[AES_BLOCK_SIZE];
u8 buf[AES_BLOCK_SIZE];
u32 len = req->cryptlen - authsize;
bool use_neon = may_use_simd();
int err;
err = ccm_init_mac(req, mac, len);
if (err)
return err;
kernel_neon_begin_partial(6);
if (likely(use_neon))
kernel_neon_begin();
if (req->assoclen)
ccm_calculate_auth_mac(req, mac);
ccm_calculate_auth_mac(req, mac, use_neon);
/* preserve the original iv for the final round */
memcpy(buf, req->iv, AES_BLOCK_SIZE);
err = skcipher_walk_aead_decrypt(&walk, req, true);
while (walk.nbytes) {
u32 tail = walk.nbytes % AES_BLOCK_SIZE;
if (likely(use_neon)) {
while (walk.nbytes) {
u32 tail = walk.nbytes % AES_BLOCK_SIZE;
if (walk.nbytes == walk.total)
tail = 0;
if (walk.nbytes == walk.total)
tail = 0;
ce_aes_ccm_decrypt(walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes - tail, ctx->key_enc,
num_rounds(ctx), mac, walk.iv);
ce_aes_ccm_decrypt(walk.dst.virt.addr,
walk.src.virt.addr,
walk.nbytes - tail, ctx->key_enc,
num_rounds(ctx), mac, walk.iv);
err = skcipher_walk_done(&walk, tail);
err = skcipher_walk_done(&walk, tail);
}
if (!err)
ce_aes_ccm_final(mac, buf, ctx->key_enc,
num_rounds(ctx));
kernel_neon_end();
} else {
err = ccm_crypt_fallback(&walk, mac, buf, ctx, false);
}
if (!err)
ce_aes_ccm_final(mac, buf, ctx->key_enc, num_rounds(ctx));
kernel_neon_end();
if (err)
return err;

View File

@ -1,7 +1,7 @@
/*
* aes-ce-cipher.c - core AES cipher using ARMv8 Crypto Extensions
*
* Copyright (C) 2013 - 2014 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -9,6 +9,8 @@
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/aes.h>
#include <linux/cpufeature.h>
#include <linux/crypto.h>
@ -20,6 +22,9 @@ MODULE_DESCRIPTION("Synchronous AES cipher using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
asmlinkage void __aes_arm64_decrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
struct aes_block {
u8 b[AES_BLOCK_SIZE];
};
@ -44,27 +49,32 @@ static void aes_cipher_encrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
void *dummy0;
int dummy1;
kernel_neon_begin_partial(4);
if (!may_use_simd()) {
__aes_arm64_encrypt(ctx->key_enc, dst, src, num_rounds(ctx));
return;
}
kernel_neon_begin();
__asm__(" ld1 {v0.16b}, %[in] ;"
" ld1 {v1.16b}, [%[key]], #16 ;"
" ld1 {v1.4s}, [%[key]], #16 ;"
" cmp %w[rounds], #10 ;"
" bmi 0f ;"
" bne 3f ;"
" mov v3.16b, v1.16b ;"
" b 2f ;"
"0: mov v2.16b, v1.16b ;"
" ld1 {v3.16b}, [%[key]], #16 ;"
" ld1 {v3.4s}, [%[key]], #16 ;"
"1: aese v0.16b, v2.16b ;"
" aesmc v0.16b, v0.16b ;"
"2: ld1 {v1.16b}, [%[key]], #16 ;"
"2: ld1 {v1.4s}, [%[key]], #16 ;"
" aese v0.16b, v3.16b ;"
" aesmc v0.16b, v0.16b ;"
"3: ld1 {v2.16b}, [%[key]], #16 ;"
"3: ld1 {v2.4s}, [%[key]], #16 ;"
" subs %w[rounds], %w[rounds], #3 ;"
" aese v0.16b, v1.16b ;"
" aesmc v0.16b, v0.16b ;"
" ld1 {v3.16b}, [%[key]], #16 ;"
" ld1 {v3.4s}, [%[key]], #16 ;"
" bpl 1b ;"
" aese v0.16b, v2.16b ;"
" eor v0.16b, v0.16b, v3.16b ;"
@ -89,27 +99,32 @@ static void aes_cipher_decrypt(struct crypto_tfm *tfm, u8 dst[], u8 const src[])
void *dummy0;
int dummy1;
kernel_neon_begin_partial(4);
if (!may_use_simd()) {
__aes_arm64_decrypt(ctx->key_dec, dst, src, num_rounds(ctx));
return;
}
kernel_neon_begin();
__asm__(" ld1 {v0.16b}, %[in] ;"
" ld1 {v1.16b}, [%[key]], #16 ;"
" ld1 {v1.4s}, [%[key]], #16 ;"
" cmp %w[rounds], #10 ;"
" bmi 0f ;"
" bne 3f ;"
" mov v3.16b, v1.16b ;"
" b 2f ;"
"0: mov v2.16b, v1.16b ;"
" ld1 {v3.16b}, [%[key]], #16 ;"
" ld1 {v3.4s}, [%[key]], #16 ;"
"1: aesd v0.16b, v2.16b ;"
" aesimc v0.16b, v0.16b ;"
"2: ld1 {v1.16b}, [%[key]], #16 ;"
"2: ld1 {v1.4s}, [%[key]], #16 ;"
" aesd v0.16b, v3.16b ;"
" aesimc v0.16b, v0.16b ;"
"3: ld1 {v2.16b}, [%[key]], #16 ;"
"3: ld1 {v2.4s}, [%[key]], #16 ;"
" subs %w[rounds], %w[rounds], #3 ;"
" aesd v0.16b, v1.16b ;"
" aesimc v0.16b, v0.16b ;"
" ld1 {v3.16b}, [%[key]], #16 ;"
" ld1 {v3.4s}, [%[key]], #16 ;"
" bpl 1b ;"
" aesd v0.16b, v2.16b ;"
" eor v0.16b, v0.16b, v3.16b ;"
@ -165,20 +180,16 @@ int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
key_len != AES_KEYSIZE_256)
return -EINVAL;
memcpy(ctx->key_enc, in_key, key_len);
ctx->key_length = key_len;
for (i = 0; i < kwords; i++)
ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32));
kernel_neon_begin_partial(2);
kernel_neon_begin();
for (i = 0; i < sizeof(rcon); i++) {
u32 *rki = ctx->key_enc + (i * kwords);
u32 *rko = rki + kwords;
#ifndef CONFIG_CPU_BIG_ENDIAN
rko[0] = ror32(aes_sub(rki[kwords - 1]), 8) ^ rcon[i] ^ rki[0];
#else
rko[0] = rol32(aes_sub(rki[kwords - 1]), 8) ^ (rcon[i] << 24) ^
rki[0];
#endif
rko[1] = rko[0] ^ rki[1];
rko[2] = rko[1] ^ rki[2];
rko[3] = rko[2] ^ rki[3];
@ -210,9 +221,9 @@ int ce_aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key,
key_dec[0] = key_enc[j];
for (i = 1, j--; j > 0; i++, j--)
__asm__("ld1 {v0.16b}, %[in] ;"
__asm__("ld1 {v0.4s}, %[in] ;"
"aesimc v1.16b, v0.16b ;"
"st1 {v1.16b}, %[out] ;"
"st1 {v1.4s}, %[out] ;"
: [out] "=Q"(key_dec[i])
: [in] "Q"(key_enc[j])

View File

@ -2,7 +2,7 @@
* linux/arch/arm64/crypto/aes-ce.S - AES cipher for ARMv8 with
* Crypto Extensions
*
* Copyright (C) 2013 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2013 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -22,11 +22,11 @@
cmp \rounds, #12
blo 2222f /* 128 bits */
beq 1111f /* 192 bits */
ld1 {v17.16b-v18.16b}, [\rk], #32
1111: ld1 {v19.16b-v20.16b}, [\rk], #32
2222: ld1 {v21.16b-v24.16b}, [\rk], #64
ld1 {v25.16b-v28.16b}, [\rk], #64
ld1 {v29.16b-v31.16b}, [\rk]
ld1 {v17.4s-v18.4s}, [\rk], #32
1111: ld1 {v19.4s-v20.4s}, [\rk], #32
2222: ld1 {v21.4s-v24.4s}, [\rk], #64
ld1 {v25.4s-v28.4s}, [\rk], #64
ld1 {v29.4s-v31.4s}, [\rk]
.endm
/* prepare for encryption with key in rk[] */

View File

@ -10,6 +10,7 @@
#include <linux/linkage.h>
#include <asm/assembler.h>
#include <asm/cache.h>
.text
@ -17,94 +18,155 @@
out .req x1
in .req x2
rounds .req x3
tt .req x4
lt .req x2
tt .req x2
.macro __pair, enc, reg0, reg1, in0, in1e, in1d, shift
ubfx \reg0, \in0, #\shift, #8
.if \enc
ubfx \reg1, \in1e, #\shift, #8
.macro __pair1, sz, op, reg0, reg1, in0, in1e, in1d, shift
.ifc \op\shift, b0
ubfiz \reg0, \in0, #2, #8
ubfiz \reg1, \in1e, #2, #8
.else
ubfx \reg1, \in1d, #\shift, #8
ubfx \reg0, \in0, #\shift, #8
ubfx \reg1, \in1e, #\shift, #8
.endif
/*
* AArch64 cannot do byte size indexed loads from a table containing
* 32-bit quantities, i.e., 'ldrb w12, [tt, w12, uxtw #2]' is not a
* valid instruction. So perform the shift explicitly first for the
* high bytes (the low byte is shifted implicitly by using ubfiz rather
* than ubfx above)
*/
.ifnc \op, b
ldr \reg0, [tt, \reg0, uxtw #2]
ldr \reg1, [tt, \reg1, uxtw #2]
.else
.if \shift > 0
lsl \reg0, \reg0, #2
lsl \reg1, \reg1, #2
.endif
ldrb \reg0, [tt, \reg0, uxtw]
ldrb \reg1, [tt, \reg1, uxtw]
.endif
.endm
.macro __hround, out0, out1, in0, in1, in2, in3, t0, t1, enc
.macro __pair0, sz, op, reg0, reg1, in0, in1e, in1d, shift
ubfx \reg0, \in0, #\shift, #8
ubfx \reg1, \in1d, #\shift, #8
ldr\op \reg0, [tt, \reg0, uxtw #\sz]
ldr\op \reg1, [tt, \reg1, uxtw #\sz]
.endm
.macro __hround, out0, out1, in0, in1, in2, in3, t0, t1, enc, sz, op
ldp \out0, \out1, [rk], #8
__pair \enc, w13, w14, \in0, \in1, \in3, 0
__pair \enc, w15, w16, \in1, \in2, \in0, 8
__pair \enc, w17, w18, \in2, \in3, \in1, 16
__pair \enc, \t0, \t1, \in3, \in0, \in2, 24
__pair\enc \sz, \op, w12, w13, \in0, \in1, \in3, 0
__pair\enc \sz, \op, w14, w15, \in1, \in2, \in0, 8
__pair\enc \sz, \op, w16, w17, \in2, \in3, \in1, 16
__pair\enc \sz, \op, \t0, \t1, \in3, \in0, \in2, 24
eor \out0, \out0, w13
eor \out1, \out1, w14
eor \out0, \out0, w15, ror #24
eor \out1, \out1, w16, ror #24
eor \out0, \out0, w17, ror #16
eor \out1, \out1, w18, ror #16
eor \out0, \out0, w12
eor \out1, \out1, w13
eor \out0, \out0, w14, ror #24
eor \out1, \out1, w15, ror #24
eor \out0, \out0, w16, ror #16
eor \out1, \out1, w17, ror #16
eor \out0, \out0, \t0, ror #8
eor \out1, \out1, \t1, ror #8
.endm
.macro fround, out0, out1, out2, out3, in0, in1, in2, in3
__hround \out0, \out1, \in0, \in1, \in2, \in3, \out2, \out3, 1
__hround \out2, \out3, \in2, \in3, \in0, \in1, \in1, \in2, 1
.macro fround, out0, out1, out2, out3, in0, in1, in2, in3, sz=2, op
__hround \out0, \out1, \in0, \in1, \in2, \in3, \out2, \out3, 1, \sz, \op
__hround \out2, \out3, \in2, \in3, \in0, \in1, \in1, \in2, 1, \sz, \op
.endm
.macro iround, out0, out1, out2, out3, in0, in1, in2, in3
__hround \out0, \out1, \in0, \in3, \in2, \in1, \out2, \out3, 0
__hround \out2, \out3, \in2, \in1, \in0, \in3, \in1, \in0, 0
.macro iround, out0, out1, out2, out3, in0, in1, in2, in3, sz=2, op
__hround \out0, \out1, \in0, \in3, \in2, \in1, \out2, \out3, 0, \sz, \op
__hround \out2, \out3, \in2, \in1, \in0, \in3, \in1, \in0, 0, \sz, \op
.endm
.macro do_crypt, round, ttab, ltab
ldp w5, w6, [in]
ldp w7, w8, [in, #8]
ldp w9, w10, [rk], #16
ldp w11, w12, [rk, #-8]
.macro do_crypt, round, ttab, ltab, bsz
ldp w4, w5, [in]
ldp w6, w7, [in, #8]
ldp w8, w9, [rk], #16
ldp w10, w11, [rk, #-8]
CPU_BE( rev w4, w4 )
CPU_BE( rev w5, w5 )
CPU_BE( rev w6, w6 )
CPU_BE( rev w7, w7 )
CPU_BE( rev w8, w8 )
eor w4, w4, w8
eor w5, w5, w9
eor w6, w6, w10
eor w7, w7, w11
eor w8, w8, w12
adr_l tt, \ttab
adr_l lt, \ltab
tbnz rounds, #1, 1f
0: \round w9, w10, w11, w12, w5, w6, w7, w8
\round w5, w6, w7, w8, w9, w10, w11, w12
0: \round w8, w9, w10, w11, w4, w5, w6, w7
\round w4, w5, w6, w7, w8, w9, w10, w11
1: subs rounds, rounds, #4
\round w9, w10, w11, w12, w5, w6, w7, w8
csel tt, tt, lt, hi
\round w5, w6, w7, w8, w9, w10, w11, w12
b.hi 0b
\round w8, w9, w10, w11, w4, w5, w6, w7
b.ls 3f
2: \round w4, w5, w6, w7, w8, w9, w10, w11
b 0b
3: adr_l tt, \ltab
\round w4, w5, w6, w7, w8, w9, w10, w11, \bsz, b
CPU_BE( rev w4, w4 )
CPU_BE( rev w5, w5 )
CPU_BE( rev w6, w6 )
CPU_BE( rev w7, w7 )
CPU_BE( rev w8, w8 )
stp w5, w6, [out]
stp w7, w8, [out, #8]
stp w4, w5, [out]
stp w6, w7, [out, #8]
ret
.endm
.align 5
.align L1_CACHE_SHIFT
.type __aes_arm64_inverse_sbox, %object
__aes_arm64_inverse_sbox:
.byte 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38
.byte 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb
.byte 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87
.byte 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb
.byte 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d
.byte 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e
.byte 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2
.byte 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25
.byte 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16
.byte 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92
.byte 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda
.byte 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84
.byte 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a
.byte 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06
.byte 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02
.byte 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b
.byte 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea
.byte 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73
.byte 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85
.byte 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e
.byte 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89
.byte 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b
.byte 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20
.byte 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4
.byte 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31
.byte 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f
.byte 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d
.byte 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef
.byte 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0
.byte 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61
.byte 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26
.byte 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d
.size __aes_arm64_inverse_sbox, . - __aes_arm64_inverse_sbox
ENTRY(__aes_arm64_encrypt)
do_crypt fround, crypto_ft_tab, crypto_fl_tab
do_crypt fround, crypto_ft_tab, crypto_ft_tab + 1, 2
ENDPROC(__aes_arm64_encrypt)
.align 5
ENTRY(__aes_arm64_decrypt)
do_crypt iround, crypto_it_tab, crypto_il_tab
do_crypt iround, crypto_it_tab, __aes_arm64_inverse_sbox, 0
ENDPROC(__aes_arm64_decrypt)

View File

@ -0,0 +1,53 @@
/*
* Fallback for sync aes(ctr) in contexts where kernel mode NEON
* is not allowed
*
* Copyright (C) 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <crypto/aes.h>
#include <crypto/internal/skcipher.h>
asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
static inline int aes_ctr_encrypt_fallback(struct crypto_aes_ctx *ctx,
struct skcipher_request *req)
{
struct skcipher_walk walk;
u8 buf[AES_BLOCK_SIZE];
int err;
err = skcipher_walk_virt(&walk, req, true);
while (walk.nbytes > 0) {
u8 *dst = walk.dst.virt.addr;
u8 *src = walk.src.virt.addr;
int nbytes = walk.nbytes;
int tail = 0;
if (nbytes < walk.total) {
nbytes = round_down(nbytes, AES_BLOCK_SIZE);
tail = walk.nbytes % AES_BLOCK_SIZE;
}
do {
int bsize = min(nbytes, AES_BLOCK_SIZE);
__aes_arm64_encrypt(ctx->key_enc, buf, walk.iv,
6 + ctx->key_length / 4);
crypto_xor_cpy(dst, src, buf, bsize);
crypto_inc(walk.iv, AES_BLOCK_SIZE);
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
nbytes -= AES_BLOCK_SIZE;
} while (nbytes > 0);
err = skcipher_walk_done(&walk, tail);
}
return err;
}

View File

@ -10,6 +10,7 @@
#include <asm/neon.h>
#include <asm/hwcap.h>
#include <asm/simd.h>
#include <crypto/aes.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/simd.h>
@ -19,6 +20,7 @@
#include <crypto/xts.h>
#include "aes-ce-setkey.h"
#include "aes-ctr-fallback.h"
#ifdef USE_V8_CRYPTO_EXTENSIONS
#define MODE "ce"
@ -241,9 +243,7 @@ static int ctr_encrypt(struct skcipher_request *req)
aes_ctr_encrypt(tail, NULL, (u8 *)ctx->key_enc, rounds,
blocks, walk.iv, first);
if (tdst != tsrc)
memcpy(tdst, tsrc, nbytes);
crypto_xor(tdst, tail, nbytes);
crypto_xor_cpy(tdst, tsrc, tail, nbytes);
err = skcipher_walk_done(&walk, 0);
}
kernel_neon_end();
@ -251,6 +251,17 @@ static int ctr_encrypt(struct skcipher_request *req)
return err;
}
static int ctr_encrypt_sync(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct crypto_aes_ctx *ctx = crypto_skcipher_ctx(tfm);
if (!may_use_simd())
return aes_ctr_encrypt_fallback(ctx, req);
return ctr_encrypt(req);
}
static int xts_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
@ -357,8 +368,8 @@ static struct skcipher_alg aes_algs[] = { {
.ivsize = AES_BLOCK_SIZE,
.chunksize = AES_BLOCK_SIZE,
.setkey = skcipher_aes_setkey,
.encrypt = ctr_encrypt,
.decrypt = ctr_encrypt,
.encrypt = ctr_encrypt_sync,
.decrypt = ctr_encrypt_sync,
}, {
.base = {
.cra_name = "__xts(aes)",
@ -460,11 +471,35 @@ static int mac_init(struct shash_desc *desc)
return 0;
}
static void mac_do_update(struct crypto_aes_ctx *ctx, u8 const in[], int blocks,
u8 dg[], int enc_before, int enc_after)
{
int rounds = 6 + ctx->key_length / 4;
if (may_use_simd()) {
kernel_neon_begin();
aes_mac_update(in, ctx->key_enc, rounds, blocks, dg, enc_before,
enc_after);
kernel_neon_end();
} else {
if (enc_before)
__aes_arm64_encrypt(ctx->key_enc, dg, dg, rounds);
while (blocks--) {
crypto_xor(dg, in, AES_BLOCK_SIZE);
in += AES_BLOCK_SIZE;
if (blocks || enc_after)
__aes_arm64_encrypt(ctx->key_enc, dg, dg,
rounds);
}
}
}
static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
int rounds = 6 + tctx->key.key_length / 4;
while (len > 0) {
unsigned int l;
@ -476,10 +511,8 @@ static int mac_update(struct shash_desc *desc, const u8 *p, unsigned int len)
len %= AES_BLOCK_SIZE;
kernel_neon_begin();
aes_mac_update(p, tctx->key.key_enc, rounds, blocks,
ctx->dg, (ctx->len != 0), (len != 0));
kernel_neon_end();
mac_do_update(&tctx->key, p, blocks, ctx->dg,
(ctx->len != 0), (len != 0));
p += blocks * AES_BLOCK_SIZE;
@ -507,11 +540,8 @@ static int cbcmac_final(struct shash_desc *desc, u8 *out)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
int rounds = 6 + tctx->key.key_length / 4;
kernel_neon_begin();
aes_mac_update(NULL, tctx->key.key_enc, rounds, 0, ctx->dg, 1, 0);
kernel_neon_end();
mac_do_update(&tctx->key, NULL, 0, ctx->dg, 1, 0);
memcpy(out, ctx->dg, AES_BLOCK_SIZE);
@ -522,7 +552,6 @@ static int cmac_final(struct shash_desc *desc, u8 *out)
{
struct mac_tfm_ctx *tctx = crypto_shash_ctx(desc->tfm);
struct mac_desc_ctx *ctx = shash_desc_ctx(desc);
int rounds = 6 + tctx->key.key_length / 4;
u8 *consts = tctx->consts;
if (ctx->len != AES_BLOCK_SIZE) {
@ -530,9 +559,7 @@ static int cmac_final(struct shash_desc *desc, u8 *out)
consts += AES_BLOCK_SIZE;
}
kernel_neon_begin();
aes_mac_update(consts, tctx->key.key_enc, rounds, 1, ctx->dg, 0, 1);
kernel_neon_end();
mac_do_update(&tctx->key, consts, 1, ctx->dg, 0, 1);
memcpy(out, ctx->dg, AES_BLOCK_SIZE);

View File

@ -1,7 +1,7 @@
/*
* Bit sliced AES using NEON instructions
*
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -9,12 +9,15 @@
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <crypto/aes.h>
#include <crypto/internal/simd.h>
#include <crypto/internal/skcipher.h>
#include <crypto/xts.h>
#include <linux/module.h>
#include "aes-ctr-fallback.h"
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
@ -58,6 +61,11 @@ struct aesbs_cbc_ctx {
u32 enc[AES_MAX_KEYLENGTH_U32];
};
struct aesbs_ctr_ctx {
struct aesbs_ctx key; /* must be first member */
struct crypto_aes_ctx fallback;
};
struct aesbs_xts_ctx {
struct aesbs_ctx key;
u32 twkey[AES_MAX_KEYLENGTH_U32];
@ -196,6 +204,25 @@ static int cbc_decrypt(struct skcipher_request *req)
return err;
}
static int aesbs_ctr_setkey_sync(struct crypto_skcipher *tfm, const u8 *in_key,
unsigned int key_len)
{
struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
int err;
err = crypto_aes_expand_key(&ctx->fallback, in_key, key_len);
if (err)
return err;
ctx->key.rounds = 6 + key_len / 4;
kernel_neon_begin();
aesbs_convert_key(ctx->key.rk, ctx->fallback.key_enc, ctx->key.rounds);
kernel_neon_end();
return 0;
}
static int ctr_encrypt(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
@ -224,9 +251,8 @@ static int ctr_encrypt(struct skcipher_request *req)
u8 *dst = walk.dst.virt.addr + blocks * AES_BLOCK_SIZE;
u8 *src = walk.src.virt.addr + blocks * AES_BLOCK_SIZE;
if (dst != src)
memcpy(dst, src, walk.total % AES_BLOCK_SIZE);
crypto_xor(dst, final, walk.total % AES_BLOCK_SIZE);
crypto_xor_cpy(dst, src, final,
walk.total % AES_BLOCK_SIZE);
err = skcipher_walk_done(&walk, 0);
break;
@ -260,6 +286,17 @@ static int aesbs_xts_setkey(struct crypto_skcipher *tfm, const u8 *in_key,
return aesbs_setkey(tfm, in_key, key_len);
}
static int ctr_encrypt_sync(struct skcipher_request *req)
{
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(req);
struct aesbs_ctr_ctx *ctx = crypto_skcipher_ctx(tfm);
if (!may_use_simd())
return aes_ctr_encrypt_fallback(&ctx->fallback, req);
return ctr_encrypt(req);
}
static int __xts_crypt(struct skcipher_request *req,
void (*fn)(u8 out[], u8 const in[], u8 const rk[],
int rounds, int blocks, u8 iv[]))
@ -356,7 +393,7 @@ static struct skcipher_alg aes_algs[] = { {
.base.cra_driver_name = "ctr-aes-neonbs",
.base.cra_priority = 250 - 1,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct aesbs_ctx),
.base.cra_ctxsize = sizeof(struct aesbs_ctr_ctx),
.base.cra_module = THIS_MODULE,
.min_keysize = AES_MIN_KEY_SIZE,
@ -364,9 +401,9 @@ static struct skcipher_alg aes_algs[] = { {
.chunksize = AES_BLOCK_SIZE,
.walksize = 8 * AES_BLOCK_SIZE,
.ivsize = AES_BLOCK_SIZE,
.setkey = aesbs_setkey,
.encrypt = ctr_encrypt,
.decrypt = ctr_encrypt,
.setkey = aesbs_ctr_setkey_sync,
.encrypt = ctr_encrypt_sync,
.decrypt = ctr_encrypt_sync,
}, {
.base.cra_name = "__xts(aes)",
.base.cra_driver_name = "__xts-aes-neonbs",

View File

@ -1,7 +1,7 @@
/*
* ChaCha20 256-bit cipher algorithm, RFC7539, arm64 NEON functions
*
* Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org>
* Copyright (C) 2016 - 2017 Linaro, Ltd. <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -26,6 +26,7 @@
#include <asm/hwcap.h>
#include <asm/neon.h>
#include <asm/simd.h>
asmlinkage void chacha20_block_xor_neon(u32 *state, u8 *dst, const u8 *src);
asmlinkage void chacha20_4block_xor_neon(u32 *state, u8 *dst, const u8 *src);
@ -64,7 +65,7 @@ static int chacha20_neon(struct skcipher_request *req)
u32 state[16];
int err;
if (req->cryptlen <= CHACHA20_BLOCK_SIZE)
if (!may_use_simd() || req->cryptlen <= CHACHA20_BLOCK_SIZE)
return crypto_chacha20_crypt(req);
err = skcipher_walk_virt(&walk, req, true);

View File

@ -1,7 +1,7 @@
/*
* Accelerated CRC32(C) using arm64 NEON and Crypto Extensions instructions
*
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -19,6 +19,7 @@
#include <asm/hwcap.h>
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#define PMULL_MIN_LEN 64L /* minimum size of buffer
@ -105,10 +106,10 @@ static int crc32_pmull_update(struct shash_desc *desc, const u8 *data,
length -= l;
}
if (length >= PMULL_MIN_LEN) {
if (length >= PMULL_MIN_LEN && may_use_simd()) {
l = round_down(length, SCALE_F);
kernel_neon_begin_partial(10);
kernel_neon_begin();
*crc = crc32_pmull_le(data, l, *crc);
kernel_neon_end();
@ -137,10 +138,10 @@ static int crc32c_pmull_update(struct shash_desc *desc, const u8 *data,
length -= l;
}
if (length >= PMULL_MIN_LEN) {
if (length >= PMULL_MIN_LEN && may_use_simd()) {
l = round_down(length, SCALE_F);
kernel_neon_begin_partial(10);
kernel_neon_begin();
*crc = crc32c_pmull_le(data, l, *crc);
kernel_neon_end();

View File

@ -1,7 +1,7 @@
/*
* Accelerated CRC-T10DIF using arm64 NEON and Crypto Extensions instructions
*
* Copyright (C) 2016 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2016 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -18,6 +18,7 @@
#include <crypto/internal/hash.h>
#include <asm/neon.h>
#include <asm/simd.h>
#define CRC_T10DIF_PMULL_CHUNK_SIZE 16U
@ -48,9 +49,13 @@ static int crct10dif_update(struct shash_desc *desc, const u8 *data,
}
if (length > 0) {
kernel_neon_begin_partial(14);
*crc = crc_t10dif_pmull(*crc, data, length);
kernel_neon_end();
if (may_use_simd()) {
kernel_neon_begin();
*crc = crc_t10dif_pmull(*crc, data, length);
kernel_neon_end();
} else {
*crc = crc_t10dif_generic(*crc, data, length);
}
}
return 0;

View File

@ -1,7 +1,7 @@
/*
* Accelerated GHASH implementation with ARMv8 PMULL instructions.
*
* Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
* Copyright (C) 2014 - 2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
@ -11,31 +11,215 @@
#include <linux/linkage.h>
#include <asm/assembler.h>
SHASH .req v0
SHASH2 .req v1
T1 .req v2
T2 .req v3
MASK .req v4
XL .req v5
XM .req v6
XH .req v7
IN1 .req v7
SHASH .req v0
SHASH2 .req v1
T1 .req v2
T2 .req v3
MASK .req v4
XL .req v5
XM .req v6
XH .req v7
IN1 .req v7
k00_16 .req v8
k32_48 .req v9
t3 .req v10
t4 .req v11
t5 .req v12
t6 .req v13
t7 .req v14
t8 .req v15
t9 .req v16
perm1 .req v17
perm2 .req v18
perm3 .req v19
sh1 .req v20
sh2 .req v21
sh3 .req v22
sh4 .req v23
ss1 .req v24
ss2 .req v25
ss3 .req v26
ss4 .req v27
.text
.arch armv8-a+crypto
/*
* void pmull_ghash_update(int blocks, u64 dg[], const char *src,
* struct ghash_key const *k, const char *head)
*/
ENTRY(pmull_ghash_update)
.macro __pmull_p64, rd, rn, rm
pmull \rd\().1q, \rn\().1d, \rm\().1d
.endm
.macro __pmull2_p64, rd, rn, rm
pmull2 \rd\().1q, \rn\().2d, \rm\().2d
.endm
.macro __pmull_p8, rq, ad, bd
ext t3.8b, \ad\().8b, \ad\().8b, #1 // A1
ext t5.8b, \ad\().8b, \ad\().8b, #2 // A2
ext t7.8b, \ad\().8b, \ad\().8b, #3 // A3
__pmull_p8_\bd \rq, \ad
.endm
.macro __pmull2_p8, rq, ad, bd
tbl t3.16b, {\ad\().16b}, perm1.16b // A1
tbl t5.16b, {\ad\().16b}, perm2.16b // A2
tbl t7.16b, {\ad\().16b}, perm3.16b // A3
__pmull2_p8_\bd \rq, \ad
.endm
.macro __pmull_p8_SHASH, rq, ad
__pmull_p8_tail \rq, \ad\().8b, SHASH.8b, 8b,, sh1, sh2, sh3, sh4
.endm
.macro __pmull_p8_SHASH2, rq, ad
__pmull_p8_tail \rq, \ad\().8b, SHASH2.8b, 8b,, ss1, ss2, ss3, ss4
.endm
.macro __pmull2_p8_SHASH, rq, ad
__pmull_p8_tail \rq, \ad\().16b, SHASH.16b, 16b, 2, sh1, sh2, sh3, sh4
.endm
.macro __pmull_p8_tail, rq, ad, bd, nb, t, b1, b2, b3, b4
pmull\t t3.8h, t3.\nb, \bd // F = A1*B
pmull\t t4.8h, \ad, \b1\().\nb // E = A*B1
pmull\t t5.8h, t5.\nb, \bd // H = A2*B
pmull\t t6.8h, \ad, \b2\().\nb // G = A*B2
pmull\t t7.8h, t7.\nb, \bd // J = A3*B
pmull\t t8.8h, \ad, \b3\().\nb // I = A*B3
pmull\t t9.8h, \ad, \b4\().\nb // K = A*B4
pmull\t \rq\().8h, \ad, \bd // D = A*B
eor t3.16b, t3.16b, t4.16b // L = E + F
eor t5.16b, t5.16b, t6.16b // M = G + H
eor t7.16b, t7.16b, t8.16b // N = I + J
uzp1 t4.2d, t3.2d, t5.2d
uzp2 t3.2d, t3.2d, t5.2d
uzp1 t6.2d, t7.2d, t9.2d
uzp2 t7.2d, t7.2d, t9.2d
// t3 = (L) (P0 + P1) << 8
// t5 = (M) (P2 + P3) << 16
eor t4.16b, t4.16b, t3.16b
and t3.16b, t3.16b, k32_48.16b
// t7 = (N) (P4 + P5) << 24
// t9 = (K) (P6 + P7) << 32
eor t6.16b, t6.16b, t7.16b
and t7.16b, t7.16b, k00_16.16b
eor t4.16b, t4.16b, t3.16b
eor t6.16b, t6.16b, t7.16b
zip2 t5.2d, t4.2d, t3.2d
zip1 t3.2d, t4.2d, t3.2d
zip2 t9.2d, t6.2d, t7.2d
zip1 t7.2d, t6.2d, t7.2d
ext t3.16b, t3.16b, t3.16b, #15
ext t5.16b, t5.16b, t5.16b, #14
ext t7.16b, t7.16b, t7.16b, #13
ext t9.16b, t9.16b, t9.16b, #12
eor t3.16b, t3.16b, t5.16b
eor t7.16b, t7.16b, t9.16b
eor \rq\().16b, \rq\().16b, t3.16b
eor \rq\().16b, \rq\().16b, t7.16b
.endm
.macro __pmull_pre_p64
movi MASK.16b, #0xe1
shl MASK.2d, MASK.2d, #57
.endm
.macro __pmull_pre_p8
// k00_16 := 0x0000000000000000_000000000000ffff
// k32_48 := 0x00000000ffffffff_0000ffffffffffff
movi k32_48.2d, #0xffffffff
mov k32_48.h[2], k32_48.h[0]
ushr k00_16.2d, k32_48.2d, #32
// prepare the permutation vectors
mov_q x5, 0x080f0e0d0c0b0a09
movi T1.8b, #8
dup perm1.2d, x5
eor perm1.16b, perm1.16b, T1.16b
ushr perm2.2d, perm1.2d, #8
ushr perm3.2d, perm1.2d, #16
ushr T1.2d, perm1.2d, #24
sli perm2.2d, perm1.2d, #56
sli perm3.2d, perm1.2d, #48
sli T1.2d, perm1.2d, #40
// precompute loop invariants
tbl sh1.16b, {SHASH.16b}, perm1.16b
tbl sh2.16b, {SHASH.16b}, perm2.16b
tbl sh3.16b, {SHASH.16b}, perm3.16b
tbl sh4.16b, {SHASH.16b}, T1.16b
ext ss1.8b, SHASH2.8b, SHASH2.8b, #1
ext ss2.8b, SHASH2.8b, SHASH2.8b, #2
ext ss3.8b, SHASH2.8b, SHASH2.8b, #3
ext ss4.8b, SHASH2.8b, SHASH2.8b, #4
.endm
//
// PMULL (64x64->128) based reduction for CPUs that can do
// it in a single instruction.
//
.macro __pmull_reduce_p64
pmull T2.1q, XL.1d, MASK.1d
eor XM.16b, XM.16b, T1.16b
mov XH.d[0], XM.d[1]
mov XM.d[1], XL.d[0]
eor XL.16b, XM.16b, T2.16b
ext T2.16b, XL.16b, XL.16b, #8
pmull XL.1q, XL.1d, MASK.1d
.endm
//
// Alternative reduction for CPUs that lack support for the
// 64x64->128 PMULL instruction
//
.macro __pmull_reduce_p8
eor XM.16b, XM.16b, T1.16b
mov XL.d[1], XM.d[0]
mov XH.d[0], XM.d[1]
shl T1.2d, XL.2d, #57
shl T2.2d, XL.2d, #62
eor T2.16b, T2.16b, T1.16b
shl T1.2d, XL.2d, #63
eor T2.16b, T2.16b, T1.16b
ext T1.16b, XL.16b, XH.16b, #8
eor T2.16b, T2.16b, T1.16b
mov XL.d[1], T2.d[0]
mov XH.d[0], T2.d[1]
ushr T2.2d, XL.2d, #1
eor XH.16b, XH.16b, XL.16b
eor XL.16b, XL.16b, T2.16b
ushr T2.2d, T2.2d, #6
ushr XL.2d, XL.2d, #1
.endm
.macro __pmull_ghash, pn
ld1 {SHASH.2d}, [x3]
ld1 {XL.2d}, [x1]
movi MASK.16b, #0xe1
ext SHASH2.16b, SHASH.16b, SHASH.16b, #8
shl MASK.2d, MASK.2d, #57
eor SHASH2.16b, SHASH2.16b, SHASH.16b
__pmull_pre_\pn
/* do the head block first, if supplied */
cbz x4, 0f
ld1 {T1.2d}, [x4]
@ -52,23 +236,17 @@ CPU_LE( rev64 T1.16b, T1.16b )
eor T1.16b, T1.16b, T2.16b
eor XL.16b, XL.16b, IN1.16b
pmull2 XH.1q, SHASH.2d, XL.2d // a1 * b1
__pmull2_\pn XH, XL, SHASH // a1 * b1
eor T1.16b, T1.16b, XL.16b
pmull XL.1q, SHASH.1d, XL.1d // a0 * b0
pmull XM.1q, SHASH2.1d, T1.1d // (a1 + a0)(b1 + b0)
__pmull_\pn XL, XL, SHASH // a0 * b0
__pmull_\pn XM, T1, SHASH2 // (a1 + a0)(b1 + b0)
ext T1.16b, XL.16b, XH.16b, #8
eor T2.16b, XL.16b, XH.16b
eor XM.16b, XM.16b, T1.16b
ext T1.16b, XL.16b, XH.16b, #8
eor XM.16b, XM.16b, T2.16b
pmull T2.1q, XL.1d, MASK.1d
mov XH.d[0], XM.d[1]
mov XM.d[1], XL.d[0]
__pmull_reduce_\pn
eor XL.16b, XM.16b, T2.16b
ext T2.16b, XL.16b, XL.16b, #8
pmull XL.1q, XL.1d, MASK.1d
eor T2.16b, T2.16b, XH.16b
eor XL.16b, XL.16b, T2.16b
@ -76,4 +254,191 @@ CPU_LE( rev64 T1.16b, T1.16b )
st1 {XL.2d}, [x1]
ret
ENDPROC(pmull_ghash_update)
.endm
/*
* void pmull_ghash_update(int blocks, u64 dg[], const char *src,
* struct ghash_key const *k, const char *head)
*/
ENTRY(pmull_ghash_update_p64)
__pmull_ghash p64
ENDPROC(pmull_ghash_update_p64)
ENTRY(pmull_ghash_update_p8)
__pmull_ghash p8
ENDPROC(pmull_ghash_update_p8)
KS .req v8
CTR .req v9
INP .req v10
.macro load_round_keys, rounds, rk
cmp \rounds, #12
blo 2222f /* 128 bits */
beq 1111f /* 192 bits */
ld1 {v17.4s-v18.4s}, [\rk], #32
1111: ld1 {v19.4s-v20.4s}, [\rk], #32
2222: ld1 {v21.4s-v24.4s}, [\rk], #64
ld1 {v25.4s-v28.4s}, [\rk], #64
ld1 {v29.4s-v31.4s}, [\rk]
.endm
.macro enc_round, state, key
aese \state\().16b, \key\().16b
aesmc \state\().16b, \state\().16b
.endm
.macro enc_block, state, rounds
cmp \rounds, #12
b.lo 2222f /* 128 bits */
b.eq 1111f /* 192 bits */
enc_round \state, v17
enc_round \state, v18
1111: enc_round \state, v19
enc_round \state, v20
2222: .irp key, v21, v22, v23, v24, v25, v26, v27, v28, v29
enc_round \state, \key
.endr
aese \state\().16b, v30.16b
eor \state\().16b, \state\().16b, v31.16b
.endm
.macro pmull_gcm_do_crypt, enc
ld1 {SHASH.2d}, [x4]
ld1 {XL.2d}, [x1]
ldr x8, [x5, #8] // load lower counter
movi MASK.16b, #0xe1
ext SHASH2.16b, SHASH.16b, SHASH.16b, #8
CPU_LE( rev x8, x8 )
shl MASK.2d, MASK.2d, #57
eor SHASH2.16b, SHASH2.16b, SHASH.16b
.if \enc == 1
ld1 {KS.16b}, [x7]
.endif
0: ld1 {CTR.8b}, [x5] // load upper counter
ld1 {INP.16b}, [x3], #16
rev x9, x8
add x8, x8, #1
sub w0, w0, #1
ins CTR.d[1], x9 // set lower counter
.if \enc == 1
eor INP.16b, INP.16b, KS.16b // encrypt input
st1 {INP.16b}, [x2], #16
.endif
rev64 T1.16b, INP.16b
cmp w6, #12
b.ge 2f // AES-192/256?
1: enc_round CTR, v21
ext T2.16b, XL.16b, XL.16b, #8
ext IN1.16b, T1.16b, T1.16b, #8
enc_round CTR, v22
eor T1.16b, T1.16b, T2.16b
eor XL.16b, XL.16b, IN1.16b
enc_round CTR, v23
pmull2 XH.1q, SHASH.2d, XL.2d // a1 * b1
eor T1.16b, T1.16b, XL.16b
enc_round CTR, v24
pmull XL.1q, SHASH.1d, XL.1d // a0 * b0
pmull XM.1q, SHASH2.1d, T1.1d // (a1 + a0)(b1 + b0)
enc_round CTR, v25
ext T1.16b, XL.16b, XH.16b, #8
eor T2.16b, XL.16b, XH.16b
eor XM.16b, XM.16b, T1.16b
enc_round CTR, v26
eor XM.16b, XM.16b, T2.16b
pmull T2.1q, XL.1d, MASK.1d
enc_round CTR, v27
mov XH.d[0], XM.d[1]
mov XM.d[1], XL.d[0]
enc_round CTR, v28
eor XL.16b, XM.16b, T2.16b
enc_round CTR, v29
ext T2.16b, XL.16b, XL.16b, #8
aese CTR.16b, v30.16b
pmull XL.1q, XL.1d, MASK.1d
eor T2.16b, T2.16b, XH.16b
eor KS.16b, CTR.16b, v31.16b
eor XL.16b, XL.16b, T2.16b
.if \enc == 0
eor INP.16b, INP.16b, KS.16b
st1 {INP.16b}, [x2], #16
.endif
cbnz w0, 0b
CPU_LE( rev x8, x8 )
st1 {XL.2d}, [x1]
str x8, [x5, #8] // store lower counter
.if \enc == 1
st1 {KS.16b}, [x7]
.endif
ret
2: b.eq 3f // AES-192?
enc_round CTR, v17
enc_round CTR, v18
3: enc_round CTR, v19
enc_round CTR, v20
b 1b
.endm
/*
* void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[], const u8 src[],
* struct ghash_key const *k, u8 ctr[],
* int rounds, u8 ks[])
*/
ENTRY(pmull_gcm_encrypt)
pmull_gcm_do_crypt 1
ENDPROC(pmull_gcm_encrypt)
/*
* void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[], const u8 src[],
* struct ghash_key const *k, u8 ctr[],
* int rounds)
*/
ENTRY(pmull_gcm_decrypt)
pmull_gcm_do_crypt 0
ENDPROC(pmull_gcm_decrypt)
/*
* void pmull_gcm_encrypt_block(u8 dst[], u8 src[], u8 rk[], int rounds)
*/
ENTRY(pmull_gcm_encrypt_block)
cbz x2, 0f
load_round_keys w3, x2
0: ld1 {v0.16b}, [x1]
enc_block v0, w3
st1 {v0.16b}, [x0]
ret
ENDPROC(pmull_gcm_encrypt_block)

View File

@ -1,7 +1,7 @@
/*
* Accelerated GHASH implementation with ARMv8 PMULL instructions.
*
* Copyright (C) 2014 Linaro Ltd. <ard.biesheuvel@linaro.org>
* Copyright (C) 2014 - 2017 Linaro Ltd. <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
@ -9,22 +9,33 @@
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/aes.h>
#include <crypto/algapi.h>
#include <crypto/b128ops.h>
#include <crypto/gf128mul.h>
#include <crypto/internal/aead.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
#include <linux/cpufeature.h>
#include <linux/crypto.h>
#include <linux/module.h>
MODULE_DESCRIPTION("GHASH secure hash using ARMv8 Crypto Extensions");
MODULE_DESCRIPTION("GHASH and AES-GCM using ARMv8 Crypto Extensions");
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("ghash");
#define GHASH_BLOCK_SIZE 16
#define GHASH_DIGEST_SIZE 16
#define GCM_IV_SIZE 12
struct ghash_key {
u64 a;
u64 b;
be128 k;
};
struct ghash_desc_ctx {
@ -33,8 +44,35 @@ struct ghash_desc_ctx {
u32 count;
};
asmlinkage void pmull_ghash_update(int blocks, u64 dg[], const char *src,
struct ghash_key const *k, const char *head);
struct gcm_aes_ctx {
struct crypto_aes_ctx aes_key;
struct ghash_key ghash_key;
};
asmlinkage void pmull_ghash_update_p64(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
asmlinkage void pmull_ghash_update_p8(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
static void (*pmull_ghash_update)(int blocks, u64 dg[], const char *src,
struct ghash_key const *k,
const char *head);
asmlinkage void pmull_gcm_encrypt(int blocks, u64 dg[], u8 dst[],
const u8 src[], struct ghash_key const *k,
u8 ctr[], int rounds, u8 ks[]);
asmlinkage void pmull_gcm_decrypt(int blocks, u64 dg[], u8 dst[],
const u8 src[], struct ghash_key const *k,
u8 ctr[], int rounds);
asmlinkage void pmull_gcm_encrypt_block(u8 dst[], u8 const src[],
u32 const rk[], int rounds);
asmlinkage void __aes_arm64_encrypt(u32 *rk, u8 *out, const u8 *in, int rounds);
static int ghash_init(struct shash_desc *desc)
{
@ -44,6 +82,36 @@ static int ghash_init(struct shash_desc *desc)
return 0;
}
static void ghash_do_update(int blocks, u64 dg[], const char *src,
struct ghash_key *key, const char *head)
{
if (likely(may_use_simd())) {
kernel_neon_begin();
pmull_ghash_update(blocks, dg, src, key, head);
kernel_neon_end();
} else {
be128 dst = { cpu_to_be64(dg[1]), cpu_to_be64(dg[0]) };
do {
const u8 *in = src;
if (head) {
in = head;
blocks++;
head = NULL;
} else {
src += GHASH_BLOCK_SIZE;
}
crypto_xor((u8 *)&dst, in, GHASH_BLOCK_SIZE);
gf128mul_lle(&dst, &key->k);
} while (--blocks);
dg[0] = be64_to_cpu(dst.b);
dg[1] = be64_to_cpu(dst.a);
}
}
static int ghash_update(struct shash_desc *desc, const u8 *src,
unsigned int len)
{
@ -67,10 +135,9 @@ static int ghash_update(struct shash_desc *desc, const u8 *src,
blocks = len / GHASH_BLOCK_SIZE;
len %= GHASH_BLOCK_SIZE;
kernel_neon_begin_partial(8);
pmull_ghash_update(blocks, ctx->digest, src, key,
partial ? ctx->buf : NULL);
kernel_neon_end();
ghash_do_update(blocks, ctx->digest, src, key,
partial ? ctx->buf : NULL);
src += blocks * GHASH_BLOCK_SIZE;
partial = 0;
}
@ -89,9 +156,7 @@ static int ghash_final(struct shash_desc *desc, u8 *dst)
memset(ctx->buf + partial, 0, GHASH_BLOCK_SIZE - partial);
kernel_neon_begin_partial(8);
pmull_ghash_update(1, ctx->digest, ctx->buf, key, NULL);
kernel_neon_end();
ghash_do_update(1, ctx->digest, ctx->buf, key, NULL);
}
put_unaligned_be64(ctx->digest[1], dst);
put_unaligned_be64(ctx->digest[0], dst + 8);
@ -100,16 +165,13 @@ static int ghash_final(struct shash_desc *desc, u8 *dst)
return 0;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *inkey, unsigned int keylen)
static int __ghash_setkey(struct ghash_key *key,
const u8 *inkey, unsigned int keylen)
{
struct ghash_key *key = crypto_shash_ctx(tfm);
u64 a, b;
if (keylen != GHASH_BLOCK_SIZE) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
/* needed for the fallback */
memcpy(&key->k, inkey, GHASH_BLOCK_SIZE);
/* perform multiplication by 'x' in GF(2^128) */
b = get_unaligned_be64(inkey);
@ -124,33 +186,418 @@ static int ghash_setkey(struct crypto_shash *tfm,
return 0;
}
static int ghash_setkey(struct crypto_shash *tfm,
const u8 *inkey, unsigned int keylen)
{
struct ghash_key *key = crypto_shash_ctx(tfm);
if (keylen != GHASH_BLOCK_SIZE) {
crypto_shash_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
return -EINVAL;
}
return __ghash_setkey(key, inkey, keylen);
}
static struct shash_alg ghash_alg = {
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update,
.final = ghash_final,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
.base = {
.cra_name = "ghash",
.cra_driver_name = "ghash-ce",
.cra_priority = 200,
.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.cra_blocksize = GHASH_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct ghash_key),
.cra_module = THIS_MODULE,
},
.base.cra_name = "ghash",
.base.cra_driver_name = "ghash-ce",
.base.cra_priority = 200,
.base.cra_flags = CRYPTO_ALG_TYPE_SHASH,
.base.cra_blocksize = GHASH_BLOCK_SIZE,
.base.cra_ctxsize = sizeof(struct ghash_key),
.base.cra_module = THIS_MODULE,
.digestsize = GHASH_DIGEST_SIZE,
.init = ghash_init,
.update = ghash_update,
.final = ghash_final,
.setkey = ghash_setkey,
.descsize = sizeof(struct ghash_desc_ctx),
};
static int num_rounds(struct crypto_aes_ctx *ctx)
{
/*
* # of rounds specified by AES:
* 128 bit key 10 rounds
* 192 bit key 12 rounds
* 256 bit key 14 rounds
* => n byte key => 6 + (n/4) rounds
*/
return 6 + ctx->key_length / 4;
}
static int gcm_setkey(struct crypto_aead *tfm, const u8 *inkey,
unsigned int keylen)
{
struct gcm_aes_ctx *ctx = crypto_aead_ctx(tfm);
u8 key[GHASH_BLOCK_SIZE];
int ret;
ret = crypto_aes_expand_key(&ctx->aes_key, inkey, keylen);
if (ret) {
tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
__aes_arm64_encrypt(ctx->aes_key.key_enc, key, (u8[AES_BLOCK_SIZE]){},
num_rounds(&ctx->aes_key));
return __ghash_setkey(&ctx->ghash_key, key, sizeof(key));
}
static int gcm_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
{
switch (authsize) {
case 4:
case 8:
case 12 ... 16:
break;
default:
return -EINVAL;
}
return 0;
}
static void gcm_update_mac(u64 dg[], const u8 *src, int count, u8 buf[],
int *buf_count, struct gcm_aes_ctx *ctx)
{
if (*buf_count > 0) {
int buf_added = min(count, GHASH_BLOCK_SIZE - *buf_count);
memcpy(&buf[*buf_count], src, buf_added);
*buf_count += buf_added;
src += buf_added;
count -= buf_added;
}
if (count >= GHASH_BLOCK_SIZE || *buf_count == GHASH_BLOCK_SIZE) {
int blocks = count / GHASH_BLOCK_SIZE;
ghash_do_update(blocks, dg, src, &ctx->ghash_key,
*buf_count ? buf : NULL);
src += blocks * GHASH_BLOCK_SIZE;
count %= GHASH_BLOCK_SIZE;
*buf_count = 0;
}
if (count > 0) {
memcpy(buf, src, count);
*buf_count = count;
}
}
static void gcm_calculate_auth_mac(struct aead_request *req, u64 dg[])
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
u8 buf[GHASH_BLOCK_SIZE];
struct scatter_walk walk;
u32 len = req->assoclen;
int buf_count = 0;
scatterwalk_start(&walk, req->src);
do {
u32 n = scatterwalk_clamp(&walk, len);
u8 *p;
if (!n) {
scatterwalk_start(&walk, sg_next(walk.sg));
n = scatterwalk_clamp(&walk, len);
}
p = scatterwalk_map(&walk);
gcm_update_mac(dg, p, n, buf, &buf_count, ctx);
len -= n;
scatterwalk_unmap(p);
scatterwalk_advance(&walk, n);
scatterwalk_done(&walk, 0, len);
} while (len);
if (buf_count) {
memset(&buf[buf_count], 0, GHASH_BLOCK_SIZE - buf_count);
ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
}
}
static void gcm_final(struct aead_request *req, struct gcm_aes_ctx *ctx,
u64 dg[], u8 tag[], int cryptlen)
{
u8 mac[AES_BLOCK_SIZE];
u128 lengths;
lengths.a = cpu_to_be64(req->assoclen * 8);
lengths.b = cpu_to_be64(cryptlen * 8);
ghash_do_update(1, dg, (void *)&lengths, &ctx->ghash_key, NULL);
put_unaligned_be64(dg[1], mac);
put_unaligned_be64(dg[0], mac + 8);
crypto_xor(tag, mac, AES_BLOCK_SIZE);
}
static int gcm_encrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
struct skcipher_walk walk;
u8 iv[AES_BLOCK_SIZE];
u8 ks[AES_BLOCK_SIZE];
u8 tag[AES_BLOCK_SIZE];
u64 dg[2] = {};
int err;
if (req->assoclen)
gcm_calculate_auth_mac(req, dg);
memcpy(iv, req->iv, GCM_IV_SIZE);
put_unaligned_be32(1, iv + GCM_IV_SIZE);
if (likely(may_use_simd())) {
kernel_neon_begin();
pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc,
num_rounds(&ctx->aes_key));
put_unaligned_be32(2, iv + GCM_IV_SIZE);
pmull_gcm_encrypt_block(ks, iv, NULL,
num_rounds(&ctx->aes_key));
put_unaligned_be32(3, iv + GCM_IV_SIZE);
err = skcipher_walk_aead_encrypt(&walk, req, true);
while (walk.nbytes >= AES_BLOCK_SIZE) {
int blocks = walk.nbytes / AES_BLOCK_SIZE;
pmull_gcm_encrypt(blocks, dg, walk.dst.virt.addr,
walk.src.virt.addr, &ctx->ghash_key,
iv, num_rounds(&ctx->aes_key), ks);
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
kernel_neon_end();
} else {
__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv,
num_rounds(&ctx->aes_key));
put_unaligned_be32(2, iv + GCM_IV_SIZE);
err = skcipher_walk_aead_encrypt(&walk, req, true);
while (walk.nbytes >= AES_BLOCK_SIZE) {
int blocks = walk.nbytes / AES_BLOCK_SIZE;
u8 *dst = walk.dst.virt.addr;
u8 *src = walk.src.virt.addr;
do {
__aes_arm64_encrypt(ctx->aes_key.key_enc,
ks, iv,
num_rounds(&ctx->aes_key));
crypto_xor_cpy(dst, src, ks, AES_BLOCK_SIZE);
crypto_inc(iv, AES_BLOCK_SIZE);
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
} while (--blocks > 0);
ghash_do_update(walk.nbytes / AES_BLOCK_SIZE, dg,
walk.dst.virt.addr, &ctx->ghash_key,
NULL);
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
if (walk.nbytes)
__aes_arm64_encrypt(ctx->aes_key.key_enc, ks, iv,
num_rounds(&ctx->aes_key));
}
/* handle the tail */
if (walk.nbytes) {
u8 buf[GHASH_BLOCK_SIZE];
crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, ks,
walk.nbytes);
memcpy(buf, walk.dst.virt.addr, walk.nbytes);
memset(buf + walk.nbytes, 0, GHASH_BLOCK_SIZE - walk.nbytes);
ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
err = skcipher_walk_done(&walk, 0);
}
if (err)
return err;
gcm_final(req, ctx, dg, tag, req->cryptlen);
/* copy authtag to end of dst */
scatterwalk_map_and_copy(tag, req->dst, req->assoclen + req->cryptlen,
crypto_aead_authsize(aead), 1);
return 0;
}
static int gcm_decrypt(struct aead_request *req)
{
struct crypto_aead *aead = crypto_aead_reqtfm(req);
struct gcm_aes_ctx *ctx = crypto_aead_ctx(aead);
unsigned int authsize = crypto_aead_authsize(aead);
struct skcipher_walk walk;
u8 iv[AES_BLOCK_SIZE];
u8 tag[AES_BLOCK_SIZE];
u8 buf[GHASH_BLOCK_SIZE];
u64 dg[2] = {};
int err;
if (req->assoclen)
gcm_calculate_auth_mac(req, dg);
memcpy(iv, req->iv, GCM_IV_SIZE);
put_unaligned_be32(1, iv + GCM_IV_SIZE);
if (likely(may_use_simd())) {
kernel_neon_begin();
pmull_gcm_encrypt_block(tag, iv, ctx->aes_key.key_enc,
num_rounds(&ctx->aes_key));
put_unaligned_be32(2, iv + GCM_IV_SIZE);
err = skcipher_walk_aead_decrypt(&walk, req, true);
while (walk.nbytes >= AES_BLOCK_SIZE) {
int blocks = walk.nbytes / AES_BLOCK_SIZE;
pmull_gcm_decrypt(blocks, dg, walk.dst.virt.addr,
walk.src.virt.addr, &ctx->ghash_key,
iv, num_rounds(&ctx->aes_key));
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
if (walk.nbytes)
pmull_gcm_encrypt_block(iv, iv, NULL,
num_rounds(&ctx->aes_key));
kernel_neon_end();
} else {
__aes_arm64_encrypt(ctx->aes_key.key_enc, tag, iv,
num_rounds(&ctx->aes_key));
put_unaligned_be32(2, iv + GCM_IV_SIZE);
err = skcipher_walk_aead_decrypt(&walk, req, true);
while (walk.nbytes >= AES_BLOCK_SIZE) {
int blocks = walk.nbytes / AES_BLOCK_SIZE;
u8 *dst = walk.dst.virt.addr;
u8 *src = walk.src.virt.addr;
ghash_do_update(blocks, dg, walk.src.virt.addr,
&ctx->ghash_key, NULL);
do {
__aes_arm64_encrypt(ctx->aes_key.key_enc,
buf, iv,
num_rounds(&ctx->aes_key));
crypto_xor_cpy(dst, src, buf, AES_BLOCK_SIZE);
crypto_inc(iv, AES_BLOCK_SIZE);
dst += AES_BLOCK_SIZE;
src += AES_BLOCK_SIZE;
} while (--blocks > 0);
err = skcipher_walk_done(&walk,
walk.nbytes % AES_BLOCK_SIZE);
}
if (walk.nbytes)
__aes_arm64_encrypt(ctx->aes_key.key_enc, iv, iv,
num_rounds(&ctx->aes_key));
}
/* handle the tail */
if (walk.nbytes) {
memcpy(buf, walk.src.virt.addr, walk.nbytes);
memset(buf + walk.nbytes, 0, GHASH_BLOCK_SIZE - walk.nbytes);
ghash_do_update(1, dg, buf, &ctx->ghash_key, NULL);
crypto_xor_cpy(walk.dst.virt.addr, walk.src.virt.addr, iv,
walk.nbytes);
err = skcipher_walk_done(&walk, 0);
}
if (err)
return err;
gcm_final(req, ctx, dg, tag, req->cryptlen - authsize);
/* compare calculated auth tag with the stored one */
scatterwalk_map_and_copy(buf, req->src,
req->assoclen + req->cryptlen - authsize,
authsize, 0);
if (crypto_memneq(tag, buf, authsize))
return -EBADMSG;
return 0;
}
static struct aead_alg gcm_aes_alg = {
.ivsize = GCM_IV_SIZE,
.chunksize = AES_BLOCK_SIZE,
.maxauthsize = AES_BLOCK_SIZE,
.setkey = gcm_setkey,
.setauthsize = gcm_setauthsize,
.encrypt = gcm_encrypt,
.decrypt = gcm_decrypt,
.base.cra_name = "gcm(aes)",
.base.cra_driver_name = "gcm-aes-ce",
.base.cra_priority = 300,
.base.cra_blocksize = 1,
.base.cra_ctxsize = sizeof(struct gcm_aes_ctx),
.base.cra_module = THIS_MODULE,
};
static int __init ghash_ce_mod_init(void)
{
return crypto_register_shash(&ghash_alg);
int ret;
if (!(elf_hwcap & HWCAP_ASIMD))
return -ENODEV;
if (elf_hwcap & HWCAP_PMULL)
pmull_ghash_update = pmull_ghash_update_p64;
else
pmull_ghash_update = pmull_ghash_update_p8;
ret = crypto_register_shash(&ghash_alg);
if (ret)
return ret;
if (elf_hwcap & HWCAP_PMULL) {
ret = crypto_register_aead(&gcm_aes_alg);
if (ret)
crypto_unregister_shash(&ghash_alg);
}
return ret;
}
static void __exit ghash_ce_mod_exit(void)
{
crypto_unregister_shash(&ghash_alg);
crypto_unregister_aead(&gcm_aes_alg);
}
module_cpu_feature_match(PMULL, ghash_ce_mod_init);
static const struct cpu_feature ghash_cpu_feature[] = {
{ cpu_feature(PMULL) }, { }
};
MODULE_DEVICE_TABLE(cpu, ghash_cpu_feature);
module_init(ghash_ce_mod_init);
module_exit(ghash_ce_mod_exit);

View File

@ -1,7 +1,7 @@
/*
* sha1-ce-glue.c - SHA-1 secure hash using ARMv8 Crypto Extensions
*
* Copyright (C) 2014 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2014 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -9,6 +9,7 @@
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
@ -37,8 +38,11 @@ static int sha1_ce_update(struct shash_desc *desc, const u8 *data,
{
struct sha1_ce_state *sctx = shash_desc_ctx(desc);
if (!may_use_simd())
return crypto_sha1_update(desc, data, len);
sctx->finalize = 0;
kernel_neon_begin_partial(16);
kernel_neon_begin();
sha1_base_do_update(desc, data, len,
(sha1_block_fn *)sha1_ce_transform);
kernel_neon_end();
@ -52,13 +56,16 @@ static int sha1_ce_finup(struct shash_desc *desc, const u8 *data,
struct sha1_ce_state *sctx = shash_desc_ctx(desc);
bool finalize = !sctx->sst.count && !(len % SHA1_BLOCK_SIZE);
if (!may_use_simd())
return crypto_sha1_finup(desc, data, len, out);
/*
* Allow the asm code to perform the finalization if there is no
* partial data and the input is a round multiple of the block size.
*/
sctx->finalize = finalize;
kernel_neon_begin_partial(16);
kernel_neon_begin();
sha1_base_do_update(desc, data, len,
(sha1_block_fn *)sha1_ce_transform);
if (!finalize)
@ -71,8 +78,11 @@ static int sha1_ce_final(struct shash_desc *desc, u8 *out)
{
struct sha1_ce_state *sctx = shash_desc_ctx(desc);
if (!may_use_simd())
return crypto_sha1_finup(desc, NULL, 0, out);
sctx->finalize = 0;
kernel_neon_begin_partial(16);
kernel_neon_begin();
sha1_base_do_finalize(desc, (sha1_block_fn *)sha1_ce_transform);
kernel_neon_end();
return sha1_base_finish(desc, out);

View File

@ -1,7 +1,7 @@
/*
* sha2-ce-glue.c - SHA-224/SHA-256 using ARMv8 Crypto Extensions
*
* Copyright (C) 2014 Linaro Ltd <ard.biesheuvel@linaro.org>
* Copyright (C) 2014 - 2017 Linaro Ltd <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
@ -9,6 +9,7 @@
*/
#include <asm/neon.h>
#include <asm/simd.h>
#include <asm/unaligned.h>
#include <crypto/internal/hash.h>
#include <crypto/sha.h>
@ -34,13 +35,19 @@ const u32 sha256_ce_offsetof_count = offsetof(struct sha256_ce_state,
const u32 sha256_ce_offsetof_finalize = offsetof(struct sha256_ce_state,
finalize);
asmlinkage void sha256_block_data_order(u32 *digest, u8 const *src, int blocks);
static int sha256_ce_update(struct shash_desc *desc, const u8 *data,
unsigned int len)
{
struct sha256_ce_state *sctx = shash_desc_ctx(desc);
if (!may_use_simd())
return sha256_base_do_update(desc, data, len,
(sha256_block_fn *)sha256_block_data_order);
sctx->finalize = 0;
kernel_neon_begin_partial(28);
kernel_neon_begin();
sha256_base_do_update(desc, data, len,
(sha256_block_fn *)sha2_ce_transform);
kernel_neon_end();
@ -54,13 +61,22 @@ static int sha256_ce_finup(struct shash_desc *desc, const u8 *data,
struct sha256_ce_state *sctx = shash_desc_ctx(desc);
bool finalize = !sctx->sst.count && !(len % SHA256_BLOCK_SIZE);
if (!may_use_simd()) {
if (len)
sha256_base_do_update(desc, data, len,
(sha256_block_fn *)sha256_block_data_order);
sha256_base_do_finalize(desc,
(sha256_block_fn *)sha256_block_data_order);
return sha256_base_finish(desc, out);
}
/*
* Allow the asm code to perform the finalization if there is no
* partial data and the input is a round multiple of the block size.
*/
sctx->finalize = finalize;
kernel_neon_begin_partial(28);
kernel_neon_begin();
sha256_base_do_update(desc, data, len,
(sha256_block_fn *)sha2_ce_transform);
if (!finalize)
@ -74,8 +90,14 @@ static int sha256_ce_final(struct shash_desc *desc, u8 *out)
{
struct sha256_ce_state *sctx = shash_desc_ctx(desc);
if (!may_use_simd()) {
sha256_base_do_finalize(desc,
(sha256_block_fn *)sha256_block_data_order);
return sha256_base_finish(desc, out);
}
sctx->finalize = 0;
kernel_neon_begin_partial(28);
kernel_neon_begin();
sha256_base_do_finalize(desc, (sha256_block_fn *)sha2_ce_transform);
kernel_neon_end();
return sha256_base_finish(desc, out);

View File

@ -29,6 +29,7 @@ MODULE_ALIAS_CRYPTO("sha256");
asmlinkage void sha256_block_data_order(u32 *digest, const void *data,
unsigned int num_blks);
EXPORT_SYMBOL(sha256_block_data_order);
asmlinkage void sha256_block_neon(u32 *digest, const void *data,
unsigned int num_blks);

View File

@ -344,8 +344,7 @@ static void ctr_crypt_final(struct crypto_sparc64_aes_ctx *ctx,
ctx->ops->ecb_encrypt(&ctx->key[0], (const u64 *)ctrblk,
keystream, AES_BLOCK_SIZE);
crypto_xor((u8 *) keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_xor_cpy(dst, (u8 *) keystream, src, nbytes);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
}

View File

@ -475,8 +475,8 @@ static void ctr_crypt_final(struct crypto_aes_ctx *ctx,
unsigned int nbytes = walk->nbytes;
aesni_enc(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_xor_cpy(dst, keystream, src, nbytes);
crypto_inc(ctrblk, AES_BLOCK_SIZE);
}

View File

@ -271,8 +271,7 @@ static void ctr_crypt_final(struct bf_ctx *ctx, struct blkcipher_walk *walk)
unsigned int nbytes = walk->nbytes;
blowfish_enc_blk(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_xor_cpy(dst, keystream, src, nbytes);
crypto_inc(ctrblk, BF_BLOCK_SIZE);
}

View File

@ -256,8 +256,7 @@ static void ctr_crypt_final(struct blkcipher_desc *desc,
unsigned int nbytes = walk->nbytes;
__cast5_encrypt(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_xor_cpy(dst, keystream, src, nbytes);
crypto_inc(ctrblk, CAST5_BLOCK_SIZE);
}

View File

@ -277,8 +277,7 @@ static void ctr_crypt_final(struct des3_ede_x86_ctx *ctx,
unsigned int nbytes = walk->nbytes;
des3_ede_enc_blk(ctx, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_xor_cpy(dst, keystream, src, nbytes);
crypto_inc(ctrblk, DES3_EDE_BLOCK_SIZE);
}

View File

@ -1753,6 +1753,8 @@ config CRYPTO_USER_API_AEAD
tristate "User-space interface for AEAD cipher algorithms"
depends on NET
select CRYPTO_AEAD
select CRYPTO_BLKCIPHER
select CRYPTO_NULL
select CRYPTO_USER_API
help
This option enables the user-spaces interface for AEAD

View File

@ -21,6 +21,7 @@
#include <linux/module.h>
#include <linux/net.h>
#include <linux/rwsem.h>
#include <linux/sched/signal.h>
#include <linux/security.h>
struct alg_type_list {
@ -507,6 +508,696 @@ void af_alg_complete(struct crypto_async_request *req, int err)
}
EXPORT_SYMBOL_GPL(af_alg_complete);
/**
* af_alg_alloc_tsgl - allocate the TX SGL
*
* @sk socket of connection to user space
* @return: 0 upon success, < 0 upon error
*/
int af_alg_alloc_tsgl(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
struct scatterlist *sg = NULL;
sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl, list);
if (!list_empty(&ctx->tsgl_list))
sg = sgl->sg;
if (!sg || sgl->cur >= MAX_SGL_ENTS) {
sgl = sock_kmalloc(sk, sizeof(*sgl) +
sizeof(sgl->sg[0]) * (MAX_SGL_ENTS + 1),
GFP_KERNEL);
if (!sgl)
return -ENOMEM;
sg_init_table(sgl->sg, MAX_SGL_ENTS + 1);
sgl->cur = 0;
if (sg)
sg_chain(sg, MAX_SGL_ENTS + 1, sgl->sg);
list_add_tail(&sgl->list, &ctx->tsgl_list);
}
return 0;
}
EXPORT_SYMBOL_GPL(af_alg_alloc_tsgl);
/**
* aead_count_tsgl - Count number of TX SG entries
*
* The counting starts from the beginning of the SGL to @bytes. If
* an offset is provided, the counting of the SG entries starts at the offset.
*
* @sk socket of connection to user space
* @bytes Count the number of SG entries holding given number of bytes.
* @offset Start the counting of SG entries from the given offset.
* @return Number of TX SG entries found given the constraints
*/
unsigned int af_alg_count_tsgl(struct sock *sk, size_t bytes, size_t offset)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl, *tmp;
unsigned int i;
unsigned int sgl_count = 0;
if (!bytes)
return 0;
list_for_each_entry_safe(sgl, tmp, &ctx->tsgl_list, list) {
struct scatterlist *sg = sgl->sg;
for (i = 0; i < sgl->cur; i++) {
size_t bytes_count;
/* Skip offset */
if (offset >= sg[i].length) {
offset -= sg[i].length;
bytes -= sg[i].length;
continue;
}
bytes_count = sg[i].length - offset;
offset = 0;
sgl_count++;
/* If we have seen requested number of bytes, stop */
if (bytes_count >= bytes)
return sgl_count;
bytes -= bytes_count;
}
}
return sgl_count;
}
EXPORT_SYMBOL_GPL(af_alg_count_tsgl);
/**
* aead_pull_tsgl - Release the specified buffers from TX SGL
*
* If @dst is non-null, reassign the pages to dst. The caller must release
* the pages. If @dst_offset is given only reassign the pages to @dst starting
* at the @dst_offset (byte). The caller must ensure that @dst is large
* enough (e.g. by using af_alg_count_tsgl with the same offset).
*
* @sk socket of connection to user space
* @used Number of bytes to pull from TX SGL
* @dst If non-NULL, buffer is reassigned to dst SGL instead of releasing. The
* caller must release the buffers in dst.
* @dst_offset Reassign the TX SGL from given offset. All buffers before
* reaching the offset is released.
*/
void af_alg_pull_tsgl(struct sock *sk, size_t used, struct scatterlist *dst,
size_t dst_offset)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
struct scatterlist *sg;
unsigned int i, j;
while (!list_empty(&ctx->tsgl_list)) {
sgl = list_first_entry(&ctx->tsgl_list, struct af_alg_tsgl,
list);
sg = sgl->sg;
for (i = 0, j = 0; i < sgl->cur; i++) {
size_t plen = min_t(size_t, used, sg[i].length);
struct page *page = sg_page(sg + i);
if (!page)
continue;
/*
* Assumption: caller created af_alg_count_tsgl(len)
* SG entries in dst.
*/
if (dst) {
if (dst_offset >= plen) {
/* discard page before offset */
dst_offset -= plen;
} else {
/* reassign page to dst after offset */
get_page(page);
sg_set_page(dst + j, page,
plen - dst_offset,
sg[i].offset + dst_offset);
dst_offset = 0;
j++;
}
}
sg[i].length -= plen;
sg[i].offset += plen;
used -= plen;
ctx->used -= plen;
if (sg[i].length)
return;
put_page(page);
sg_assign_page(sg + i, NULL);
}
list_del(&sgl->list);
sock_kfree_s(sk, sgl, sizeof(*sgl) + sizeof(sgl->sg[0]) *
(MAX_SGL_ENTS + 1));
}
if (!ctx->used)
ctx->merge = 0;
}
EXPORT_SYMBOL_GPL(af_alg_pull_tsgl);
/**
* af_alg_free_areq_sgls - Release TX and RX SGLs of the request
*
* @areq Request holding the TX and RX SGL
*/
void af_alg_free_areq_sgls(struct af_alg_async_req *areq)
{
struct sock *sk = areq->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_rsgl *rsgl, *tmp;
struct scatterlist *tsgl;
struct scatterlist *sg;
unsigned int i;
list_for_each_entry_safe(rsgl, tmp, &areq->rsgl_list, list) {
ctx->rcvused -= rsgl->sg_num_bytes;
af_alg_free_sg(&rsgl->sgl);
list_del(&rsgl->list);
if (rsgl != &areq->first_rsgl)
sock_kfree_s(sk, rsgl, sizeof(*rsgl));
}
tsgl = areq->tsgl;
for_each_sg(tsgl, sg, areq->tsgl_entries, i) {
if (!sg_page(sg))
continue;
put_page(sg_page(sg));
}
if (areq->tsgl && areq->tsgl_entries)
sock_kfree_s(sk, tsgl, areq->tsgl_entries * sizeof(*tsgl));
}
EXPORT_SYMBOL_GPL(af_alg_free_areq_sgls);
/**
* af_alg_wait_for_wmem - wait for availability of writable memory
*
* @sk socket of connection to user space
* @flags If MSG_DONTWAIT is set, then only report if function would sleep
* @return 0 when writable memory is available, < 0 upon error
*/
int af_alg_wait_for_wmem(struct sock *sk, unsigned int flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
int err = -ERESTARTSYS;
long timeout;
if (flags & MSG_DONTWAIT)
return -EAGAIN;
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
add_wait_queue(sk_sleep(sk), &wait);
for (;;) {
if (signal_pending(current))
break;
timeout = MAX_SCHEDULE_TIMEOUT;
if (sk_wait_event(sk, &timeout, af_alg_writable(sk), &wait)) {
err = 0;
break;
}
}
remove_wait_queue(sk_sleep(sk), &wait);
return err;
}
EXPORT_SYMBOL_GPL(af_alg_wait_for_wmem);
/**
* af_alg_wmem_wakeup - wakeup caller when writable memory is available
*
* @sk socket of connection to user space
*/
void af_alg_wmem_wakeup(struct sock *sk)
{
struct socket_wq *wq;
if (!af_alg_writable(sk))
return;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
POLLRDNORM |
POLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(af_alg_wmem_wakeup);
/**
* af_alg_wait_for_data - wait for availability of TX data
*
* @sk socket of connection to user space
* @flags If MSG_DONTWAIT is set, then only report if function would sleep
* @return 0 when writable memory is available, < 0 upon error
*/
int af_alg_wait_for_data(struct sock *sk, unsigned flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
long timeout;
int err = -ERESTARTSYS;
if (flags & MSG_DONTWAIT)
return -EAGAIN;
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
add_wait_queue(sk_sleep(sk), &wait);
for (;;) {
if (signal_pending(current))
break;
timeout = MAX_SCHEDULE_TIMEOUT;
if (sk_wait_event(sk, &timeout, (ctx->used || !ctx->more),
&wait)) {
err = 0;
break;
}
}
remove_wait_queue(sk_sleep(sk), &wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
return err;
}
EXPORT_SYMBOL_GPL(af_alg_wait_for_data);
/**
* af_alg_data_wakeup - wakeup caller when new data can be sent to kernel
*
* @sk socket of connection to user space
*/
void af_alg_data_wakeup(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct socket_wq *wq;
if (!ctx->used)
return;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
POLLRDNORM |
POLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
EXPORT_SYMBOL_GPL(af_alg_data_wakeup);
/**
* af_alg_sendmsg - implementation of sendmsg system call handler
*
* The sendmsg system call handler obtains the user data and stores it
* in ctx->tsgl_list. This implies allocation of the required numbers of
* struct af_alg_tsgl.
*
* In addition, the ctx is filled with the information sent via CMSG.
*
* @sock socket of connection to user space
* @msg message from user space
* @size size of message from user space
* @ivsize the size of the IV for the cipher operation to verify that the
* user-space-provided IV has the right size
* @return the number of copied data upon success, < 0 upon error
*/
int af_alg_sendmsg(struct socket *sock, struct msghdr *msg, size_t size,
unsigned int ivsize)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
struct af_alg_control con = {};
long copied = 0;
bool enc = 0;
bool init = 0;
int err = 0;
if (msg->msg_controllen) {
err = af_alg_cmsg_send(msg, &con);
if (err)
return err;
init = 1;
switch (con.op) {
case ALG_OP_ENCRYPT:
enc = 1;
break;
case ALG_OP_DECRYPT:
enc = 0;
break;
default:
return -EINVAL;
}
if (con.iv && con.iv->ivlen != ivsize)
return -EINVAL;
}
lock_sock(sk);
if (!ctx->more && ctx->used) {
err = -EINVAL;
goto unlock;
}
if (init) {
ctx->enc = enc;
if (con.iv)
memcpy(ctx->iv, con.iv->iv, ivsize);
ctx->aead_assoclen = con.aead_assoclen;
}
while (size) {
struct scatterlist *sg;
size_t len = size;
size_t plen;
/* use the existing memory in an allocated page */
if (ctx->merge) {
sgl = list_entry(ctx->tsgl_list.prev,
struct af_alg_tsgl, list);
sg = sgl->sg + sgl->cur - 1;
len = min_t(size_t, len,
PAGE_SIZE - sg->offset - sg->length);
err = memcpy_from_msg(page_address(sg_page(sg)) +
sg->offset + sg->length,
msg, len);
if (err)
goto unlock;
sg->length += len;
ctx->merge = (sg->offset + sg->length) &
(PAGE_SIZE - 1);
ctx->used += len;
copied += len;
size -= len;
continue;
}
if (!af_alg_writable(sk)) {
err = af_alg_wait_for_wmem(sk, msg->msg_flags);
if (err)
goto unlock;
}
/* allocate a new page */
len = min_t(unsigned long, len, af_alg_sndbuf(sk));
err = af_alg_alloc_tsgl(sk);
if (err)
goto unlock;
sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl,
list);
sg = sgl->sg;
if (sgl->cur)
sg_unmark_end(sg + sgl->cur - 1);
do {
unsigned int i = sgl->cur;
plen = min_t(size_t, len, PAGE_SIZE);
sg_assign_page(sg + i, alloc_page(GFP_KERNEL));
if (!sg_page(sg + i)) {
err = -ENOMEM;
goto unlock;
}
err = memcpy_from_msg(page_address(sg_page(sg + i)),
msg, plen);
if (err) {
__free_page(sg_page(sg + i));
sg_assign_page(sg + i, NULL);
goto unlock;
}
sg[i].length = plen;
len -= plen;
ctx->used += plen;
copied += plen;
size -= plen;
sgl->cur++;
} while (len && sgl->cur < MAX_SGL_ENTS);
if (!size)
sg_mark_end(sg + sgl->cur - 1);
ctx->merge = plen & (PAGE_SIZE - 1);
}
err = 0;
ctx->more = msg->msg_flags & MSG_MORE;
unlock:
af_alg_data_wakeup(sk);
release_sock(sk);
return copied ?: err;
}
EXPORT_SYMBOL_GPL(af_alg_sendmsg);
/**
* af_alg_sendpage - sendpage system call handler
*
* This is a generic implementation of sendpage to fill ctx->tsgl_list.
*/
ssize_t af_alg_sendpage(struct socket *sock, struct page *page,
int offset, size_t size, int flags)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
struct af_alg_tsgl *sgl;
int err = -EINVAL;
if (flags & MSG_SENDPAGE_NOTLAST)
flags |= MSG_MORE;
lock_sock(sk);
if (!ctx->more && ctx->used)
goto unlock;
if (!size)
goto done;
if (!af_alg_writable(sk)) {
err = af_alg_wait_for_wmem(sk, flags);
if (err)
goto unlock;
}
err = af_alg_alloc_tsgl(sk);
if (err)
goto unlock;
ctx->merge = 0;
sgl = list_entry(ctx->tsgl_list.prev, struct af_alg_tsgl, list);
if (sgl->cur)
sg_unmark_end(sgl->sg + sgl->cur - 1);
sg_mark_end(sgl->sg + sgl->cur);
get_page(page);
sg_set_page(sgl->sg + sgl->cur, page, size, offset);
sgl->cur++;
ctx->used += size;
done:
ctx->more = flags & MSG_MORE;
unlock:
af_alg_data_wakeup(sk);
release_sock(sk);
return err ?: size;
}
EXPORT_SYMBOL_GPL(af_alg_sendpage);
/**
* af_alg_async_cb - AIO callback handler
*
* This handler cleans up the struct af_alg_async_req upon completion of the
* AIO operation.
*
* The number of bytes to be generated with the AIO operation must be set
* in areq->outlen before the AIO callback handler is invoked.
*/
void af_alg_async_cb(struct crypto_async_request *_req, int err)
{
struct af_alg_async_req *areq = _req->data;
struct sock *sk = areq->sk;
struct kiocb *iocb = areq->iocb;
unsigned int resultlen;
lock_sock(sk);
/* Buffer size written by crypto operation. */
resultlen = areq->outlen;
af_alg_free_areq_sgls(areq);
sock_kfree_s(sk, areq, areq->areqlen);
__sock_put(sk);
iocb->ki_complete(iocb, err ? err : resultlen, 0);
release_sock(sk);
}
EXPORT_SYMBOL_GPL(af_alg_async_cb);
/**
* af_alg_poll - poll system call handler
*/
unsigned int af_alg_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
unsigned int mask;
sock_poll_wait(file, sk_sleep(sk), wait);
mask = 0;
if (!ctx->more || ctx->used)
mask |= POLLIN | POLLRDNORM;
if (af_alg_writable(sk))
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
return mask;
}
EXPORT_SYMBOL_GPL(af_alg_poll);
/**
* af_alg_alloc_areq - allocate struct af_alg_async_req
*
* @sk socket of connection to user space
* @areqlen size of struct af_alg_async_req + crypto_*_reqsize
* @return allocated data structure or ERR_PTR upon error
*/
struct af_alg_async_req *af_alg_alloc_areq(struct sock *sk,
unsigned int areqlen)
{
struct af_alg_async_req *areq = sock_kmalloc(sk, areqlen, GFP_KERNEL);
if (unlikely(!areq))
return ERR_PTR(-ENOMEM);
areq->areqlen = areqlen;
areq->sk = sk;
areq->last_rsgl = NULL;
INIT_LIST_HEAD(&areq->rsgl_list);
areq->tsgl = NULL;
areq->tsgl_entries = 0;
return areq;
}
EXPORT_SYMBOL_GPL(af_alg_alloc_areq);
/**
* af_alg_get_rsgl - create the RX SGL for the output data from the crypto
* operation
*
* @sk socket of connection to user space
* @msg user space message
* @flags flags used to invoke recvmsg with
* @areq instance of the cryptographic request that will hold the RX SGL
* @maxsize maximum number of bytes to be pulled from user space
* @outlen number of bytes in the RX SGL
* @return 0 on success, < 0 upon error
*/
int af_alg_get_rsgl(struct sock *sk, struct msghdr *msg, int flags,
struct af_alg_async_req *areq, size_t maxsize,
size_t *outlen)
{
struct alg_sock *ask = alg_sk(sk);
struct af_alg_ctx *ctx = ask->private;
size_t len = 0;
while (maxsize > len && msg_data_left(msg)) {
struct af_alg_rsgl *rsgl;
size_t seglen;
int err;
/* limit the amount of readable buffers */
if (!af_alg_readable(sk))
break;
if (!ctx->used) {
err = af_alg_wait_for_data(sk, flags);
if (err)
return err;
}
seglen = min_t(size_t, (maxsize - len),
msg_data_left(msg));
if (list_empty(&areq->rsgl_list)) {
rsgl = &areq->first_rsgl;
} else {
rsgl = sock_kmalloc(sk, sizeof(*rsgl), GFP_KERNEL);
if (unlikely(!rsgl))
return -ENOMEM;
}
rsgl->sgl.npages = 0;
list_add_tail(&rsgl->list, &areq->rsgl_list);
/* make one iovec available as scatterlist */
err = af_alg_make_sg(&rsgl->sgl, &msg->msg_iter, seglen);
if (err < 0)
return err;
/* chain the new scatterlist with previous one */
if (areq->last_rsgl)
af_alg_link_sg(&areq->last_rsgl->sgl, &rsgl->sgl);
areq->last_rsgl = rsgl;
len += err;
ctx->rcvused += err;
rsgl->sg_num_bytes = err;
iov_iter_advance(&msg->msg_iter, err);
}
*outlen = len;
return 0;
}
EXPORT_SYMBOL_GPL(af_alg_get_rsgl);
static int __init af_alg_init(void)
{
int err = proto_register(&alg_proto, 0);

View File

@ -588,6 +588,35 @@ int crypto_unregister_ahash(struct ahash_alg *alg)
}
EXPORT_SYMBOL_GPL(crypto_unregister_ahash);
int crypto_register_ahashes(struct ahash_alg *algs, int count)
{
int i, ret;
for (i = 0; i < count; i++) {
ret = crypto_register_ahash(&algs[i]);
if (ret)
goto err;
}
return 0;
err:
for (--i; i >= 0; --i)
crypto_unregister_ahash(&algs[i]);
return ret;
}
EXPORT_SYMBOL_GPL(crypto_register_ahashes);
void crypto_unregister_ahashes(struct ahash_alg *algs, int count)
{
int i;
for (i = count - 1; i >= 0; --i)
crypto_unregister_ahash(&algs[i]);
}
EXPORT_SYMBOL_GPL(crypto_unregister_ahashes);
int ahash_register_instance(struct crypto_template *tmpl,
struct ahash_instance *inst)
{

View File

@ -975,13 +975,15 @@ void crypto_inc(u8 *a, unsigned int size)
}
EXPORT_SYMBOL_GPL(crypto_inc);
void __crypto_xor(u8 *dst, const u8 *src, unsigned int len)
void __crypto_xor(u8 *dst, const u8 *src1, const u8 *src2, unsigned int len)
{
int relalign = 0;
if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS)) {
int size = sizeof(unsigned long);
int d = ((unsigned long)dst ^ (unsigned long)src) & (size - 1);
int d = (((unsigned long)dst ^ (unsigned long)src1) |
((unsigned long)dst ^ (unsigned long)src2)) &
(size - 1);
relalign = d ? 1 << __ffs(d) : size;
@ -992,34 +994,37 @@ void __crypto_xor(u8 *dst, const u8 *src, unsigned int len)
* process the remainder of the input using optimal strides.
*/
while (((unsigned long)dst & (relalign - 1)) && len > 0) {
*dst++ ^= *src++;
*dst++ = *src1++ ^ *src2++;
len--;
}
}
while (IS_ENABLED(CONFIG_64BIT) && len >= 8 && !(relalign & 7)) {
*(u64 *)dst ^= *(u64 *)src;
*(u64 *)dst = *(u64 *)src1 ^ *(u64 *)src2;
dst += 8;
src += 8;
src1 += 8;
src2 += 8;
len -= 8;
}
while (len >= 4 && !(relalign & 3)) {
*(u32 *)dst ^= *(u32 *)src;
*(u32 *)dst = *(u32 *)src1 ^ *(u32 *)src2;
dst += 4;
src += 4;
src1 += 4;
src2 += 4;
len -= 4;
}
while (len >= 2 && !(relalign & 1)) {
*(u16 *)dst ^= *(u16 *)src;
*(u16 *)dst = *(u16 *)src1 ^ *(u16 *)src2;
dst += 2;
src += 2;
src1 += 2;
src2 += 2;
len -= 2;
}
while (len--)
*dst++ ^= *src++;
*dst++ = *src1++ ^ *src2++;
}
EXPORT_SYMBOL_GPL(__crypto_xor);

File diff suppressed because it is too large Load Diff

View File

@ -10,6 +10,21 @@
* Software Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* The following concept of the memory management is used:
*
* The kernel maintains two SGLs, the TX SGL and the RX SGL. The TX SGL is
* filled by user space with the data submitted via sendpage/sendmsg. Filling
* up the TX SGL does not cause a crypto operation -- the data will only be
* tracked by the kernel. Upon receipt of one recvmsg call, the caller must
* provide a buffer which is tracked with the RX SGL.
*
* During the processing of the recvmsg operation, the cipher request is
* allocated and prepared. As part of the recvmsg operation, the processed
* TX buffers are extracted from the TX SGL into a separate SGL.
*
* After the completion of the crypto operation, the RX SGL and the cipher
* request is released. The extracted TX SGL parts are released together with
* the RX SGL release.
*/
#include <crypto/scatterwalk.h>
@ -18,284 +33,16 @@
#include <linux/init.h>
#include <linux/list.h>
#include <linux/kernel.h>
#include <linux/sched/signal.h>
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/net.h>
#include <net/sock.h>
struct skcipher_sg_list {
struct list_head list;
int cur;
struct scatterlist sg[0];
};
struct skcipher_tfm {
struct crypto_skcipher *skcipher;
bool has_key;
};
struct skcipher_ctx {
struct list_head tsgl;
struct af_alg_sgl rsgl;
void *iv;
struct af_alg_completion completion;
atomic_t inflight;
size_t used;
unsigned int len;
bool more;
bool merge;
bool enc;
struct skcipher_request req;
};
struct skcipher_async_rsgl {
struct af_alg_sgl sgl;
struct list_head list;
};
struct skcipher_async_req {
struct kiocb *iocb;
struct skcipher_async_rsgl first_sgl;
struct list_head list;
struct scatterlist *tsg;
atomic_t *inflight;
struct skcipher_request req;
};
#define MAX_SGL_ENTS ((4096 - sizeof(struct skcipher_sg_list)) / \
sizeof(struct scatterlist) - 1)
static void skcipher_free_async_sgls(struct skcipher_async_req *sreq)
{
struct skcipher_async_rsgl *rsgl, *tmp;
struct scatterlist *sgl;
struct scatterlist *sg;
int i, n;
list_for_each_entry_safe(rsgl, tmp, &sreq->list, list) {
af_alg_free_sg(&rsgl->sgl);
if (rsgl != &sreq->first_sgl)
kfree(rsgl);
}
sgl = sreq->tsg;
n = sg_nents(sgl);
for_each_sg(sgl, sg, n, i) {
struct page *page = sg_page(sg);
/* some SGs may not have a page mapped */
if (page && page_ref_count(page))
put_page(page);
}
kfree(sreq->tsg);
}
static void skcipher_async_cb(struct crypto_async_request *req, int err)
{
struct skcipher_async_req *sreq = req->data;
struct kiocb *iocb = sreq->iocb;
atomic_dec(sreq->inflight);
skcipher_free_async_sgls(sreq);
kzfree(sreq);
iocb->ki_complete(iocb, err, err);
}
static inline int skcipher_sndbuf(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
return max_t(int, max_t(int, sk->sk_sndbuf & PAGE_MASK, PAGE_SIZE) -
ctx->used, 0);
}
static inline bool skcipher_writable(struct sock *sk)
{
return PAGE_SIZE <= skcipher_sndbuf(sk);
}
static int skcipher_alloc_sgl(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
struct skcipher_sg_list *sgl;
struct scatterlist *sg = NULL;
sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
if (!list_empty(&ctx->tsgl))
sg = sgl->sg;
if (!sg || sgl->cur >= MAX_SGL_ENTS) {
sgl = sock_kmalloc(sk, sizeof(*sgl) +
sizeof(sgl->sg[0]) * (MAX_SGL_ENTS + 1),
GFP_KERNEL);
if (!sgl)
return -ENOMEM;
sg_init_table(sgl->sg, MAX_SGL_ENTS + 1);
sgl->cur = 0;
if (sg)
sg_chain(sg, MAX_SGL_ENTS + 1, sgl->sg);
list_add_tail(&sgl->list, &ctx->tsgl);
}
return 0;
}
static void skcipher_pull_sgl(struct sock *sk, size_t used, int put)
{
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
struct skcipher_sg_list *sgl;
struct scatterlist *sg;
int i;
while (!list_empty(&ctx->tsgl)) {
sgl = list_first_entry(&ctx->tsgl, struct skcipher_sg_list,
list);
sg = sgl->sg;
for (i = 0; i < sgl->cur; i++) {
size_t plen = min_t(size_t, used, sg[i].length);
if (!sg_page(sg + i))
continue;
sg[i].length -= plen;
sg[i].offset += plen;
used -= plen;
ctx->used -= plen;
if (sg[i].length)
return;
if (put)
put_page(sg_page(sg + i));
sg_assign_page(sg + i, NULL);
}
list_del(&sgl->list);
sock_kfree_s(sk, sgl,
sizeof(*sgl) + sizeof(sgl->sg[0]) *
(MAX_SGL_ENTS + 1));
}
if (!ctx->used)
ctx->merge = 0;
}
static void skcipher_free_sgl(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
skcipher_pull_sgl(sk, ctx->used, 1);
}
static int skcipher_wait_for_wmem(struct sock *sk, unsigned flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
int err = -ERESTARTSYS;
long timeout;
if (flags & MSG_DONTWAIT)
return -EAGAIN;
sk_set_bit(SOCKWQ_ASYNC_NOSPACE, sk);
add_wait_queue(sk_sleep(sk), &wait);
for (;;) {
if (signal_pending(current))
break;
timeout = MAX_SCHEDULE_TIMEOUT;
if (sk_wait_event(sk, &timeout, skcipher_writable(sk), &wait)) {
err = 0;
break;
}
}
remove_wait_queue(sk_sleep(sk), &wait);
return err;
}
static void skcipher_wmem_wakeup(struct sock *sk)
{
struct socket_wq *wq;
if (!skcipher_writable(sk))
return;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
POLLRDNORM |
POLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
rcu_read_unlock();
}
static int skcipher_wait_for_data(struct sock *sk, unsigned flags)
{
DEFINE_WAIT_FUNC(wait, woken_wake_function);
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
long timeout;
int err = -ERESTARTSYS;
if (flags & MSG_DONTWAIT) {
return -EAGAIN;
}
sk_set_bit(SOCKWQ_ASYNC_WAITDATA, sk);
add_wait_queue(sk_sleep(sk), &wait);
for (;;) {
if (signal_pending(current))
break;
timeout = MAX_SCHEDULE_TIMEOUT;
if (sk_wait_event(sk, &timeout, ctx->used, &wait)) {
err = 0;
break;
}
}
remove_wait_queue(sk_sleep(sk), &wait);
sk_clear_bit(SOCKWQ_ASYNC_WAITDATA, sk);
return err;
}
static void skcipher_data_wakeup(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
struct socket_wq *wq;
if (!ctx->used)
return;
rcu_read_lock();
wq = rcu_dereference(sk->sk_wq);
if (skwq_has_sleeper(wq))
wake_up_interruptible_sync_poll(&wq->wait, POLLOUT |
POLLRDNORM |
POLLRDBAND);
sk_wake_async(sk, SOCK_WAKE_SPACE, POLL_OUT);
rcu_read_unlock();
}
static int skcipher_sendmsg(struct socket *sock, struct msghdr *msg,
size_t size)
{
@ -303,446 +50,144 @@ static int skcipher_sendmsg(struct socket *sock, struct msghdr *msg,
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct skcipher_ctx *ctx = ask->private;
struct skcipher_tfm *skc = pask->private;
struct crypto_skcipher *tfm = skc->skcipher;
unsigned ivsize = crypto_skcipher_ivsize(tfm);
struct skcipher_sg_list *sgl;
struct af_alg_control con = {};
long copied = 0;
bool enc = 0;
bool init = 0;
int err;
int i;
if (msg->msg_controllen) {
err = af_alg_cmsg_send(msg, &con);
if (err)
return err;
init = 1;
switch (con.op) {
case ALG_OP_ENCRYPT:
enc = 1;
break;
case ALG_OP_DECRYPT:
enc = 0;
break;
default:
return -EINVAL;
}
if (con.iv && con.iv->ivlen != ivsize)
return -EINVAL;
}
err = -EINVAL;
lock_sock(sk);
if (!ctx->more && ctx->used)
goto unlock;
if (init) {
ctx->enc = enc;
if (con.iv)
memcpy(ctx->iv, con.iv->iv, ivsize);
}
while (size) {
struct scatterlist *sg;
unsigned long len = size;
size_t plen;
if (ctx->merge) {
sgl = list_entry(ctx->tsgl.prev,
struct skcipher_sg_list, list);
sg = sgl->sg + sgl->cur - 1;
len = min_t(unsigned long, len,
PAGE_SIZE - sg->offset - sg->length);
err = memcpy_from_msg(page_address(sg_page(sg)) +
sg->offset + sg->length,
msg, len);
if (err)
goto unlock;
sg->length += len;
ctx->merge = (sg->offset + sg->length) &
(PAGE_SIZE - 1);
ctx->used += len;
copied += len;
size -= len;
continue;
}
if (!skcipher_writable(sk)) {
err = skcipher_wait_for_wmem(sk, msg->msg_flags);
if (err)
goto unlock;
}
len = min_t(unsigned long, len, skcipher_sndbuf(sk));
err = skcipher_alloc_sgl(sk);
if (err)
goto unlock;
sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
sg = sgl->sg;
if (sgl->cur)
sg_unmark_end(sg + sgl->cur - 1);
do {
i = sgl->cur;
plen = min_t(size_t, len, PAGE_SIZE);
sg_assign_page(sg + i, alloc_page(GFP_KERNEL));
err = -ENOMEM;
if (!sg_page(sg + i))
goto unlock;
err = memcpy_from_msg(page_address(sg_page(sg + i)),
msg, plen);
if (err) {
__free_page(sg_page(sg + i));
sg_assign_page(sg + i, NULL);
goto unlock;
}
sg[i].length = plen;
len -= plen;
ctx->used += plen;
copied += plen;
size -= plen;
sgl->cur++;
} while (len && sgl->cur < MAX_SGL_ENTS);
if (!size)
sg_mark_end(sg + sgl->cur - 1);
ctx->merge = plen & (PAGE_SIZE - 1);
}
err = 0;
ctx->more = msg->msg_flags & MSG_MORE;
unlock:
skcipher_data_wakeup(sk);
release_sock(sk);
return copied ?: err;
return af_alg_sendmsg(sock, msg, size, ivsize);
}
static ssize_t skcipher_sendpage(struct socket *sock, struct page *page,
int offset, size_t size, int flags)
static int _skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
struct skcipher_sg_list *sgl;
int err = -EINVAL;
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct af_alg_ctx *ctx = ask->private;
struct skcipher_tfm *skc = pask->private;
struct crypto_skcipher *tfm = skc->skcipher;
unsigned int bs = crypto_skcipher_blocksize(tfm);
struct af_alg_async_req *areq;
int err = 0;
size_t len = 0;
if (flags & MSG_SENDPAGE_NOTLAST)
flags |= MSG_MORE;
/* Allocate cipher request for current operation. */
areq = af_alg_alloc_areq(sk, sizeof(struct af_alg_async_req) +
crypto_skcipher_reqsize(tfm));
if (IS_ERR(areq))
return PTR_ERR(areq);
lock_sock(sk);
if (!ctx->more && ctx->used)
goto unlock;
if (!size)
goto done;
if (!skcipher_writable(sk)) {
err = skcipher_wait_for_wmem(sk, flags);
if (err)
goto unlock;
}
err = skcipher_alloc_sgl(sk);
/* convert iovecs of output buffers into RX SGL */
err = af_alg_get_rsgl(sk, msg, flags, areq, -1, &len);
if (err)
goto unlock;
goto free;
ctx->merge = 0;
sgl = list_entry(ctx->tsgl.prev, struct skcipher_sg_list, list);
/* Process only as much RX buffers for which we have TX data */
if (len > ctx->used)
len = ctx->used;
if (sgl->cur)
sg_unmark_end(sgl->sg + sgl->cur - 1);
/*
* If more buffers are to be expected to be processed, process only
* full block size buffers.
*/
if (ctx->more || len < ctx->used)
len -= len % bs;
sg_mark_end(sgl->sg + sgl->cur);
get_page(page);
sg_set_page(sgl->sg + sgl->cur, page, size, offset);
sgl->cur++;
ctx->used += size;
done:
ctx->more = flags & MSG_MORE;
unlock:
skcipher_data_wakeup(sk);
release_sock(sk);
return err ?: size;
}
static int skcipher_all_sg_nents(struct skcipher_ctx *ctx)
{
struct skcipher_sg_list *sgl;
struct scatterlist *sg;
int nents = 0;
list_for_each_entry(sgl, &ctx->tsgl, list) {
sg = sgl->sg;
while (!sg->length)
sg++;
nents += sg_nents(sg);
/*
* Create a per request TX SGL for this request which tracks the
* SG entries from the global TX SGL.
*/
areq->tsgl_entries = af_alg_count_tsgl(sk, len, 0);
if (!areq->tsgl_entries)
areq->tsgl_entries = 1;
areq->tsgl = sock_kmalloc(sk, sizeof(*areq->tsgl) * areq->tsgl_entries,
GFP_KERNEL);
if (!areq->tsgl) {
err = -ENOMEM;
goto free;
}
return nents;
}
sg_init_table(areq->tsgl, areq->tsgl_entries);
af_alg_pull_tsgl(sk, len, areq->tsgl, 0);
static int skcipher_recvmsg_async(struct socket *sock, struct msghdr *msg,
int flags)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct skcipher_ctx *ctx = ask->private;
struct skcipher_tfm *skc = pask->private;
struct crypto_skcipher *tfm = skc->skcipher;
struct skcipher_sg_list *sgl;
struct scatterlist *sg;
struct skcipher_async_req *sreq;
struct skcipher_request *req;
struct skcipher_async_rsgl *last_rsgl = NULL;
unsigned int txbufs = 0, len = 0, tx_nents;
unsigned int reqsize = crypto_skcipher_reqsize(tfm);
unsigned int ivsize = crypto_skcipher_ivsize(tfm);
int err = -ENOMEM;
bool mark = false;
char *iv;
/* Initialize the crypto operation */
skcipher_request_set_tfm(&areq->cra_u.skcipher_req, tfm);
skcipher_request_set_crypt(&areq->cra_u.skcipher_req, areq->tsgl,
areq->first_rsgl.sgl.sg, len, ctx->iv);
sreq = kzalloc(sizeof(*sreq) + reqsize + ivsize, GFP_KERNEL);
if (unlikely(!sreq))
goto out;
req = &sreq->req;
iv = (char *)(req + 1) + reqsize;
sreq->iocb = msg->msg_iocb;
INIT_LIST_HEAD(&sreq->list);
sreq->inflight = &ctx->inflight;
lock_sock(sk);
tx_nents = skcipher_all_sg_nents(ctx);
sreq->tsg = kcalloc(tx_nents, sizeof(*sg), GFP_KERNEL);
if (unlikely(!sreq->tsg))
goto unlock;
sg_init_table(sreq->tsg, tx_nents);
memcpy(iv, ctx->iv, ivsize);
skcipher_request_set_tfm(req, tfm);
skcipher_request_set_callback(req, CRYPTO_TFM_REQ_MAY_SLEEP,
skcipher_async_cb, sreq);
while (iov_iter_count(&msg->msg_iter)) {
struct skcipher_async_rsgl *rsgl;
int used;
if (!ctx->used) {
err = skcipher_wait_for_data(sk, flags);
if (err)
goto free;
}
sgl = list_first_entry(&ctx->tsgl,
struct skcipher_sg_list, list);
sg = sgl->sg;
while (!sg->length)
sg++;
used = min_t(unsigned long, ctx->used,
iov_iter_count(&msg->msg_iter));
used = min_t(unsigned long, used, sg->length);
if (txbufs == tx_nents) {
struct scatterlist *tmp;
int x;
/* Ran out of tx slots in async request
* need to expand */
tmp = kcalloc(tx_nents * 2, sizeof(*tmp),
GFP_KERNEL);
if (!tmp) {
err = -ENOMEM;
goto free;
}
sg_init_table(tmp, tx_nents * 2);
for (x = 0; x < tx_nents; x++)
sg_set_page(&tmp[x], sg_page(&sreq->tsg[x]),
sreq->tsg[x].length,
sreq->tsg[x].offset);
kfree(sreq->tsg);
sreq->tsg = tmp;
tx_nents *= 2;
mark = true;
}
/* Need to take over the tx sgl from ctx
* to the asynch req - these sgls will be freed later */
sg_set_page(sreq->tsg + txbufs++, sg_page(sg), sg->length,
sg->offset);
if (list_empty(&sreq->list)) {
rsgl = &sreq->first_sgl;
list_add_tail(&rsgl->list, &sreq->list);
} else {
rsgl = kmalloc(sizeof(*rsgl), GFP_KERNEL);
if (!rsgl) {
err = -ENOMEM;
goto free;
}
list_add_tail(&rsgl->list, &sreq->list);
}
used = af_alg_make_sg(&rsgl->sgl, &msg->msg_iter, used);
err = used;
if (used < 0)
goto free;
if (last_rsgl)
af_alg_link_sg(&last_rsgl->sgl, &rsgl->sgl);
last_rsgl = rsgl;
len += used;
skcipher_pull_sgl(sk, used, 0);
iov_iter_advance(&msg->msg_iter, used);
if (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) {
/* AIO operation */
areq->iocb = msg->msg_iocb;
skcipher_request_set_callback(&areq->cra_u.skcipher_req,
CRYPTO_TFM_REQ_MAY_SLEEP,
af_alg_async_cb, areq);
err = ctx->enc ?
crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) :
crypto_skcipher_decrypt(&areq->cra_u.skcipher_req);
} else {
/* Synchronous operation */
skcipher_request_set_callback(&areq->cra_u.skcipher_req,
CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG,
af_alg_complete,
&ctx->completion);
err = af_alg_wait_for_completion(ctx->enc ?
crypto_skcipher_encrypt(&areq->cra_u.skcipher_req) :
crypto_skcipher_decrypt(&areq->cra_u.skcipher_req),
&ctx->completion);
}
if (mark)
sg_mark_end(sreq->tsg + txbufs - 1);
skcipher_request_set_crypt(req, sreq->tsg, sreq->first_sgl.sgl.sg,
len, iv);
err = ctx->enc ? crypto_skcipher_encrypt(req) :
crypto_skcipher_decrypt(req);
/* AIO operation in progress */
if (err == -EINPROGRESS) {
atomic_inc(&ctx->inflight);
err = -EIOCBQUEUED;
sreq = NULL;
goto unlock;
}
free:
skcipher_free_async_sgls(sreq);
unlock:
skcipher_wmem_wakeup(sk);
release_sock(sk);
kzfree(sreq);
out:
return err;
}
sock_hold(sk);
static int skcipher_recvmsg_sync(struct socket *sock, struct msghdr *msg,
int flags)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct skcipher_ctx *ctx = ask->private;
struct skcipher_tfm *skc = pask->private;
struct crypto_skcipher *tfm = skc->skcipher;
unsigned bs = crypto_skcipher_blocksize(tfm);
struct skcipher_sg_list *sgl;
struct scatterlist *sg;
int err = -EAGAIN;
int used;
long copied = 0;
/* Remember output size that will be generated. */
areq->outlen = len;
lock_sock(sk);
while (msg_data_left(msg)) {
if (!ctx->used) {
err = skcipher_wait_for_data(sk, flags);
if (err)
goto unlock;
}
used = min_t(unsigned long, ctx->used, msg_data_left(msg));
used = af_alg_make_sg(&ctx->rsgl, &msg->msg_iter, used);
err = used;
if (err < 0)
goto unlock;
if (ctx->more || used < ctx->used)
used -= used % bs;
err = -EINVAL;
if (!used)
goto free;
sgl = list_first_entry(&ctx->tsgl,
struct skcipher_sg_list, list);
sg = sgl->sg;
while (!sg->length)
sg++;
skcipher_request_set_crypt(&ctx->req, sg, ctx->rsgl.sg, used,
ctx->iv);
err = af_alg_wait_for_completion(
ctx->enc ?
crypto_skcipher_encrypt(&ctx->req) :
crypto_skcipher_decrypt(&ctx->req),
&ctx->completion);
free:
af_alg_free_sg(&ctx->rsgl);
if (err)
goto unlock;
copied += used;
skcipher_pull_sgl(sk, used, 1);
iov_iter_advance(&msg->msg_iter, used);
return -EIOCBQUEUED;
}
err = 0;
free:
af_alg_free_areq_sgls(areq);
sock_kfree_s(sk, areq, areq->areqlen);
unlock:
skcipher_wmem_wakeup(sk);
release_sock(sk);
return copied ?: err;
return err ? err : len;
}
static int skcipher_recvmsg(struct socket *sock, struct msghdr *msg,
size_t ignored, int flags)
{
return (msg->msg_iocb && !is_sync_kiocb(msg->msg_iocb)) ?
skcipher_recvmsg_async(sock, msg, flags) :
skcipher_recvmsg_sync(sock, msg, flags);
}
static unsigned int skcipher_poll(struct file *file, struct socket *sock,
poll_table *wait)
{
struct sock *sk = sock->sk;
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
unsigned int mask;
int ret = 0;
sock_poll_wait(file, sk_sleep(sk), wait);
mask = 0;
lock_sock(sk);
while (msg_data_left(msg)) {
int err = _skcipher_recvmsg(sock, msg, ignored, flags);
if (ctx->used)
mask |= POLLIN | POLLRDNORM;
/*
* This error covers -EIOCBQUEUED which implies that we can
* only handle one AIO request. If the caller wants to have
* multiple AIO requests in parallel, he must make multiple
* separate AIO calls.
*
* Also return the error if no data has been processed so far.
*/
if (err <= 0) {
if (err == -EIOCBQUEUED || !ret)
ret = err;
goto out;
}
if (skcipher_writable(sk))
mask |= POLLOUT | POLLWRNORM | POLLWRBAND;
ret += err;
}
return mask;
out:
af_alg_wmem_wakeup(sk);
release_sock(sk);
return ret;
}
static struct proto_ops algif_skcipher_ops = {
.family = PF_ALG,
@ -760,9 +205,9 @@ static struct proto_ops algif_skcipher_ops = {
.release = af_alg_release,
.sendmsg = skcipher_sendmsg,
.sendpage = skcipher_sendpage,
.sendpage = af_alg_sendpage,
.recvmsg = skcipher_recvmsg,
.poll = skcipher_poll,
.poll = af_alg_poll,
};
static int skcipher_check_key(struct socket *sock)
@ -824,7 +269,7 @@ static ssize_t skcipher_sendpage_nokey(struct socket *sock, struct page *page,
if (err)
return err;
return skcipher_sendpage(sock, page, offset, size, flags);
return af_alg_sendpage(sock, page, offset, size, flags);
}
static int skcipher_recvmsg_nokey(struct socket *sock, struct msghdr *msg,
@ -858,7 +303,7 @@ static struct proto_ops algif_skcipher_ops_nokey = {
.sendmsg = skcipher_sendmsg_nokey,
.sendpage = skcipher_sendpage_nokey,
.recvmsg = skcipher_recvmsg_nokey,
.poll = skcipher_poll,
.poll = af_alg_poll,
};
static void *skcipher_bind(const char *name, u32 type, u32 mask)
@ -900,26 +345,16 @@ static int skcipher_setkey(void *private, const u8 *key, unsigned int keylen)
return err;
}
static void skcipher_wait(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
int ctr = 0;
while (atomic_read(&ctx->inflight) && ctr++ < 100)
msleep(100);
}
static void skcipher_sock_destruct(struct sock *sk)
{
struct alg_sock *ask = alg_sk(sk);
struct skcipher_ctx *ctx = ask->private;
struct crypto_skcipher *tfm = crypto_skcipher_reqtfm(&ctx->req);
struct af_alg_ctx *ctx = ask->private;
struct sock *psk = ask->parent;
struct alg_sock *pask = alg_sk(psk);
struct skcipher_tfm *skc = pask->private;
struct crypto_skcipher *tfm = skc->skcipher;
if (atomic_read(&ctx->inflight))
skcipher_wait(sk);
skcipher_free_sgl(sk);
af_alg_pull_tsgl(sk, ctx->used, NULL, 0);
sock_kzfree_s(sk, ctx->iv, crypto_skcipher_ivsize(tfm));
sock_kfree_s(sk, ctx, ctx->len);
af_alg_release_parent(sk);
@ -927,11 +362,11 @@ static void skcipher_sock_destruct(struct sock *sk)
static int skcipher_accept_parent_nokey(void *private, struct sock *sk)
{
struct skcipher_ctx *ctx;
struct af_alg_ctx *ctx;
struct alg_sock *ask = alg_sk(sk);
struct skcipher_tfm *tfm = private;
struct crypto_skcipher *skcipher = tfm->skcipher;
unsigned int len = sizeof(*ctx) + crypto_skcipher_reqsize(skcipher);
unsigned int len = sizeof(*ctx);
ctx = sock_kmalloc(sk, len, GFP_KERNEL);
if (!ctx)
@ -946,22 +381,17 @@ static int skcipher_accept_parent_nokey(void *private, struct sock *sk)
memset(ctx->iv, 0, crypto_skcipher_ivsize(skcipher));
INIT_LIST_HEAD(&ctx->tsgl);
INIT_LIST_HEAD(&ctx->tsgl_list);
ctx->len = len;
ctx->used = 0;
ctx->rcvused = 0;
ctx->more = 0;
ctx->merge = 0;
ctx->enc = 0;
atomic_set(&ctx->inflight, 0);
af_alg_init_completion(&ctx->completion);
ask->private = ctx;
skcipher_request_set_tfm(&ctx->req, skcipher);
skcipher_request_set_callback(&ctx->req, CRYPTO_TFM_REQ_MAY_SLEEP |
CRYPTO_TFM_REQ_MAY_BACKLOG,
af_alg_complete, &ctx->completion);
sk->sk_destruct = skcipher_sock_destruct;
return 0;

View File

@ -65,8 +65,7 @@ static void crypto_ctr_crypt_final(struct blkcipher_walk *walk,
unsigned int nbytes = walk->nbytes;
crypto_cipher_encrypt_one(tfm, keystream, ctrblk);
crypto_xor(keystream, src, nbytes);
memcpy(dst, keystream, nbytes);
crypto_xor_cpy(dst, keystream, src, nbytes);
crypto_inc(ctrblk, bsize);
}

View File

@ -20,8 +20,6 @@ struct ecdh_ctx {
unsigned int curve_id;
unsigned int ndigits;
u64 private_key[ECC_MAX_DIGITS];
u64 public_key[2 * ECC_MAX_DIGITS];
u64 shared_secret[ECC_MAX_DIGITS];
};
static inline struct ecdh_ctx *ecdh_get_ctx(struct crypto_kpp *tfm)
@ -70,41 +68,58 @@ static int ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
static int ecdh_compute_value(struct kpp_request *req)
{
int ret = 0;
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct ecdh_ctx *ctx = ecdh_get_ctx(tfm);
size_t copied, nbytes;
u64 *public_key;
u64 *shared_secret = NULL;
void *buf;
size_t copied, nbytes, public_key_sz;
int ret = -ENOMEM;
nbytes = ctx->ndigits << ECC_DIGITS_TO_BYTES_SHIFT;
/* Public part is a point thus it has both coordinates */
public_key_sz = 2 * nbytes;
public_key = kmalloc(public_key_sz, GFP_KERNEL);
if (!public_key)
return -ENOMEM;
if (req->src) {
copied = sg_copy_to_buffer(req->src, 1, ctx->public_key,
2 * nbytes);
if (copied != 2 * nbytes)
return -EINVAL;
shared_secret = kmalloc(nbytes, GFP_KERNEL);
if (!shared_secret)
goto free_pubkey;
copied = sg_copy_to_buffer(req->src, 1, public_key,
public_key_sz);
if (copied != public_key_sz) {
ret = -EINVAL;
goto free_all;
}
ret = crypto_ecdh_shared_secret(ctx->curve_id, ctx->ndigits,
ctx->private_key,
ctx->public_key,
ctx->shared_secret);
ctx->private_key, public_key,
shared_secret);
buf = ctx->shared_secret;
buf = shared_secret;
} else {
ret = ecc_make_pub_key(ctx->curve_id, ctx->ndigits,
ctx->private_key, ctx->public_key);
buf = ctx->public_key;
/* Public part is a point thus it has both coordinates */
nbytes *= 2;
ctx->private_key, public_key);
buf = public_key;
nbytes = public_key_sz;
}
if (ret < 0)
return ret;
goto free_all;
copied = sg_copy_from_buffer(req->dst, 1, buf, nbytes);
if (copied != nbytes)
return -EINVAL;
ret = -EINVAL;
/* fall through */
free_all:
kzfree(shared_secret);
free_pubkey:
kfree(public_key);
return ret;
}

View File

@ -55,8 +55,7 @@ static int crypto_pcbc_encrypt_segment(struct skcipher_request *req,
do {
crypto_xor(iv, src, bsize);
crypto_cipher_encrypt_one(tfm, dst, iv);
memcpy(iv, dst, bsize);
crypto_xor(iv, src, bsize);
crypto_xor_cpy(iv, dst, src, bsize);
src += bsize;
dst += bsize;
@ -79,8 +78,7 @@ static int crypto_pcbc_encrypt_inplace(struct skcipher_request *req,
memcpy(tmpbuf, src, bsize);
crypto_xor(iv, src, bsize);
crypto_cipher_encrypt_one(tfm, src, iv);
memcpy(iv, tmpbuf, bsize);
crypto_xor(iv, src, bsize);
crypto_xor_cpy(iv, tmpbuf, src, bsize);
src += bsize;
} while ((nbytes -= bsize) >= bsize);
@ -127,8 +125,7 @@ static int crypto_pcbc_decrypt_segment(struct skcipher_request *req,
do {
crypto_cipher_decrypt_one(tfm, dst, src);
crypto_xor(dst, iv, bsize);
memcpy(iv, src, bsize);
crypto_xor(iv, dst, bsize);
crypto_xor_cpy(iv, dst, src, bsize);
src += bsize;
dst += bsize;
@ -153,8 +150,7 @@ static int crypto_pcbc_decrypt_inplace(struct skcipher_request *req,
memcpy(tmpbuf, src, bsize);
crypto_cipher_decrypt_one(tfm, src, src);
crypto_xor(src, iv, bsize);
memcpy(iv, tmpbuf, bsize);
crypto_xor(iv, src, bsize);
crypto_xor_cpy(iv, src, tmpbuf, bsize);
src += bsize;
} while ((nbytes -= bsize) >= bsize);

View File

@ -43,12 +43,14 @@ int crypto_rng_reset(struct crypto_rng *tfm, const u8 *seed, unsigned int slen)
if (!buf)
return -ENOMEM;
get_random_bytes(buf, slen);
err = get_random_bytes_wait(buf, slen);
if (err)
goto out;
seed = buf;
}
err = crypto_rng_alg(tfm)->seed(tfm, seed, slen);
out:
kzfree(buf);
return err;
}

View File

@ -65,11 +65,6 @@ static void crypto_scomp_show(struct seq_file *m, struct crypto_alg *alg)
seq_puts(m, "type : scomp\n");
}
static int crypto_scomp_init_tfm(struct crypto_tfm *tfm)
{
return 0;
}
static void crypto_scomp_free_scratches(void * __percpu *scratches)
{
int i;
@ -125,12 +120,26 @@ static int crypto_scomp_alloc_all_scratches(void)
if (!scomp_src_scratches)
return -ENOMEM;
scomp_dst_scratches = crypto_scomp_alloc_scratches();
if (!scomp_dst_scratches)
if (!scomp_dst_scratches) {
crypto_scomp_free_scratches(scomp_src_scratches);
scomp_src_scratches = NULL;
return -ENOMEM;
}
}
return 0;
}
static int crypto_scomp_init_tfm(struct crypto_tfm *tfm)
{
int ret;
mutex_lock(&scomp_lock);
ret = crypto_scomp_alloc_all_scratches();
mutex_unlock(&scomp_lock);
return ret;
}
static void crypto_scomp_sg_free(struct scatterlist *sgl)
{
int i, n;
@ -211,9 +220,7 @@ static int scomp_acomp_comp_decomp(struct acomp_req *req, int dir)
scratch_dst, &req->dlen, *ctx);
if (!ret) {
if (!req->dst) {
req->dst = crypto_scomp_sg_alloc(req->dlen,
req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
GFP_KERNEL : GFP_ATOMIC);
req->dst = crypto_scomp_sg_alloc(req->dlen, GFP_ATOMIC);
if (!req->dst)
goto out;
}
@ -240,6 +247,10 @@ static void crypto_exit_scomp_ops_async(struct crypto_tfm *tfm)
struct crypto_scomp **ctx = crypto_tfm_ctx(tfm);
crypto_free_scomp(*ctx);
mutex_lock(&scomp_lock);
crypto_scomp_free_all_scratches();
mutex_unlock(&scomp_lock);
}
int crypto_init_scomp_ops_async(struct crypto_tfm *tfm)
@ -316,40 +327,18 @@ static const struct crypto_type crypto_scomp_type = {
int crypto_register_scomp(struct scomp_alg *alg)
{
struct crypto_alg *base = &alg->base;
int ret = -ENOMEM;
mutex_lock(&scomp_lock);
if (crypto_scomp_alloc_all_scratches())
goto error;
base->cra_type = &crypto_scomp_type;
base->cra_flags &= ~CRYPTO_ALG_TYPE_MASK;
base->cra_flags |= CRYPTO_ALG_TYPE_SCOMPRESS;
ret = crypto_register_alg(base);
if (ret)
goto error;
mutex_unlock(&scomp_lock);
return ret;
error:
crypto_scomp_free_all_scratches();
mutex_unlock(&scomp_lock);
return ret;
return crypto_register_alg(base);
}
EXPORT_SYMBOL_GPL(crypto_register_scomp);
int crypto_unregister_scomp(struct scomp_alg *alg)
{
int ret;
mutex_lock(&scomp_lock);
ret = crypto_unregister_alg(&alg->base);
crypto_scomp_free_all_scratches();
mutex_unlock(&scomp_lock);
return ret;
return crypto_unregister_alg(&alg->base);
}
EXPORT_SYMBOL_GPL(crypto_unregister_scomp);

View File

@ -229,6 +229,46 @@
x4 ^= x2; \
})
static void __serpent_setkey_sbox(u32 r0, u32 r1, u32 r2, u32 r3, u32 r4, u32 *k)
{
k += 100;
S3(r3, r4, r0, r1, r2); store_and_load_keys(r1, r2, r4, r3, 28, 24);
S4(r1, r2, r4, r3, r0); store_and_load_keys(r2, r4, r3, r0, 24, 20);
S5(r2, r4, r3, r0, r1); store_and_load_keys(r1, r2, r4, r0, 20, 16);
S6(r1, r2, r4, r0, r3); store_and_load_keys(r4, r3, r2, r0, 16, 12);
S7(r4, r3, r2, r0, r1); store_and_load_keys(r1, r2, r0, r4, 12, 8);
S0(r1, r2, r0, r4, r3); store_and_load_keys(r0, r2, r4, r1, 8, 4);
S1(r0, r2, r4, r1, r3); store_and_load_keys(r3, r4, r1, r0, 4, 0);
S2(r3, r4, r1, r0, r2); store_and_load_keys(r2, r4, r3, r0, 0, -4);
S3(r2, r4, r3, r0, r1); store_and_load_keys(r0, r1, r4, r2, -4, -8);
S4(r0, r1, r4, r2, r3); store_and_load_keys(r1, r4, r2, r3, -8, -12);
S5(r1, r4, r2, r3, r0); store_and_load_keys(r0, r1, r4, r3, -12, -16);
S6(r0, r1, r4, r3, r2); store_and_load_keys(r4, r2, r1, r3, -16, -20);
S7(r4, r2, r1, r3, r0); store_and_load_keys(r0, r1, r3, r4, -20, -24);
S0(r0, r1, r3, r4, r2); store_and_load_keys(r3, r1, r4, r0, -24, -28);
k -= 50;
S1(r3, r1, r4, r0, r2); store_and_load_keys(r2, r4, r0, r3, 22, 18);
S2(r2, r4, r0, r3, r1); store_and_load_keys(r1, r4, r2, r3, 18, 14);
S3(r1, r4, r2, r3, r0); store_and_load_keys(r3, r0, r4, r1, 14, 10);
S4(r3, r0, r4, r1, r2); store_and_load_keys(r0, r4, r1, r2, 10, 6);
S5(r0, r4, r1, r2, r3); store_and_load_keys(r3, r0, r4, r2, 6, 2);
S6(r3, r0, r4, r2, r1); store_and_load_keys(r4, r1, r0, r2, 2, -2);
S7(r4, r1, r0, r2, r3); store_and_load_keys(r3, r0, r2, r4, -2, -6);
S0(r3, r0, r2, r4, r1); store_and_load_keys(r2, r0, r4, r3, -6, -10);
S1(r2, r0, r4, r3, r1); store_and_load_keys(r1, r4, r3, r2, -10, -14);
S2(r1, r4, r3, r2, r0); store_and_load_keys(r0, r4, r1, r2, -14, -18);
S3(r0, r4, r1, r2, r3); store_and_load_keys(r2, r3, r4, r0, -18, -22);
k -= 50;
S4(r2, r3, r4, r0, r1); store_and_load_keys(r3, r4, r0, r1, 28, 24);
S5(r3, r4, r0, r1, r2); store_and_load_keys(r2, r3, r4, r1, 24, 20);
S6(r2, r3, r4, r1, r0); store_and_load_keys(r4, r0, r3, r1, 20, 16);
S7(r4, r0, r3, r1, r2); store_and_load_keys(r2, r3, r1, r4, 16, 12);
S0(r2, r3, r1, r4, r0); store_and_load_keys(r1, r3, r4, r2, 12, 8);
S1(r1, r3, r4, r2, r0); store_and_load_keys(r0, r4, r2, r1, 8, 4);
S2(r0, r4, r2, r1, r3); store_and_load_keys(r3, r4, r0, r1, 4, 0);
S3(r3, r4, r0, r1, r2); storekeys(r1, r2, r4, r3, 0);
}
int __serpent_setkey(struct serpent_ctx *ctx, const u8 *key,
unsigned int keylen)
{
@ -395,42 +435,7 @@ int __serpent_setkey(struct serpent_ctx *ctx, const u8 *key,
keyiter(k[23], r1, r0, r3, 131, 31);
/* Apply S-boxes */
S3(r3, r4, r0, r1, r2); store_and_load_keys(r1, r2, r4, r3, 28, 24);
S4(r1, r2, r4, r3, r0); store_and_load_keys(r2, r4, r3, r0, 24, 20);
S5(r2, r4, r3, r0, r1); store_and_load_keys(r1, r2, r4, r0, 20, 16);
S6(r1, r2, r4, r0, r3); store_and_load_keys(r4, r3, r2, r0, 16, 12);
S7(r4, r3, r2, r0, r1); store_and_load_keys(r1, r2, r0, r4, 12, 8);
S0(r1, r2, r0, r4, r3); store_and_load_keys(r0, r2, r4, r1, 8, 4);
S1(r0, r2, r4, r1, r3); store_and_load_keys(r3, r4, r1, r0, 4, 0);
S2(r3, r4, r1, r0, r2); store_and_load_keys(r2, r4, r3, r0, 0, -4);
S3(r2, r4, r3, r0, r1); store_and_load_keys(r0, r1, r4, r2, -4, -8);
S4(r0, r1, r4, r2, r3); store_and_load_keys(r1, r4, r2, r3, -8, -12);
S5(r1, r4, r2, r3, r0); store_and_load_keys(r0, r1, r4, r3, -12, -16);
S6(r0, r1, r4, r3, r2); store_and_load_keys(r4, r2, r1, r3, -16, -20);
S7(r4, r2, r1, r3, r0); store_and_load_keys(r0, r1, r3, r4, -20, -24);
S0(r0, r1, r3, r4, r2); store_and_load_keys(r3, r1, r4, r0, -24, -28);
k -= 50;
S1(r3, r1, r4, r0, r2); store_and_load_keys(r2, r4, r0, r3, 22, 18);
S2(r2, r4, r0, r3, r1); store_and_load_keys(r1, r4, r2, r3, 18, 14);
S3(r1, r4, r2, r3, r0); store_and_load_keys(r3, r0, r4, r1, 14, 10);
S4(r3, r0, r4, r1, r2); store_and_load_keys(r0, r4, r1, r2, 10, 6);
S5(r0, r4, r1, r2, r3); store_and_load_keys(r3, r0, r4, r2, 6, 2);
S6(r3, r0, r4, r2, r1); store_and_load_keys(r4, r1, r0, r2, 2, -2);
S7(r4, r1, r0, r2, r3); store_and_load_keys(r3, r0, r2, r4, -2, -6);
S0(r3, r0, r2, r4, r1); store_and_load_keys(r2, r0, r4, r3, -6, -10);
S1(r2, r0, r4, r3, r1); store_and_load_keys(r1, r4, r3, r2, -10, -14);
S2(r1, r4, r3, r2, r0); store_and_load_keys(r0, r4, r1, r2, -14, -18);
S3(r0, r4, r1, r2, r3); store_and_load_keys(r2, r3, r4, r0, -18, -22);
k -= 50;
S4(r2, r3, r4, r0, r1); store_and_load_keys(r3, r4, r0, r1, 28, 24);
S5(r3, r4, r0, r1, r2); store_and_load_keys(r2, r3, r4, r1, 24, 20);
S6(r2, r3, r4, r1, r0); store_and_load_keys(r4, r0, r3, r1, 20, 16);
S7(r4, r0, r3, r1, r2); store_and_load_keys(r2, r3, r1, r4, 16, 12);
S0(r2, r3, r1, r4, r0); store_and_load_keys(r1, r3, r4, r2, 12, 8);
S1(r1, r3, r4, r2, r0); store_and_load_keys(r0, r4, r2, r1, 8, 4);
S2(r0, r4, r2, r1, r3); store_and_load_keys(r3, r4, r0, r1, 4, 0);
S3(r3, r4, r0, r1, r2); storekeys(r1, r2, r4, r3, 0);
__serpent_setkey_sbox(r0, r1, r2, r3, r4, ctx->expkey);
return 0;
}

View File

@ -1404,9 +1404,9 @@ static int do_test(const char *alg, u32 type, u32 mask, int m)
test_cipher_speed("lrw(aes)", DECRYPT, sec, NULL, 0,
speed_template_32_40_48);
test_cipher_speed("xts(aes)", ENCRYPT, sec, NULL, 0,
speed_template_32_48_64);
speed_template_32_64);
test_cipher_speed("xts(aes)", DECRYPT, sec, NULL, 0,
speed_template_32_48_64);
speed_template_32_64);
test_cipher_speed("cts(cbc(aes))", ENCRYPT, sec, NULL, 0,
speed_template_16_24_32);
test_cipher_speed("cts(cbc(aes))", DECRYPT, sec, NULL, 0,
@ -1837,9 +1837,9 @@ static int do_test(const char *alg, u32 type, u32 mask, int m)
test_acipher_speed("lrw(aes)", DECRYPT, sec, NULL, 0,
speed_template_32_40_48);
test_acipher_speed("xts(aes)", ENCRYPT, sec, NULL, 0,
speed_template_32_48_64);
speed_template_32_64);
test_acipher_speed("xts(aes)", DECRYPT, sec, NULL, 0,
speed_template_32_48_64);
speed_template_32_64);
test_acipher_speed("cts(cbc(aes))", ENCRYPT, sec, NULL, 0,
speed_template_16_24_32);
test_acipher_speed("cts(cbc(aes))", DECRYPT, sec, NULL, 0,

View File

@ -13,10 +13,8 @@ menuconfig HW_RANDOM
that's usually called /dev/hwrng, and which exposes one
of possibly several hardware random number generators.
These hardware random number generators do not feed directly
into the kernel's random number generator. That is usually
handled by the "rngd" daemon. Documentation/hw_random.txt
has more information.
These hardware random number generators do feed into the
kernel's random number generator entropy pool.
If unsure, say Y.
@ -255,6 +253,20 @@ config HW_RANDOM_MXC_RNGA
If unsure, say Y.
config HW_RANDOM_IMX_RNGC
tristate "Freescale i.MX RNGC Random Number Generator"
depends on ARCH_MXC
default HW_RANDOM
---help---
This driver provides kernel-side support for the Random Number
Generator Version C hardware found on some Freescale i.MX
processors. Version B is also supported by this driver.
To compile this driver as a module, choose M here: the
module will be called imx-rngc.
If unsure, say Y.
config HW_RANDOM_NOMADIK
tristate "ST-Ericsson Nomadik Random Number Generator support"
depends on ARCH_NOMADIK

View File

@ -20,6 +20,7 @@ obj-$(CONFIG_HW_RANDOM_PASEMI) += pasemi-rng.o
obj-$(CONFIG_HW_RANDOM_VIRTIO) += virtio-rng.o
obj-$(CONFIG_HW_RANDOM_TX4939) += tx4939-rng.o
obj-$(CONFIG_HW_RANDOM_MXC_RNGA) += mxc-rnga.o
obj-$(CONFIG_HW_RANDOM_IMX_RNGC) += imx-rngc.o
obj-$(CONFIG_HW_RANDOM_OCTEON) += octeon-rng.o
obj-$(CONFIG_HW_RANDOM_NOMADIK) += nomadik-rng.o
obj-$(CONFIG_HW_RANDOM_PSERIES) += pseries-rng.o

View File

@ -28,7 +28,10 @@
#define RNG_MODULE_NAME "hw_random"
static struct hwrng *current_rng;
/* the current rng has been explicitly chosen by user via sysfs */
static int cur_rng_set_by_user;
static struct task_struct *hwrng_fill;
/* list of registered rngs, sorted decending by quality */
static LIST_HEAD(rng_list);
/* Protects rng_list and current_rng */
static DEFINE_MUTEX(rng_mutex);
@ -303,6 +306,7 @@ static ssize_t hwrng_attr_current_store(struct device *dev,
list_for_each_entry(rng, &rng_list, list) {
if (sysfs_streq(rng->name, buf)) {
err = 0;
cur_rng_set_by_user = 1;
if (rng != current_rng)
err = set_current_rng(rng);
break;
@ -351,16 +355,27 @@ static ssize_t hwrng_attr_available_show(struct device *dev,
return strlen(buf);
}
static ssize_t hwrng_attr_selected_show(struct device *dev,
struct device_attribute *attr,
char *buf)
{
return snprintf(buf, PAGE_SIZE, "%d\n", cur_rng_set_by_user);
}
static DEVICE_ATTR(rng_current, S_IRUGO | S_IWUSR,
hwrng_attr_current_show,
hwrng_attr_current_store);
static DEVICE_ATTR(rng_available, S_IRUGO,
hwrng_attr_available_show,
NULL);
static DEVICE_ATTR(rng_selected, S_IRUGO,
hwrng_attr_selected_show,
NULL);
static struct attribute *rng_dev_attrs[] = {
&dev_attr_rng_current.attr,
&dev_attr_rng_available.attr,
&dev_attr_rng_selected.attr,
NULL
};
@ -417,6 +432,7 @@ int hwrng_register(struct hwrng *rng)
{
int err = -EINVAL;
struct hwrng *old_rng, *tmp;
struct list_head *rng_list_ptr;
if (!rng->name || (!rng->data_read && !rng->read))
goto out;
@ -432,14 +448,27 @@ int hwrng_register(struct hwrng *rng)
init_completion(&rng->cleanup_done);
complete(&rng->cleanup_done);
/* rng_list is sorted by decreasing quality */
list_for_each(rng_list_ptr, &rng_list) {
tmp = list_entry(rng_list_ptr, struct hwrng, list);
if (tmp->quality < rng->quality)
break;
}
list_add_tail(&rng->list, rng_list_ptr);
old_rng = current_rng;
err = 0;
if (!old_rng) {
if (!old_rng ||
(!cur_rng_set_by_user && rng->quality > old_rng->quality)) {
/*
* Set new rng as current as the new rng source
* provides better entropy quality and was not
* chosen by userspace.
*/
err = set_current_rng(rng);
if (err)
goto out_unlock;
}
list_add_tail(&rng->list, &rng_list);
if (old_rng && !rng->init) {
/*
@ -466,12 +495,13 @@ void hwrng_unregister(struct hwrng *rng)
list_del(&rng->list);
if (current_rng == rng) {
drop_current_rng();
cur_rng_set_by_user = 0;
/* rng_list is sorted by quality, use the best (=first) one */
if (!list_empty(&rng_list)) {
struct hwrng *tail;
struct hwrng *new_rng;
tail = list_entry(rng_list.prev, struct hwrng, list);
set_current_rng(tail);
new_rng = list_entry(rng_list.next, struct hwrng, list);
set_current_rng(new_rng);
}
}

View File

@ -0,0 +1,331 @@
/*
* RNG driver for Freescale RNGC
*
* Copyright (C) 2008-2012 Freescale Semiconductor, Inc.
* Copyright (C) 2017 Martin Kaiser <martin@kaiser.cx>
*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/module.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/clk.h>
#include <linux/err.h>
#include <linux/platform_device.h>
#include <linux/interrupt.h>
#include <linux/hw_random.h>
#include <linux/completion.h>
#include <linux/io.h>
#define RNGC_COMMAND 0x0004
#define RNGC_CONTROL 0x0008
#define RNGC_STATUS 0x000C
#define RNGC_ERROR 0x0010
#define RNGC_FIFO 0x0014
#define RNGC_CMD_CLR_ERR 0x00000020
#define RNGC_CMD_CLR_INT 0x00000010
#define RNGC_CMD_SEED 0x00000002
#define RNGC_CMD_SELF_TEST 0x00000001
#define RNGC_CTRL_MASK_ERROR 0x00000040
#define RNGC_CTRL_MASK_DONE 0x00000020
#define RNGC_STATUS_ERROR 0x00010000
#define RNGC_STATUS_FIFO_LEVEL_MASK 0x00000f00
#define RNGC_STATUS_FIFO_LEVEL_SHIFT 8
#define RNGC_STATUS_SEED_DONE 0x00000020
#define RNGC_STATUS_ST_DONE 0x00000010
#define RNGC_ERROR_STATUS_STAT_ERR 0x00000008
#define RNGC_TIMEOUT 3000 /* 3 sec */
static bool self_test = true;
module_param(self_test, bool, 0);
struct imx_rngc {
struct device *dev;
struct clk *clk;
void __iomem *base;
struct hwrng rng;
struct completion rng_op_done;
/*
* err_reg is written only by the irq handler and read only
* when interrupts are masked, we need no spinlock
*/
u32 err_reg;
};
static inline void imx_rngc_irq_mask_clear(struct imx_rngc *rngc)
{
u32 ctrl, cmd;
/* mask interrupts */
ctrl = readl(rngc->base + RNGC_CONTROL);
ctrl |= RNGC_CTRL_MASK_DONE | RNGC_CTRL_MASK_ERROR;
writel(ctrl, rngc->base + RNGC_CONTROL);
/*
* CLR_INT clears the interrupt only if there's no error
* CLR_ERR clear the interrupt and the error register if there
* is an error
*/
cmd = readl(rngc->base + RNGC_COMMAND);
cmd |= RNGC_CMD_CLR_INT | RNGC_CMD_CLR_ERR;
writel(cmd, rngc->base + RNGC_COMMAND);
}
static inline void imx_rngc_irq_unmask(struct imx_rngc *rngc)
{
u32 ctrl;
ctrl = readl(rngc->base + RNGC_CONTROL);
ctrl &= ~(RNGC_CTRL_MASK_DONE | RNGC_CTRL_MASK_ERROR);
writel(ctrl, rngc->base + RNGC_CONTROL);
}
static int imx_rngc_self_test(struct imx_rngc *rngc)
{
u32 cmd;
int ret;
imx_rngc_irq_unmask(rngc);
/* run self test */
cmd = readl(rngc->base + RNGC_COMMAND);
writel(cmd | RNGC_CMD_SELF_TEST, rngc->base + RNGC_COMMAND);
ret = wait_for_completion_timeout(&rngc->rng_op_done, RNGC_TIMEOUT);
if (!ret) {
imx_rngc_irq_mask_clear(rngc);
return -ETIMEDOUT;
}
if (rngc->err_reg != 0)
return -EIO;
return 0;
}
static int imx_rngc_read(struct hwrng *rng, void *data, size_t max, bool wait)
{
struct imx_rngc *rngc = container_of(rng, struct imx_rngc, rng);
unsigned int status;
unsigned int level;
int retval = 0;
while (max >= sizeof(u32)) {
status = readl(rngc->base + RNGC_STATUS);
/* is there some error while reading this random number? */
if (status & RNGC_STATUS_ERROR)
break;
/* how many random numbers are in FIFO? [0-16] */
level = (status & RNGC_STATUS_FIFO_LEVEL_MASK) >>
RNGC_STATUS_FIFO_LEVEL_SHIFT;
if (level) {
/* retrieve a random number from FIFO */
*(u32 *)data = readl(rngc->base + RNGC_FIFO);
retval += sizeof(u32);
data += sizeof(u32);
max -= sizeof(u32);
}
}
return retval ? retval : -EIO;
}
static irqreturn_t imx_rngc_irq(int irq, void *priv)
{
struct imx_rngc *rngc = (struct imx_rngc *)priv;
u32 status;
/*
* clearing the interrupt will also clear the error register
* read error and status before clearing
*/
status = readl(rngc->base + RNGC_STATUS);
rngc->err_reg = readl(rngc->base + RNGC_ERROR);
imx_rngc_irq_mask_clear(rngc);
if (status & (RNGC_STATUS_SEED_DONE | RNGC_STATUS_ST_DONE))
complete(&rngc->rng_op_done);
return IRQ_HANDLED;
}
static int imx_rngc_init(struct hwrng *rng)
{
struct imx_rngc *rngc = container_of(rng, struct imx_rngc, rng);
u32 cmd;
int ret;
/* clear error */
cmd = readl(rngc->base + RNGC_COMMAND);
writel(cmd | RNGC_CMD_CLR_ERR, rngc->base + RNGC_COMMAND);
/* create seed, repeat while there is some statistical error */
do {
imx_rngc_irq_unmask(rngc);
/* seed creation */
cmd = readl(rngc->base + RNGC_COMMAND);
writel(cmd | RNGC_CMD_SEED, rngc->base + RNGC_COMMAND);
ret = wait_for_completion_timeout(&rngc->rng_op_done,
RNGC_TIMEOUT);
if (!ret) {
imx_rngc_irq_mask_clear(rngc);
return -ETIMEDOUT;
}
} while (rngc->err_reg == RNGC_ERROR_STATUS_STAT_ERR);
return rngc->err_reg ? -EIO : 0;
}
static int imx_rngc_probe(struct platform_device *pdev)
{
struct imx_rngc *rngc;
struct resource *res;
int ret;
int irq;
rngc = devm_kzalloc(&pdev->dev, sizeof(*rngc), GFP_KERNEL);
if (!rngc)
return -ENOMEM;
res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
rngc->base = devm_ioremap_resource(&pdev->dev, res);
if (IS_ERR(rngc->base))
return PTR_ERR(rngc->base);
rngc->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(rngc->clk)) {
dev_err(&pdev->dev, "Can not get rng_clk\n");
return PTR_ERR(rngc->clk);
}
irq = platform_get_irq(pdev, 0);
if (irq <= 0) {
dev_err(&pdev->dev, "Couldn't get irq %d\n", irq);
return irq;
}
ret = clk_prepare_enable(rngc->clk);
if (ret)
return ret;
ret = devm_request_irq(&pdev->dev,
irq, imx_rngc_irq, 0, pdev->name, (void *)rngc);
if (ret) {
dev_err(rngc->dev, "Can't get interrupt working.\n");
goto err;
}
init_completion(&rngc->rng_op_done);
rngc->rng.name = pdev->name;
rngc->rng.init = imx_rngc_init;
rngc->rng.read = imx_rngc_read;
rngc->dev = &pdev->dev;
platform_set_drvdata(pdev, rngc);
imx_rngc_irq_mask_clear(rngc);
if (self_test) {
ret = imx_rngc_self_test(rngc);
if (ret) {
dev_err(rngc->dev, "FSL RNGC self test failed.\n");
goto err;
}
}
ret = hwrng_register(&rngc->rng);
if (ret) {
dev_err(&pdev->dev, "FSL RNGC registering failed (%d)\n", ret);
goto err;
}
dev_info(&pdev->dev, "Freescale RNGC registered.\n");
return 0;
err:
clk_disable_unprepare(rngc->clk);
return ret;
}
static int __exit imx_rngc_remove(struct platform_device *pdev)
{
struct imx_rngc *rngc = platform_get_drvdata(pdev);
hwrng_unregister(&rngc->rng);
clk_disable_unprepare(rngc->clk);
return 0;
}
#ifdef CONFIG_PM
static int imx_rngc_suspend(struct device *dev)
{
struct imx_rngc *rngc = dev_get_drvdata(dev);
clk_disable_unprepare(rngc->clk);
return 0;
}
static int imx_rngc_resume(struct device *dev)
{
struct imx_rngc *rngc = dev_get_drvdata(dev);
clk_prepare_enable(rngc->clk);
return 0;
}
static const struct dev_pm_ops imx_rngc_pm_ops = {
.suspend = imx_rngc_suspend,
.resume = imx_rngc_resume,
};
#endif
static const struct of_device_id imx_rngc_dt_ids[] = {
{ .compatible = "fsl,imx25-rngb", .data = NULL, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, imx_rngc_dt_ids);
static struct platform_driver imx_rngc_driver = {
.driver = {
.name = "imx_rngc",
#ifdef CONFIG_PM
.pm = &imx_rngc_pm_ops,
#endif
.of_match_table = imx_rngc_dt_ids,
},
.remove = __exit_p(imx_rngc_remove),
};
module_platform_driver_probe(imx_rngc_driver, imx_rngc_probe);
MODULE_AUTHOR("Freescale Semiconductor, Inc.");
MODULE_DESCRIPTION("H/W RNGC driver for i.MX");
MODULE_LICENSE("GPL");

View File

@ -525,12 +525,26 @@ config CRYPTO_DEV_ATMEL_SHA
To compile this driver as a module, choose M here: the module
will be called atmel-sha.
config CRYPTO_DEV_ATMEL_ECC
tristate "Support for Microchip / Atmel ECC hw accelerator"
depends on ARCH_AT91 || COMPILE_TEST
depends on I2C
select CRYPTO_ECDH
select CRC16
help
Microhip / Atmel ECC hw accelerator.
Select this if you want to use the Microchip / Atmel module for
ECDH algorithm.
To compile this driver as a module, choose M here: the module
will be called atmel-ecc.
config CRYPTO_DEV_CCP
bool "Support for AMD Cryptographic Coprocessor"
bool "Support for AMD Secure Processor"
depends on ((X86 && PCI) || (ARM64 && (OF_ADDRESS || ACPI))) && HAS_IOMEM
help
The AMD Cryptographic Coprocessor provides hardware offload support
for encryption, hashing and related operations.
The AMD Secure Processor provides support for the Cryptographic Coprocessor
(CCP) and the Platform Security Processor (PSP) devices.
if CRYPTO_DEV_CCP
source "drivers/crypto/ccp/Kconfig"
@ -616,6 +630,14 @@ config CRYPTO_DEV_SUN4I_SS
To compile this driver as a module, choose M here: the module
will be called sun4i-ss.
config CRYPTO_DEV_SUN4I_SS_PRNG
bool "Support for Allwinner Security System PRNG"
depends on CRYPTO_DEV_SUN4I_SS
select CRYPTO_RNG
help
Select this option if you want to provide kernel-side support for
the Pseudo-Random Number Generator found in the Security System.
config CRYPTO_DEV_ROCKCHIP
tristate "Rockchip's Cryptographic Engine driver"
depends on OF && ARCH_ROCKCHIP
@ -686,4 +708,25 @@ config CRYPTO_DEV_SAFEXCEL
chain mode, AES cipher mode and SHA1/SHA224/SHA256/SHA512 hash
algorithms.
config CRYPTO_DEV_ARTPEC6
tristate "Support for Axis ARTPEC-6/7 hardware crypto acceleration."
depends on ARM && (ARCH_ARTPEC || COMPILE_TEST)
depends on HAS_DMA
depends on OF
select CRYPTO_AEAD
select CRYPTO_AES
select CRYPTO_ALGAPI
select CRYPTO_BLKCIPHER
select CRYPTO_CTR
select CRYPTO_HASH
select CRYPTO_SHA1
select CRYPTO_SHA256
select CRYPTO_SHA384
select CRYPTO_SHA512
help
Enables the driver for the on-chip crypto accelerator
of Axis ARTPEC SoCs.
To compile this driver as a module, choose M here.
endif # CRYPTO_HW

View File

@ -1,6 +1,7 @@
obj-$(CONFIG_CRYPTO_DEV_ATMEL_AES) += atmel-aes.o
obj-$(CONFIG_CRYPTO_DEV_ATMEL_SHA) += atmel-sha.o
obj-$(CONFIG_CRYPTO_DEV_ATMEL_TDES) += atmel-tdes.o
obj-$(CONFIG_CRYPTO_DEV_ATMEL_ECC) += atmel-ecc.o
obj-$(CONFIG_CRYPTO_DEV_BFIN_CRC) += bfin_crc.o
obj-$(CONFIG_CRYPTO_DEV_CAVIUM_ZIP) += cavium/
obj-$(CONFIG_CRYPTO_DEV_CCP) += ccp/
@ -35,7 +36,7 @@ obj-$(CONFIG_CRYPTO_DEV_QCE) += qce/
obj-$(CONFIG_CRYPTO_DEV_ROCKCHIP) += rockchip/
obj-$(CONFIG_CRYPTO_DEV_S5P) += s5p-sss.o
obj-$(CONFIG_CRYPTO_DEV_SAHARA) += sahara.o
obj-$(CONFIG_CRYPTO_DEV_STM32) += stm32/
obj-$(CONFIG_ARCH_STM32) += stm32/
obj-$(CONFIG_CRYPTO_DEV_SUN4I_SS) += sunxi-ss/
obj-$(CONFIG_CRYPTO_DEV_TALITOS) += talitos.o
obj-$(CONFIG_CRYPTO_DEV_UX500) += ux500/
@ -43,3 +44,4 @@ obj-$(CONFIG_CRYPTO_DEV_VIRTIO) += virtio/
obj-$(CONFIG_CRYPTO_DEV_VMX) += vmx/
obj-$(CONFIG_CRYPTO_DEV_BCM_SPU) += bcm/
obj-$(CONFIG_CRYPTO_DEV_SAFEXCEL) += inside-secure/
obj-$(CONFIG_CRYPTO_DEV_ARTPEC6) += axis/

781
drivers/crypto/atmel-ecc.c Normal file
View File

@ -0,0 +1,781 @@
/*
* Microchip / Atmel ECC (I2C) driver.
*
* Copyright (c) 2017, Microchip Technology Inc.
* Author: Tudor Ambarus <tudor.ambarus@microchip.com>
*
* This software is licensed under the terms of the GNU General Public
* License version 2, as published by the Free Software Foundation, and
* may be copied, distributed, and modified under those terms.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
*/
#include <linux/bitrev.h>
#include <linux/crc16.h>
#include <linux/delay.h>
#include <linux/device.h>
#include <linux/err.h>
#include <linux/errno.h>
#include <linux/i2c.h>
#include <linux/init.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/of_device.h>
#include <linux/scatterlist.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <crypto/internal/kpp.h>
#include <crypto/ecdh.h>
#include <crypto/kpp.h>
#include "atmel-ecc.h"
/* Used for binding tfm objects to i2c clients. */
struct atmel_ecc_driver_data {
struct list_head i2c_client_list;
spinlock_t i2c_list_lock;
} ____cacheline_aligned;
static struct atmel_ecc_driver_data driver_data;
/**
* atmel_ecc_i2c_client_priv - i2c_client private data
* @client : pointer to i2c client device
* @i2c_client_list_node: part of i2c_client_list
* @lock : lock for sending i2c commands
* @wake_token : wake token array of zeros
* @wake_token_sz : size in bytes of the wake_token
* @tfm_count : number of active crypto transformations on i2c client
*
* Reads and writes from/to the i2c client are sequential. The first byte
* transmitted to the device is treated as the byte size. Any attempt to send
* more than this number of bytes will cause the device to not ACK those bytes.
* After the host writes a single command byte to the input buffer, reads are
* prohibited until after the device completes command execution. Use a mutex
* when sending i2c commands.
*/
struct atmel_ecc_i2c_client_priv {
struct i2c_client *client;
struct list_head i2c_client_list_node;
struct mutex lock;
u8 wake_token[WAKE_TOKEN_MAX_SIZE];
size_t wake_token_sz;
atomic_t tfm_count ____cacheline_aligned;
};
/**
* atmel_ecdh_ctx - transformation context
* @client : pointer to i2c client device
* @fallback : used for unsupported curves or when user wants to use its own
* private key.
* @public_key : generated when calling set_secret(). It's the responsibility
* of the user to not call set_secret() while
* generate_public_key() or compute_shared_secret() are in flight.
* @curve_id : elliptic curve id
* @n_sz : size in bytes of the n prime
* @do_fallback: true when the device doesn't support the curve or when the user
* wants to use its own private key.
*/
struct atmel_ecdh_ctx {
struct i2c_client *client;
struct crypto_kpp *fallback;
const u8 *public_key;
unsigned int curve_id;
size_t n_sz;
bool do_fallback;
};
/**
* atmel_ecc_work_data - data structure representing the work
* @ctx : transformation context.
* @cbk : pointer to a callback function to be invoked upon completion of this
* request. This has the form:
* callback(struct atmel_ecc_work_data *work_data, void *areq, u8 status)
* where:
* @work_data: data structure representing the work
* @areq : optional pointer to an argument passed with the original
* request.
* @status : status returned from the i2c client device or i2c error.
* @areq: optional pointer to a user argument for use at callback time.
* @work: describes the task to be executed.
* @cmd : structure used for communicating with the device.
*/
struct atmel_ecc_work_data {
struct atmel_ecdh_ctx *ctx;
void (*cbk)(struct atmel_ecc_work_data *work_data, void *areq,
int status);
void *areq;
struct work_struct work;
struct atmel_ecc_cmd cmd;
};
static u16 atmel_ecc_crc16(u16 crc, const u8 *buffer, size_t len)
{
return cpu_to_le16(bitrev16(crc16(crc, buffer, len)));
}
/**
* atmel_ecc_checksum() - Generate 16-bit CRC as required by ATMEL ECC.
* CRC16 verification of the count, opcode, param1, param2 and data bytes.
* The checksum is saved in little-endian format in the least significant
* two bytes of the command. CRC polynomial is 0x8005 and the initial register
* value should be zero.
*
* @cmd : structure used for communicating with the device.
*/
static void atmel_ecc_checksum(struct atmel_ecc_cmd *cmd)
{
u8 *data = &cmd->count;
size_t len = cmd->count - CRC_SIZE;
u16 *crc16 = (u16 *)(data + len);
*crc16 = atmel_ecc_crc16(0, data, len);
}
static void atmel_ecc_init_read_cmd(struct atmel_ecc_cmd *cmd)
{
cmd->word_addr = COMMAND;
cmd->opcode = OPCODE_READ;
/*
* Read the word from Configuration zone that contains the lock bytes
* (UserExtra, Selector, LockValue, LockConfig).
*/
cmd->param1 = CONFIG_ZONE;
cmd->param2 = DEVICE_LOCK_ADDR;
cmd->count = READ_COUNT;
atmel_ecc_checksum(cmd);
cmd->msecs = MAX_EXEC_TIME_READ;
cmd->rxsize = READ_RSP_SIZE;
}
static void atmel_ecc_init_genkey_cmd(struct atmel_ecc_cmd *cmd, u16 keyid)
{
cmd->word_addr = COMMAND;
cmd->count = GENKEY_COUNT;
cmd->opcode = OPCODE_GENKEY;
cmd->param1 = GENKEY_MODE_PRIVATE;
/* a random private key will be generated and stored in slot keyID */
cmd->param2 = cpu_to_le16(keyid);
atmel_ecc_checksum(cmd);
cmd->msecs = MAX_EXEC_TIME_GENKEY;
cmd->rxsize = GENKEY_RSP_SIZE;
}
static int atmel_ecc_init_ecdh_cmd(struct atmel_ecc_cmd *cmd,
struct scatterlist *pubkey)
{
size_t copied;
cmd->word_addr = COMMAND;
cmd->count = ECDH_COUNT;
cmd->opcode = OPCODE_ECDH;
cmd->param1 = ECDH_PREFIX_MODE;
/* private key slot */
cmd->param2 = cpu_to_le16(DATA_SLOT_2);
/*
* The device only supports NIST P256 ECC keys. The public key size will
* always be the same. Use a macro for the key size to avoid unnecessary
* computations.
*/
copied = sg_copy_to_buffer(pubkey, 1, cmd->data, ATMEL_ECC_PUBKEY_SIZE);
if (copied != ATMEL_ECC_PUBKEY_SIZE)
return -EINVAL;
atmel_ecc_checksum(cmd);
cmd->msecs = MAX_EXEC_TIME_ECDH;
cmd->rxsize = ECDH_RSP_SIZE;
return 0;
}
/*
* After wake and after execution of a command, there will be error, status, or
* result bytes in the device's output register that can be retrieved by the
* system. When the length of that group is four bytes, the codes returned are
* detailed in error_list.
*/
static int atmel_ecc_status(struct device *dev, u8 *status)
{
size_t err_list_len = ARRAY_SIZE(error_list);
int i;
u8 err_id = status[1];
if (*status != STATUS_SIZE)
return 0;
if (err_id == STATUS_WAKE_SUCCESSFUL || err_id == STATUS_NOERR)
return 0;
for (i = 0; i < err_list_len; i++)
if (error_list[i].value == err_id)
break;
/* if err_id is not in the error_list then ignore it */
if (i != err_list_len) {
dev_err(dev, "%02x: %s:\n", err_id, error_list[i].error_text);
return err_id;
}
return 0;
}
static int atmel_ecc_wakeup(struct i2c_client *client)
{
struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
u8 status[STATUS_RSP_SIZE];
int ret;
/*
* The device ignores any levels or transitions on the SCL pin when the
* device is idle, asleep or during waking up. Don't check for error
* when waking up the device.
*/
i2c_master_send(client, i2c_priv->wake_token, i2c_priv->wake_token_sz);
/*
* Wait to wake the device. Typical execution times for ecdh and genkey
* are around tens of milliseconds. Delta is chosen to 50 microseconds.
*/
usleep_range(TWHI_MIN, TWHI_MAX);
ret = i2c_master_recv(client, status, STATUS_SIZE);
if (ret < 0)
return ret;
return atmel_ecc_status(&client->dev, status);
}
static int atmel_ecc_sleep(struct i2c_client *client)
{
u8 sleep = SLEEP_TOKEN;
return i2c_master_send(client, &sleep, 1);
}
static void atmel_ecdh_done(struct atmel_ecc_work_data *work_data, void *areq,
int status)
{
struct kpp_request *req = areq;
struct atmel_ecdh_ctx *ctx = work_data->ctx;
struct atmel_ecc_cmd *cmd = &work_data->cmd;
size_t copied;
size_t n_sz = ctx->n_sz;
if (status)
goto free_work_data;
/* copy the shared secret */
copied = sg_copy_from_buffer(req->dst, 1, &cmd->data[RSP_DATA_IDX],
n_sz);
if (copied != n_sz)
status = -EINVAL;
/* fall through */
free_work_data:
kzfree(work_data);
kpp_request_complete(req, status);
}
/*
* atmel_ecc_send_receive() - send a command to the device and receive its
* response.
* @client: i2c client device
* @cmd : structure used to communicate with the device
*
* After the device receives a Wake token, a watchdog counter starts within the
* device. After the watchdog timer expires, the device enters sleep mode
* regardless of whether some I/O transmission or command execution is in
* progress. If a command is attempted when insufficient time remains prior to
* watchdog timer execution, the device will return the watchdog timeout error
* code without attempting to execute the command. There is no way to reset the
* counter other than to put the device into sleep or idle mode and then
* wake it up again.
*/
static int atmel_ecc_send_receive(struct i2c_client *client,
struct atmel_ecc_cmd *cmd)
{
struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
int ret;
mutex_lock(&i2c_priv->lock);
ret = atmel_ecc_wakeup(client);
if (ret)
goto err;
/* send the command */
ret = i2c_master_send(client, (u8 *)cmd, cmd->count + WORD_ADDR_SIZE);
if (ret < 0)
goto err;
/* delay the appropriate amount of time for command to execute */
msleep(cmd->msecs);
/* receive the response */
ret = i2c_master_recv(client, cmd->data, cmd->rxsize);
if (ret < 0)
goto err;
/* put the device into low-power mode */
ret = atmel_ecc_sleep(client);
if (ret < 0)
goto err;
mutex_unlock(&i2c_priv->lock);
return atmel_ecc_status(&client->dev, cmd->data);
err:
mutex_unlock(&i2c_priv->lock);
return ret;
}
static void atmel_ecc_work_handler(struct work_struct *work)
{
struct atmel_ecc_work_data *work_data =
container_of(work, struct atmel_ecc_work_data, work);
struct atmel_ecc_cmd *cmd = &work_data->cmd;
struct i2c_client *client = work_data->ctx->client;
int status;
status = atmel_ecc_send_receive(client, cmd);
work_data->cbk(work_data, work_data->areq, status);
}
static void atmel_ecc_enqueue(struct atmel_ecc_work_data *work_data,
void (*cbk)(struct atmel_ecc_work_data *work_data,
void *areq, int status),
void *areq)
{
work_data->cbk = (void *)cbk;
work_data->areq = areq;
INIT_WORK(&work_data->work, atmel_ecc_work_handler);
schedule_work(&work_data->work);
}
static unsigned int atmel_ecdh_supported_curve(unsigned int curve_id)
{
if (curve_id == ECC_CURVE_NIST_P256)
return ATMEL_ECC_NIST_P256_N_SIZE;
return 0;
}
/*
* A random private key is generated and stored in the device. The device
* returns the pair public key.
*/
static int atmel_ecdh_set_secret(struct crypto_kpp *tfm, const void *buf,
unsigned int len)
{
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
struct atmel_ecc_cmd *cmd;
void *public_key;
struct ecdh params;
int ret = -ENOMEM;
/* free the old public key, if any */
kfree(ctx->public_key);
/* make sure you don't free the old public key twice */
ctx->public_key = NULL;
if (crypto_ecdh_decode_key(buf, len, &params) < 0) {
dev_err(&ctx->client->dev, "crypto_ecdh_decode_key failed\n");
return -EINVAL;
}
ctx->n_sz = atmel_ecdh_supported_curve(params.curve_id);
if (!ctx->n_sz || params.key_size) {
/* fallback to ecdh software implementation */
ctx->do_fallback = true;
return crypto_kpp_set_secret(ctx->fallback, buf, len);
}
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
/*
* The device only supports NIST P256 ECC keys. The public key size will
* always be the same. Use a macro for the key size to avoid unnecessary
* computations.
*/
public_key = kmalloc(ATMEL_ECC_PUBKEY_SIZE, GFP_KERNEL);
if (!public_key)
goto free_cmd;
ctx->do_fallback = false;
ctx->curve_id = params.curve_id;
atmel_ecc_init_genkey_cmd(cmd, DATA_SLOT_2);
ret = atmel_ecc_send_receive(ctx->client, cmd);
if (ret)
goto free_public_key;
/* save the public key */
memcpy(public_key, &cmd->data[RSP_DATA_IDX], ATMEL_ECC_PUBKEY_SIZE);
ctx->public_key = public_key;
kfree(cmd);
return 0;
free_public_key:
kfree(public_key);
free_cmd:
kfree(cmd);
return ret;
}
static int atmel_ecdh_generate_public_key(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
size_t copied;
int ret = 0;
if (ctx->do_fallback) {
kpp_request_set_tfm(req, ctx->fallback);
return crypto_kpp_generate_public_key(req);
}
/* public key was saved at private key generation */
copied = sg_copy_from_buffer(req->dst, 1, ctx->public_key,
ATMEL_ECC_PUBKEY_SIZE);
if (copied != ATMEL_ECC_PUBKEY_SIZE)
ret = -EINVAL;
return ret;
}
static int atmel_ecdh_compute_shared_secret(struct kpp_request *req)
{
struct crypto_kpp *tfm = crypto_kpp_reqtfm(req);
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
struct atmel_ecc_work_data *work_data;
gfp_t gfp;
int ret;
if (ctx->do_fallback) {
kpp_request_set_tfm(req, ctx->fallback);
return crypto_kpp_compute_shared_secret(req);
}
gfp = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ? GFP_KERNEL :
GFP_ATOMIC;
work_data = kmalloc(sizeof(*work_data), gfp);
if (!work_data)
return -ENOMEM;
work_data->ctx = ctx;
ret = atmel_ecc_init_ecdh_cmd(&work_data->cmd, req->src);
if (ret)
goto free_work_data;
atmel_ecc_enqueue(work_data, atmel_ecdh_done, req);
return -EINPROGRESS;
free_work_data:
kfree(work_data);
return ret;
}
static struct i2c_client *atmel_ecc_i2c_client_alloc(void)
{
struct atmel_ecc_i2c_client_priv *i2c_priv, *min_i2c_priv = NULL;
struct i2c_client *client = ERR_PTR(-ENODEV);
int min_tfm_cnt = INT_MAX;
int tfm_cnt;
spin_lock(&driver_data.i2c_list_lock);
if (list_empty(&driver_data.i2c_client_list)) {
spin_unlock(&driver_data.i2c_list_lock);
return ERR_PTR(-ENODEV);
}
list_for_each_entry(i2c_priv, &driver_data.i2c_client_list,
i2c_client_list_node) {
tfm_cnt = atomic_read(&i2c_priv->tfm_count);
if (tfm_cnt < min_tfm_cnt) {
min_tfm_cnt = tfm_cnt;
min_i2c_priv = i2c_priv;
}
if (!min_tfm_cnt)
break;
}
if (min_i2c_priv) {
atomic_inc(&min_i2c_priv->tfm_count);
client = min_i2c_priv->client;
}
spin_unlock(&driver_data.i2c_list_lock);
return client;
}
static void atmel_ecc_i2c_client_free(struct i2c_client *client)
{
struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
atomic_dec(&i2c_priv->tfm_count);
}
static int atmel_ecdh_init_tfm(struct crypto_kpp *tfm)
{
const char *alg = kpp_alg_name(tfm);
struct crypto_kpp *fallback;
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
ctx->client = atmel_ecc_i2c_client_alloc();
if (IS_ERR(ctx->client)) {
pr_err("tfm - i2c_client binding failed\n");
return PTR_ERR(ctx->client);
}
fallback = crypto_alloc_kpp(alg, 0, CRYPTO_ALG_NEED_FALLBACK);
if (IS_ERR(fallback)) {
dev_err(&ctx->client->dev, "Failed to allocate transformation for '%s': %ld\n",
alg, PTR_ERR(fallback));
return PTR_ERR(fallback);
}
crypto_kpp_set_flags(fallback, crypto_kpp_get_flags(tfm));
dev_info(&ctx->client->dev, "Using '%s' as fallback implementation.\n",
crypto_tfm_alg_driver_name(crypto_kpp_tfm(fallback)));
ctx->fallback = fallback;
return 0;
}
static void atmel_ecdh_exit_tfm(struct crypto_kpp *tfm)
{
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
kfree(ctx->public_key);
crypto_free_kpp(ctx->fallback);
atmel_ecc_i2c_client_free(ctx->client);
}
static unsigned int atmel_ecdh_max_size(struct crypto_kpp *tfm)
{
struct atmel_ecdh_ctx *ctx = kpp_tfm_ctx(tfm);
if (ctx->fallback)
return crypto_kpp_maxsize(ctx->fallback);
/*
* The device only supports NIST P256 ECC keys. The public key size will
* always be the same. Use a macro for the key size to avoid unnecessary
* computations.
*/
return ATMEL_ECC_PUBKEY_SIZE;
}
static struct kpp_alg atmel_ecdh = {
.set_secret = atmel_ecdh_set_secret,
.generate_public_key = atmel_ecdh_generate_public_key,
.compute_shared_secret = atmel_ecdh_compute_shared_secret,
.init = atmel_ecdh_init_tfm,
.exit = atmel_ecdh_exit_tfm,
.max_size = atmel_ecdh_max_size,
.base = {
.cra_flags = CRYPTO_ALG_NEED_FALLBACK,
.cra_name = "ecdh",
.cra_driver_name = "atmel-ecdh",
.cra_priority = ATMEL_ECC_PRIORITY,
.cra_module = THIS_MODULE,
.cra_ctxsize = sizeof(struct atmel_ecdh_ctx),
},
};
static inline size_t atmel_ecc_wake_token_sz(u32 bus_clk_rate)
{
u32 no_of_bits = DIV_ROUND_UP(TWLO_USEC * bus_clk_rate, USEC_PER_SEC);
/* return the size of the wake_token in bytes */
return DIV_ROUND_UP(no_of_bits, 8);
}
static int device_sanity_check(struct i2c_client *client)
{
struct atmel_ecc_cmd *cmd;
int ret;
cmd = kmalloc(sizeof(*cmd), GFP_KERNEL);
if (!cmd)
return -ENOMEM;
atmel_ecc_init_read_cmd(cmd);
ret = atmel_ecc_send_receive(client, cmd);
if (ret)
goto free_cmd;
/*
* It is vital that the Configuration, Data and OTP zones be locked
* prior to release into the field of the system containing the device.
* Failure to lock these zones may permit modification of any secret
* keys and may lead to other security problems.
*/
if (cmd->data[LOCK_CONFIG_IDX] || cmd->data[LOCK_VALUE_IDX]) {
dev_err(&client->dev, "Configuration or Data and OTP zones are unlocked!\n");
ret = -ENOTSUPP;
}
/* fall through */
free_cmd:
kfree(cmd);
return ret;
}
static int atmel_ecc_probe(struct i2c_client *client,
const struct i2c_device_id *id)
{
struct atmel_ecc_i2c_client_priv *i2c_priv;
struct device *dev = &client->dev;
int ret;
u32 bus_clk_rate;
if (!i2c_check_functionality(client->adapter, I2C_FUNC_I2C)) {
dev_err(dev, "I2C_FUNC_I2C not supported\n");
return -ENODEV;
}
ret = of_property_read_u32(client->adapter->dev.of_node,
"clock-frequency", &bus_clk_rate);
if (ret) {
dev_err(dev, "of: failed to read clock-frequency property\n");
return ret;
}
if (bus_clk_rate > 1000000L) {
dev_err(dev, "%d exceeds maximum supported clock frequency (1MHz)\n",
bus_clk_rate);
return -EINVAL;
}
i2c_priv = devm_kmalloc(dev, sizeof(*i2c_priv), GFP_KERNEL);
if (!i2c_priv)
return -ENOMEM;
i2c_priv->client = client;
mutex_init(&i2c_priv->lock);
/*
* WAKE_TOKEN_MAX_SIZE was calculated for the maximum bus_clk_rate -
* 1MHz. The previous bus_clk_rate check ensures us that wake_token_sz
* will always be smaller than or equal to WAKE_TOKEN_MAX_SIZE.
*/
i2c_priv->wake_token_sz = atmel_ecc_wake_token_sz(bus_clk_rate);
memset(i2c_priv->wake_token, 0, sizeof(i2c_priv->wake_token));
atomic_set(&i2c_priv->tfm_count, 0);
i2c_set_clientdata(client, i2c_priv);
ret = device_sanity_check(client);
if (ret)
return ret;
spin_lock(&driver_data.i2c_list_lock);
list_add_tail(&i2c_priv->i2c_client_list_node,
&driver_data.i2c_client_list);
spin_unlock(&driver_data.i2c_list_lock);
ret = crypto_register_kpp(&atmel_ecdh);
if (ret) {
spin_lock(&driver_data.i2c_list_lock);
list_del(&i2c_priv->i2c_client_list_node);
spin_unlock(&driver_data.i2c_list_lock);
dev_err(dev, "%s alg registration failed\n",
atmel_ecdh.base.cra_driver_name);
} else {
dev_info(dev, "atmel ecc algorithms registered in /proc/crypto\n");
}
return ret;
}
static int atmel_ecc_remove(struct i2c_client *client)
{
struct atmel_ecc_i2c_client_priv *i2c_priv = i2c_get_clientdata(client);
/* Return EBUSY if i2c client already allocated. */
if (atomic_read(&i2c_priv->tfm_count)) {
dev_err(&client->dev, "Device is busy\n");
return -EBUSY;
}
crypto_unregister_kpp(&atmel_ecdh);
spin_lock(&driver_data.i2c_list_lock);
list_del(&i2c_priv->i2c_client_list_node);
spin_unlock(&driver_data.i2c_list_lock);
return 0;
}
#ifdef CONFIG_OF
static const struct of_device_id atmel_ecc_dt_ids[] = {
{
.compatible = "atmel,atecc508a",
}, {
/* sentinel */
}
};
MODULE_DEVICE_TABLE(of, atmel_ecc_dt_ids);
#endif
static const struct i2c_device_id atmel_ecc_id[] = {
{ "atecc508a", 0 },
{ }
};
MODULE_DEVICE_TABLE(i2c, atmel_ecc_id);
static struct i2c_driver atmel_ecc_driver = {
.driver = {
.name = "atmel-ecc",
.of_match_table = of_match_ptr(atmel_ecc_dt_ids),
},
.probe = atmel_ecc_probe,
.remove = atmel_ecc_remove,
.id_table = atmel_ecc_id,
};
static int __init atmel_ecc_init(void)
{
spin_lock_init(&driver_data.i2c_list_lock);
INIT_LIST_HEAD(&driver_data.i2c_client_list);
return i2c_add_driver(&atmel_ecc_driver);
}
static void __exit atmel_ecc_exit(void)
{
flush_scheduled_work();
i2c_del_driver(&atmel_ecc_driver);
}
module_init(atmel_ecc_init);
module_exit(atmel_ecc_exit);
MODULE_AUTHOR("Tudor Ambarus <tudor.ambarus@microchip.com>");
MODULE_DESCRIPTION("Microchip / Atmel ECC (I2C) driver");
MODULE_LICENSE("GPL v2");

128
drivers/crypto/atmel-ecc.h Normal file
View File

@ -0,0 +1,128 @@
/*
* Copyright (c) 2017, Microchip Technology Inc.
* Author: Tudor Ambarus <tudor.ambarus@microchip.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
*
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __ATMEL_ECC_H__
#define __ATMEL_ECC_H__
#define ATMEL_ECC_PRIORITY 300
#define COMMAND 0x03 /* packet function */
#define SLEEP_TOKEN 0x01
#define WAKE_TOKEN_MAX_SIZE 8
/* Definitions of Data and Command sizes */
#define WORD_ADDR_SIZE 1
#define COUNT_SIZE 1
#define CRC_SIZE 2
#define CMD_OVERHEAD_SIZE (COUNT_SIZE + CRC_SIZE)
/* size in bytes of the n prime */
#define ATMEL_ECC_NIST_P256_N_SIZE 32
#define ATMEL_ECC_PUBKEY_SIZE (2 * ATMEL_ECC_NIST_P256_N_SIZE)
#define STATUS_RSP_SIZE 4
#define ECDH_RSP_SIZE (32 + CMD_OVERHEAD_SIZE)
#define GENKEY_RSP_SIZE (ATMEL_ECC_PUBKEY_SIZE + \
CMD_OVERHEAD_SIZE)
#define READ_RSP_SIZE (4 + CMD_OVERHEAD_SIZE)
#define MAX_RSP_SIZE GENKEY_RSP_SIZE
/**
* atmel_ecc_cmd - structure used for communicating with the device.
* @word_addr: indicates the function of the packet sent to the device. This
* byte should have a value of COMMAND for normal operation.
* @count : number of bytes to be transferred to (or from) the device.
* @opcode : the command code.
* @param1 : the first parameter; always present.
* @param2 : the second parameter; always present.
* @data : optional remaining input data. Includes a 2-byte CRC.
* @rxsize : size of the data received from i2c client.
* @msecs : command execution time in milliseconds
*/
struct atmel_ecc_cmd {
u8 word_addr;
u8 count;
u8 opcode;
u8 param1;
u16 param2;
u8 data[MAX_RSP_SIZE];
u8 msecs;
u16 rxsize;
} __packed;
/* Status/Error codes */
#define STATUS_SIZE 0x04
#define STATUS_NOERR 0x00
#define STATUS_WAKE_SUCCESSFUL 0x11
static const struct {
u8 value;
const char *error_text;
} error_list[] = {
{ 0x01, "CheckMac or Verify miscompare" },
{ 0x03, "Parse Error" },
{ 0x05, "ECC Fault" },
{ 0x0F, "Execution Error" },
{ 0xEE, "Watchdog about to expire" },
{ 0xFF, "CRC or other communication error" },
};
/* Definitions for eeprom organization */
#define CONFIG_ZONE 0
/* Definitions for Indexes common to all commands */
#define RSP_DATA_IDX 1 /* buffer index of data in response */
#define DATA_SLOT_2 2 /* used for ECDH private key */
/* Definitions for the device lock state */
#define DEVICE_LOCK_ADDR 0x15
#define LOCK_VALUE_IDX (RSP_DATA_IDX + 2)
#define LOCK_CONFIG_IDX (RSP_DATA_IDX + 3)
/*
* Wake High delay to data communication (microseconds). SDA should be stable
* high for this entire duration.
*/
#define TWHI_MIN 1500
#define TWHI_MAX 1550
/* Wake Low duration */
#define TWLO_USEC 60
/* Command execution time (milliseconds) */
#define MAX_EXEC_TIME_ECDH 58
#define MAX_EXEC_TIME_GENKEY 115
#define MAX_EXEC_TIME_READ 1
/* Command opcode */
#define OPCODE_ECDH 0x43
#define OPCODE_GENKEY 0x40
#define OPCODE_READ 0x02
/* Definitions for the READ Command */
#define READ_COUNT 7
/* Definitions for the GenKey Command */
#define GENKEY_COUNT 7
#define GENKEY_MODE_PRIVATE 0x04
/* Definitions for the ECDH Command */
#define ECDH_COUNT 71
#define ECDH_PREFIX_MODE 0x00
#endif /* __ATMEL_ECC_H__ */

View File

@ -2883,7 +2883,7 @@ static int atmel_sha_probe(struct platform_device *pdev)
static int atmel_sha_remove(struct platform_device *pdev)
{
static struct atmel_sha_dev *sha_dd;
struct atmel_sha_dev *sha_dd;
sha_dd = platform_get_drvdata(pdev);
if (!sha_dd)

View File

@ -1487,7 +1487,7 @@ static int atmel_tdes_probe(struct platform_device *pdev)
static int atmel_tdes_remove(struct platform_device *pdev)
{
static struct atmel_tdes_dev *tdes_dd;
struct atmel_tdes_dev *tdes_dd;
tdes_dd = platform_get_drvdata(pdev);
if (!tdes_dd)

View File

@ -0,0 +1 @@
obj-$(CONFIG_CRYPTO_DEV_ARTPEC6) := artpec6_crypto.o

File diff suppressed because it is too large Load Diff

View File

@ -90,8 +90,6 @@ static int aead_pri = 150;
module_param(aead_pri, int, 0644);
MODULE_PARM_DESC(aead_pri, "Priority for AEAD algos");
#define MAX_SPUS 16
/* A type 3 BCM header, expected to precede the SPU header for SPU-M.
* Bits 3 and 4 in the first byte encode the channel number (the dma ringset).
* 0x60 - ring 0
@ -120,7 +118,7 @@ static u8 select_channel(void)
{
u8 chan_idx = atomic_inc_return(&iproc_priv.next_chan);
return chan_idx % iproc_priv.spu.num_spu;
return chan_idx % iproc_priv.spu.num_chan;
}
/**
@ -4528,8 +4526,13 @@ static void spu_functions_register(struct device *dev,
*/
static int spu_mb_init(struct device *dev)
{
struct mbox_client *mcl = &iproc_priv.mcl[iproc_priv.spu.num_spu];
int err;
struct mbox_client *mcl = &iproc_priv.mcl;
int err, i;
iproc_priv.mbox = devm_kcalloc(dev, iproc_priv.spu.num_chan,
sizeof(struct mbox_chan *), GFP_KERNEL);
if (!iproc_priv.mbox)
return -ENOMEM;
mcl->dev = dev;
mcl->tx_block = false;
@ -4538,25 +4541,33 @@ static int spu_mb_init(struct device *dev)
mcl->rx_callback = spu_rx_callback;
mcl->tx_done = NULL;
iproc_priv.mbox[iproc_priv.spu.num_spu] =
mbox_request_channel(mcl, 0);
if (IS_ERR(iproc_priv.mbox[iproc_priv.spu.num_spu])) {
err = (int)PTR_ERR(iproc_priv.mbox[iproc_priv.spu.num_spu]);
dev_err(dev,
"Mbox channel %d request failed with err %d",
iproc_priv.spu.num_spu, err);
iproc_priv.mbox[iproc_priv.spu.num_spu] = NULL;
return err;
for (i = 0; i < iproc_priv.spu.num_chan; i++) {
iproc_priv.mbox[i] = mbox_request_channel(mcl, i);
if (IS_ERR(iproc_priv.mbox[i])) {
err = (int)PTR_ERR(iproc_priv.mbox[i]);
dev_err(dev,
"Mbox channel %d request failed with err %d",
i, err);
iproc_priv.mbox[i] = NULL;
goto free_channels;
}
}
return 0;
free_channels:
for (i = 0; i < iproc_priv.spu.num_chan; i++) {
if (iproc_priv.mbox[i])
mbox_free_channel(iproc_priv.mbox[i]);
}
return err;
}
static void spu_mb_release(struct platform_device *pdev)
{
int i;
for (i = 0; i < iproc_priv.spu.num_spu; i++)
for (i = 0; i < iproc_priv.spu.num_chan; i++)
mbox_free_channel(iproc_priv.mbox[i]);
}
@ -4567,7 +4578,7 @@ static void spu_counters_init(void)
atomic_set(&iproc_priv.session_count, 0);
atomic_set(&iproc_priv.stream_count, 0);
atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_spu);
atomic_set(&iproc_priv.next_chan, (int)iproc_priv.spu.num_chan);
atomic64_set(&iproc_priv.bytes_in, 0);
atomic64_set(&iproc_priv.bytes_out, 0);
for (i = 0; i < SPU_OP_NUM; i++) {
@ -4809,47 +4820,38 @@ static int spu_dt_read(struct platform_device *pdev)
struct resource *spu_ctrl_regs;
const struct of_device_id *match;
const struct spu_type_subtype *matched_spu_type;
void __iomem *spu_reg_vbase[MAX_SPUS];
int err;
struct device_node *dn = pdev->dev.of_node;
int err, i;
/* Count number of mailbox channels */
spu->num_chan = of_count_phandle_with_args(dn, "mboxes", "#mbox-cells");
match = of_match_device(of_match_ptr(bcm_spu_dt_ids), dev);
if (!match) {
dev_err(&pdev->dev, "Failed to match device\n");
return -ENODEV;
}
matched_spu_type = match->data;
if (iproc_priv.spu.num_spu > 1) {
/* If this is 2nd or later SPU, make sure it's same type */
if ((spu->spu_type != matched_spu_type->type) ||
(spu->spu_subtype != matched_spu_type->subtype)) {
err = -EINVAL;
dev_err(&pdev->dev, "Multiple SPU types not allowed");
spu->spu_type = matched_spu_type->type;
spu->spu_subtype = matched_spu_type->subtype;
i = 0;
for (i = 0; (i < MAX_SPUS) && ((spu_ctrl_regs =
platform_get_resource(pdev, IORESOURCE_MEM, i)) != NULL); i++) {
spu->reg_vbase[i] = devm_ioremap_resource(dev, spu_ctrl_regs);
if (IS_ERR(spu->reg_vbase[i])) {
err = PTR_ERR(spu->reg_vbase[i]);
dev_err(&pdev->dev, "Failed to map registers: %d\n",
err);
spu->reg_vbase[i] = NULL;
return err;
}
} else {
/* Record type of first SPU */
spu->spu_type = matched_spu_type->type;
spu->spu_subtype = matched_spu_type->subtype;
}
/* Get and map SPU registers */
spu_ctrl_regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!spu_ctrl_regs) {
err = -EINVAL;
dev_err(&pdev->dev, "Invalid/missing registers for SPU\n");
return err;
}
spu_reg_vbase[iproc_priv.spu.num_spu] =
devm_ioremap_resource(dev, spu_ctrl_regs);
if (IS_ERR(spu_reg_vbase[iproc_priv.spu.num_spu])) {
err = PTR_ERR(spu_reg_vbase[iproc_priv.spu.num_spu]);
dev_err(&pdev->dev, "Failed to map registers: %d\n",
err);
spu_reg_vbase[iproc_priv.spu.num_spu] = NULL;
return err;
}
dev_dbg(dev, "SPU %d detected.", iproc_priv.spu.num_spu);
spu->reg_vbase[iproc_priv.spu.num_spu] = spu_reg_vbase;
spu->num_spu = i;
dev_dbg(dev, "Device has %d SPUs", spu->num_spu);
return 0;
}
@ -4860,8 +4862,8 @@ int bcm_spu_probe(struct platform_device *pdev)
struct spu_hw *spu = &iproc_priv.spu;
int err = 0;
iproc_priv.pdev[iproc_priv.spu.num_spu] = pdev;
platform_set_drvdata(iproc_priv.pdev[iproc_priv.spu.num_spu],
iproc_priv.pdev = pdev;
platform_set_drvdata(iproc_priv.pdev,
&iproc_priv);
err = spu_dt_read(pdev);
@ -4872,12 +4874,6 @@ int bcm_spu_probe(struct platform_device *pdev)
if (err < 0)
goto failure;
iproc_priv.spu.num_spu++;
/* If already initialized, we've just added another SPU and are done */
if (iproc_priv.inited)
return 0;
if (spu->spu_type == SPU_TYPE_SPUM)
iproc_priv.bcm_hdr_len = 8;
else if (spu->spu_type == SPU_TYPE_SPU2)
@ -4893,8 +4889,6 @@ int bcm_spu_probe(struct platform_device *pdev)
if (err < 0)
goto fail_reg;
iproc_priv.inited = true;
return 0;
fail_reg:

View File

@ -427,10 +427,13 @@ struct spu_hw {
/* The number of SPUs on this platform */
u32 num_spu;
/* The number of SPU channels on this platform */
u32 num_chan;
};
struct device_private {
struct platform_device *pdev[MAX_SPUS];
struct platform_device *pdev;
struct spu_hw spu;
@ -470,12 +473,10 @@ struct device_private {
/* Number of ICV check failures for AEAD messages */
atomic_t bad_icv;
struct mbox_client mcl[MAX_SPUS];
/* Array of mailbox channel pointers, one for each channel */
struct mbox_chan *mbox[MAX_SPUS];
struct mbox_client mcl;
/* Driver initialized */
bool inited;
/* Array of mailbox channel pointers, one for each channel */
struct mbox_chan **mbox;
};
extern struct device_private iproc_priv;

View File

@ -81,40 +81,6 @@
#define debug(format, arg...)
#endif
#ifdef DEBUG
#include <linux/highmem.h>
static void dbg_dump_sg(const char *level, const char *prefix_str,
int prefix_type, int rowsize, int groupsize,
struct scatterlist *sg, size_t tlen, bool ascii)
{
struct scatterlist *it;
void *it_page;
size_t len;
void *buf;
for (it = sg; it != NULL && tlen > 0 ; it = sg_next(sg)) {
/*
* make sure the scatterlist's page
* has a valid virtual memory mapping
*/
it_page = kmap_atomic(sg_page(it));
if (unlikely(!it_page)) {
printk(KERN_ERR "dbg_dump_sg: kmap failed\n");
return;
}
buf = it_page + it->offset;
len = min_t(size_t, tlen, it->length);
print_hex_dump(level, prefix_str, prefix_type, rowsize,
groupsize, buf, len, ascii);
tlen -= len;
kunmap_atomic(it_page);
}
}
#endif
static struct list_head alg_list;
struct caam_alg_entry {
@ -898,10 +864,10 @@ static void ablkcipher_encrypt_done(struct device *jrdev, u32 *desc, u32 err,
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
edesc->src_nents > 1 ? 100 : ivsize, 1);
dbg_dump_sg(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
caam_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
ablkcipher_unmap(jrdev, edesc, req);
@ -937,10 +903,10 @@ static void ablkcipher_decrypt_done(struct device *jrdev, u32 *desc, u32 err,
print_hex_dump(KERN_ERR, "dstiv @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
dbg_dump_sg(KERN_ERR, "dst @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
caam_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
ablkcipher_unmap(jrdev, edesc, req);
@ -1107,10 +1073,10 @@ static void init_ablkcipher_job(u32 *sh_desc, dma_addr_t ptr,
ivsize, 1);
pr_err("asked=%d, nbytes%d\n",
(int)edesc->src_nents > 1 ? 100 : req->nbytes, req->nbytes);
dbg_dump_sg(KERN_ERR, "src @"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents > 1 ? 100 : req->nbytes, 1);
#endif
caam_dump_sg(KERN_ERR, "src @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents > 1 ? 100 : req->nbytes, 1);
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
@ -1164,10 +1130,10 @@ static void init_ablkcipher_giv_job(u32 *sh_desc, dma_addr_t ptr,
print_hex_dump(KERN_ERR, "presciv@" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
ivsize, 1);
dbg_dump_sg(KERN_ERR, "src @" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents > 1 ? 100 : req->nbytes, 1);
#endif
caam_dump_sg(KERN_ERR, "src @" __stringify(__LINE__) ": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
edesc->src_nents > 1 ? 100 : req->nbytes, 1);
len = desc_len(sh_desc);
init_job_desc_shared(desc, ptr, len, HDR_SHARE_DEFER | HDR_REVERSE);
@ -1449,11 +1415,9 @@ static int aead_decrypt(struct aead_request *req)
u32 *desc;
int ret = 0;
#ifdef DEBUG
dbg_dump_sg(KERN_ERR, "dec src@"__stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
req->assoclen + req->cryptlen, 1);
#endif
caam_dump_sg(KERN_ERR, "dec src@" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->src,
req->assoclen + req->cryptlen, 1);
/* allocate extended descriptor */
edesc = aead_edesc_alloc(req, AUTHENC_DESC_JOB_IO_LEN,

View File

@ -599,7 +599,7 @@ void cnstr_shdsc_gcm_encap(u32 * const desc, struct alginfo *cdata,
/* skip key loading if they are loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL | JUMP_TEST_ALL |
JUMP_COND_SHRD | JUMP_COND_SELF);
JUMP_COND_SHRD);
if (cdata->key_inline)
append_key_as_imm(desc, cdata->key_virt, cdata->keylen,
cdata->keylen, CLASS_1 | KEY_DEST_CLASS_REG);
@ -688,8 +688,7 @@ void cnstr_shdsc_gcm_decap(u32 * const desc, struct alginfo *cdata,
/* skip key loading if they are loaded due to sharing */
key_jump_cmd = append_jump(desc, JUMP_JSL |
JUMP_TEST_ALL | JUMP_COND_SHRD |
JUMP_COND_SELF);
JUMP_TEST_ALL | JUMP_COND_SHRD);
if (cdata->key_inline)
append_key_as_imm(desc, cdata->key_virt, cdata->keylen,
cdata->keylen, CLASS_1 | KEY_DEST_CLASS_REG);

View File

@ -12,7 +12,6 @@
#include "intern.h"
#include "desc_constr.h"
#include "error.h"
#include "sg_sw_sec4.h"
#include "sg_sw_qm.h"
#include "key_gen.h"
#include "qi.h"
@ -399,6 +398,7 @@ static int xts_ablkcipher_setkey(struct crypto_ablkcipher *ablkcipher,
* @iv_dma: dma address of iv for checking continuity and link table
* @qm_sg_bytes: length of dma mapped h/w link table
* @qm_sg_dma: bus physical mapped address of h/w link table
* @assoclen: associated data length, in CAAM endianness
* @assoclen_dma: bus physical mapped address of req->assoclen
* @drv_req: driver-specific request structure
* @sgt: the h/w link table
@ -409,8 +409,12 @@ struct aead_edesc {
dma_addr_t iv_dma;
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
unsigned int assoclen;
dma_addr_t assoclen_dma;
struct caam_drv_req drv_req;
#define CAAM_QI_MAX_AEAD_SG \
((CAAM_QI_MEMCACHE_SIZE - offsetof(struct aead_edesc, sgt)) / \
sizeof(struct qm_sg_entry))
struct qm_sg_entry sgt[0];
};
@ -431,6 +435,9 @@ struct ablkcipher_edesc {
int qm_sg_bytes;
dma_addr_t qm_sg_dma;
struct caam_drv_req drv_req;
#define CAAM_QI_MAX_ABLKCIPHER_SG \
((CAAM_QI_MEMCACHE_SIZE - offsetof(struct ablkcipher_edesc, sgt)) / \
sizeof(struct qm_sg_entry))
struct qm_sg_entry sgt[0];
};
@ -660,6 +667,14 @@ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
*/
qm_sg_ents = 1 + !!ivsize + mapped_src_nents +
(mapped_dst_nents > 1 ? mapped_dst_nents : 0);
if (unlikely(qm_sg_ents > CAAM_QI_MAX_AEAD_SG)) {
dev_err(qidev, "Insufficient S/G entries: %d > %lu\n",
qm_sg_ents, CAAM_QI_MAX_AEAD_SG);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, op_type, 0, 0);
qi_cache_free(edesc);
return ERR_PTR(-ENOMEM);
}
sg_table = &edesc->sgt[0];
qm_sg_bytes = qm_sg_ents * sizeof(*sg_table);
@ -670,7 +685,8 @@ static struct aead_edesc *aead_edesc_alloc(struct aead_request *req,
edesc->drv_req.cbk = aead_done;
edesc->drv_req.drv_ctx = drv_ctx;
edesc->assoclen_dma = dma_map_single(qidev, &req->assoclen, 4,
edesc->assoclen = cpu_to_caam32(req->assoclen);
edesc->assoclen_dma = dma_map_single(qidev, &edesc->assoclen, 4,
DMA_TO_DEVICE);
if (dma_mapping_error(qidev, edesc->assoclen_dma)) {
dev_err(qidev, "unable to map assoclen\n");
@ -776,9 +792,9 @@ static void ablkcipher_done(struct caam_drv_req *drv_req, u32 status)
struct crypto_ablkcipher *ablkcipher = crypto_ablkcipher_reqtfm(req);
struct caam_ctx *caam_ctx = crypto_ablkcipher_ctx(ablkcipher);
struct device *qidev = caam_ctx->qidev;
#ifdef DEBUG
int ivsize = crypto_ablkcipher_ivsize(ablkcipher);
#ifdef DEBUG
dev_err(qidev, "%s %d: status 0x%x\n", __func__, __LINE__, status);
#endif
@ -791,14 +807,21 @@ static void ablkcipher_done(struct caam_drv_req *drv_req, u32 status)
print_hex_dump(KERN_ERR, "dstiv @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->info,
edesc->src_nents > 1 ? 100 : ivsize, 1);
dbg_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
caam_dump_sg(KERN_ERR, "dst @" __stringify(__LINE__)": ",
DUMP_PREFIX_ADDRESS, 16, 4, req->dst,
edesc->dst_nents > 1 ? 100 : req->nbytes, 1);
#endif
ablkcipher_unmap(qidev, edesc, req);
qi_cache_free(edesc);
/*
* The crypto API expects us to set the IV (req->info) to the last
* ciphertext block. This is used e.g. by the CTS mode.
*/
scatterwalk_map_and_copy(req->info, req->dst, req->nbytes - ivsize,
ivsize, 0);
ablkcipher_request_complete(req, status);
}
@ -880,6 +903,15 @@ static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
}
dst_sg_idx = qm_sg_ents;
qm_sg_ents += mapped_dst_nents > 1 ? mapped_dst_nents : 0;
if (unlikely(qm_sg_ents > CAAM_QI_MAX_ABLKCIPHER_SG)) {
dev_err(qidev, "Insufficient S/G entries: %d > %lu\n",
qm_sg_ents, CAAM_QI_MAX_ABLKCIPHER_SG);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, op_type, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (unlikely(!edesc)) {
@ -892,7 +924,6 @@ static struct ablkcipher_edesc *ablkcipher_edesc_alloc(struct ablkcipher_request
edesc->src_nents = src_nents;
edesc->dst_nents = dst_nents;
edesc->iv_dma = iv_dma;
qm_sg_ents += mapped_dst_nents > 1 ? mapped_dst_nents : 0;
sg_table = &edesc->sgt[0];
edesc->qm_sg_bytes = qm_sg_ents * sizeof(*sg_table);
edesc->drv_req.app_ctx = req;
@ -1026,6 +1057,14 @@ static struct ablkcipher_edesc *ablkcipher_giv_edesc_alloc(
qm_sg_ents += 1 + mapped_dst_nents;
}
if (unlikely(qm_sg_ents > CAAM_QI_MAX_ABLKCIPHER_SG)) {
dev_err(qidev, "Insufficient S/G entries: %d > %lu\n",
qm_sg_ents, CAAM_QI_MAX_ABLKCIPHER_SG);
caam_unmap(qidev, req->src, req->dst, src_nents, dst_nents,
iv_dma, ivsize, GIVENCRYPT, 0, 0);
return ERR_PTR(-ENOMEM);
}
/* allocate space for base edesc and link tables */
edesc = qi_cache_alloc(GFP_DMA | flags);
if (!edesc) {
@ -1968,7 +2007,7 @@ static struct caam_aead_alg driver_aeads[] = {
.cra_name = "echainiv(authenc(hmac(sha256),"
"cbc(des)))",
.cra_driver_name = "echainiv-authenc-"
"hmac-sha256-cbc-desi-"
"hmac-sha256-cbc-des-"
"caam-qi",
.cra_blocksize = DES_BLOCK_SIZE,
},

View File

@ -791,8 +791,8 @@ static int ahash_update_ctx(struct ahash_request *req)
to_hash - *buflen,
*next_buflen, 0);
} else {
(edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
cpu_to_caam32(SEC4_SG_LEN_FIN);
sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index -
1);
}
desc = edesc->hw_desc;
@ -882,8 +882,7 @@ static int ahash_final_ctx(struct ahash_request *req)
if (ret)
goto unmap_ctx;
(edesc->sec4_sg + sec4_sg_src_index - 1)->len |=
cpu_to_caam32(SEC4_SG_LEN_FIN);
sg_to_sec4_set_last(edesc->sec4_sg + sec4_sg_src_index - 1);
edesc->sec4_sg_dma = dma_map_single(jrdev, edesc->sec4_sg,
sec4_sg_bytes, DMA_TO_DEVICE);

View File

@ -285,11 +285,7 @@ static int caam_init_rng(struct caam_rng_ctx *ctx, struct device *jrdev)
if (err)
return err;
err = caam_init_buf(ctx, 1);
if (err)
return err;
return 0;
return caam_init_buf(ctx, 1);
}
static struct hwrng caam_rng = {

View File

@ -17,6 +17,8 @@
bool caam_little_end;
EXPORT_SYMBOL(caam_little_end);
bool caam_dpaa2;
EXPORT_SYMBOL(caam_dpaa2);
#ifdef CONFIG_CAAM_QI
#include "qi.h"
@ -319,8 +321,11 @@ static int caam_remove(struct platform_device *pdev)
caam_qi_shutdown(ctrlpriv->qidev);
#endif
/* De-initialize RNG state handles initialized by this driver. */
if (ctrlpriv->rng4_sh_init)
/*
* De-initialize RNG state handles initialized by this driver.
* In case of DPAA 2.x, RNG is managed by MC firmware.
*/
if (!caam_dpaa2 && ctrlpriv->rng4_sh_init)
deinstantiate_rng(ctrldev, ctrlpriv->rng4_sh_init);
/* Shut down debug views */
@ -444,7 +449,6 @@ static int caam_probe(struct platform_device *pdev)
dev = &pdev->dev;
dev_set_drvdata(dev, ctrlpriv);
ctrlpriv->pdev = pdev;
nprop = pdev->dev.of_node;
/* Enable clocking */
@ -553,12 +557,17 @@ static int caam_probe(struct platform_device *pdev)
/*
* Enable DECO watchdogs and, if this is a PHYS_ADDR_T_64BIT kernel,
* long pointers in master configuration register
* long pointers in master configuration register.
* In case of DPAA 2.x, Management Complex firmware performs
* the configuration.
*/
clrsetbits_32(&ctrl->mcr, MCFGR_AWCACHE_MASK | MCFGR_LONG_PTR,
MCFGR_AWCACHE_CACH | MCFGR_AWCACHE_BUFF |
MCFGR_WDENABLE | MCFGR_LARGE_BURST |
(sizeof(dma_addr_t) == sizeof(u64) ? MCFGR_LONG_PTR : 0));
caam_dpaa2 = !!(comp_params & CTPR_MS_DPAA2);
if (!caam_dpaa2)
clrsetbits_32(&ctrl->mcr, MCFGR_AWCACHE_MASK | MCFGR_LONG_PTR,
MCFGR_AWCACHE_CACH | MCFGR_AWCACHE_BUFF |
MCFGR_WDENABLE | MCFGR_LARGE_BURST |
(sizeof(dma_addr_t) == sizeof(u64) ?
MCFGR_LONG_PTR : 0));
/*
* Read the Compile Time paramters and SCFGR to determine
@ -587,7 +596,9 @@ static int caam_probe(struct platform_device *pdev)
JRSTART_JR3_START);
if (sizeof(dma_addr_t) == sizeof(u64)) {
if (of_device_is_compatible(nprop, "fsl,sec-v5.0"))
if (caam_dpaa2)
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(49));
else if (of_device_is_compatible(nprop, "fsl,sec-v5.0"))
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(40));
else
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(36));
@ -630,11 +641,9 @@ static int caam_probe(struct platform_device *pdev)
ring++;
}
/* Check to see if QI present. If so, enable */
ctrlpriv->qi_present =
!!(rd_reg32(&ctrl->perfmon.comp_parms_ms) &
CTPR_MS_QI_MASK);
if (ctrlpriv->qi_present) {
/* Check to see if (DPAA 1.x) QI present. If so, enable */
ctrlpriv->qi_present = !!(comp_params & CTPR_MS_QI_MASK);
if (ctrlpriv->qi_present && !caam_dpaa2) {
ctrlpriv->qi = (struct caam_queue_if __iomem __force *)
((__force uint8_t *)ctrl +
BLOCK_OFFSET * QI_BLOCK_NUMBER
@ -662,8 +671,10 @@ static int caam_probe(struct platform_device *pdev)
/*
* If SEC has RNG version >= 4 and RNG state handle has not been
* already instantiated, do RNG instantiation
* In case of DPAA 2.x, RNG is managed by MC firmware.
*/
if ((cha_vid_ls & CHA_ID_LS_RNG_MASK) >> CHA_ID_LS_RNG_SHIFT >= 4) {
if (!caam_dpaa2 &&
(cha_vid_ls & CHA_ID_LS_RNG_MASK) >> CHA_ID_LS_RNG_SHIFT >= 4) {
ctrlpriv->rng4_sh_init =
rd_reg32(&ctrl->r4tst[0].rdsta);
/*
@ -731,63 +742,43 @@ static int caam_probe(struct platform_device *pdev)
/* Report "alive" for developer to see */
dev_info(dev, "device ID = 0x%016llx (Era %d)\n", caam_id,
caam_get_era());
dev_info(dev, "job rings = %d, qi = %d\n",
ctrlpriv->total_jobrs, ctrlpriv->qi_present);
dev_info(dev, "job rings = %d, qi = %d, dpaa2 = %s\n",
ctrlpriv->total_jobrs, ctrlpriv->qi_present,
caam_dpaa2 ? "yes" : "no");
#ifdef CONFIG_DEBUG_FS
ctrlpriv->ctl_rq_dequeued =
debugfs_create_file("rq_dequeued",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->req_dequeued,
&caam_fops_u64_ro);
ctrlpriv->ctl_ob_enc_req =
debugfs_create_file("ob_rq_encrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_req,
&caam_fops_u64_ro);
ctrlpriv->ctl_ib_dec_req =
debugfs_create_file("ib_rq_decrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_req,
&caam_fops_u64_ro);
ctrlpriv->ctl_ob_enc_bytes =
debugfs_create_file("ob_bytes_encrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_bytes,
&caam_fops_u64_ro);
ctrlpriv->ctl_ob_prot_bytes =
debugfs_create_file("ob_bytes_protected",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_prot_bytes,
&caam_fops_u64_ro);
ctrlpriv->ctl_ib_dec_bytes =
debugfs_create_file("ib_bytes_decrypted",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_bytes,
&caam_fops_u64_ro);
ctrlpriv->ctl_ib_valid_bytes =
debugfs_create_file("ib_bytes_validated",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_valid_bytes,
&caam_fops_u64_ro);
debugfs_create_file("rq_dequeued", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->req_dequeued,
&caam_fops_u64_ro);
debugfs_create_file("ob_rq_encrypted", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_req,
&caam_fops_u64_ro);
debugfs_create_file("ib_rq_decrypted", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_req,
&caam_fops_u64_ro);
debugfs_create_file("ob_bytes_encrypted", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_enc_bytes,
&caam_fops_u64_ro);
debugfs_create_file("ob_bytes_protected", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ob_prot_bytes,
&caam_fops_u64_ro);
debugfs_create_file("ib_bytes_decrypted", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_dec_bytes,
&caam_fops_u64_ro);
debugfs_create_file("ib_bytes_validated", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->ib_valid_bytes,
&caam_fops_u64_ro);
/* Controller level - global status values */
ctrlpriv->ctl_faultaddr =
debugfs_create_file("fault_addr",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultaddr,
&caam_fops_u32_ro);
ctrlpriv->ctl_faultdetail =
debugfs_create_file("fault_detail",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultdetail,
&caam_fops_u32_ro);
ctrlpriv->ctl_faultstatus =
debugfs_create_file("fault_status",
S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->status,
&caam_fops_u32_ro);
debugfs_create_file("fault_addr", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultaddr,
&caam_fops_u32_ro);
debugfs_create_file("fault_detail", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->faultdetail,
&caam_fops_u32_ro);
debugfs_create_file("fault_status", S_IRUSR | S_IRGRP | S_IROTH,
ctrlpriv->ctl, &perfmon->status,
&caam_fops_u32_ro);
/* Internal covering keys (useful in non-secure mode only) */
ctrlpriv->ctl_kek_wrap.data = (__force void *)&ctrlpriv->ctrl->kek[0];

View File

@ -10,4 +10,6 @@
/* Prototypes for backend-level services exposed to APIs */
int caam_get_era(void);
extern bool caam_dpaa2;
#endif /* CTRL_H */

View File

@ -9,6 +9,46 @@
#include "desc.h"
#include "error.h"
#ifdef DEBUG
#include <linux/highmem.h>
void caam_dump_sg(const char *level, const char *prefix_str, int prefix_type,
int rowsize, int groupsize, struct scatterlist *sg,
size_t tlen, bool ascii)
{
struct scatterlist *it;
void *it_page;
size_t len;
void *buf;
for (it = sg; it && tlen > 0 ; it = sg_next(sg)) {
/*
* make sure the scatterlist's page
* has a valid virtual memory mapping
*/
it_page = kmap_atomic(sg_page(it));
if (unlikely(!it_page)) {
pr_err("caam_dump_sg: kmap failed\n");
return;
}
buf = it_page + it->offset;
len = min_t(size_t, tlen, it->length);
print_hex_dump(level, prefix_str, prefix_type, rowsize,
groupsize, buf, len, ascii);
tlen -= len;
kunmap_atomic(it_page);
}
}
#else
void caam_dump_sg(const char *level, const char *prefix_str, int prefix_type,
int rowsize, int groupsize, struct scatterlist *sg,
size_t tlen, bool ascii)
{}
#endif /* DEBUG */
EXPORT_SYMBOL(caam_dump_sg);
static const struct {
u8 value;
const char *error_text;

View File

@ -8,4 +8,8 @@
#define CAAM_ERROR_H
#define CAAM_ERROR_STR_MAX 302
void caam_jr_strstatus(struct device *jrdev, u32 status);
void caam_dump_sg(const char *level, const char *prefix_str, int prefix_type,
int rowsize, int groupsize, struct scatterlist *sg,
size_t tlen, bool ascii);
#endif /* CAAM_ERROR_H */

View File

@ -64,12 +64,9 @@ struct caam_drv_private_jr {
* Driver-private storage for a single CAAM block instance
*/
struct caam_drv_private {
struct device *dev;
#ifdef CONFIG_CAAM_QI
struct device *qidev;
#endif
struct platform_device *pdev;
/* Physical-presence section */
struct caam_ctrl __iomem *ctrl; /* controller region */
@ -105,16 +102,8 @@ struct caam_drv_private {
#ifdef CONFIG_DEBUG_FS
struct dentry *dfs_root;
struct dentry *ctl; /* controller dir */
struct dentry *ctl_rq_dequeued, *ctl_ob_enc_req, *ctl_ib_dec_req;
struct dentry *ctl_ob_enc_bytes, *ctl_ob_prot_bytes;
struct dentry *ctl_ib_dec_bytes, *ctl_ib_valid_bytes;
struct dentry *ctl_faultaddr, *ctl_faultdetail, *ctl_faultstatus;
struct debugfs_blob_wrapper ctl_kek_wrap, ctl_tkek_wrap, ctl_tdsk_wrap;
struct dentry *ctl_kek, *ctl_tkek, *ctl_tdsk;
#ifdef CONFIG_CAAM_QI
struct dentry *qi_congested;
#endif
#endif
};

View File

@ -9,6 +9,7 @@
#include <linux/of_address.h>
#include "compat.h"
#include "ctrl.h"
#include "regs.h"
#include "jr.h"
#include "desc.h"
@ -499,7 +500,11 @@ static int caam_jr_probe(struct platform_device *pdev)
jrpriv->rregs = (struct caam_job_ring __iomem __force *)ctrl;
if (sizeof(dma_addr_t) == sizeof(u64)) {
if (of_device_is_compatible(nprop, "fsl,sec-v5.0-job-ring"))
if (caam_dpaa2)
error = dma_set_mask_and_coherent(jrdev,
DMA_BIT_MASK(49));
else if (of_device_is_compatible(nprop,
"fsl,sec-v5.0-job-ring"))
error = dma_set_mask_and_coherent(jrdev,
DMA_BIT_MASK(40));
else

View File

@ -24,9 +24,6 @@
*/
#define MAX_RSP_FQ_BACKLOG_PER_CPU 256
/* Length of a single buffer in the QI driver memory cache */
#define CAAM_QI_MEMCACHE_SIZE 512
#define CAAM_QI_ENQUEUE_RETRIES 10000
#define CAAM_NAPI_WEIGHT 63
@ -55,6 +52,7 @@ struct caam_qi_pcpu_priv {
} ____cacheline_aligned;
static DEFINE_PER_CPU(struct caam_qi_pcpu_priv, pcpu_qipriv);
static DEFINE_PER_CPU(int, last_cpu);
/*
* caam_qi_priv - CAAM QI backend private params
@ -203,8 +201,8 @@ static struct qman_fq *create_caam_req_fq(struct device *qidev,
goto init_req_fq_fail;
}
dev_info(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
smp_processor_id());
dev_dbg(qidev, "Allocated request FQ %u for CPU %u\n", req_fq->fqid,
smp_processor_id());
return req_fq;
init_req_fq_fail:
@ -277,6 +275,7 @@ static int kill_fq(struct device *qidev, struct qman_fq *fq)
dev_err(qidev, "OOS of FQID: %u failed\n", fq->fqid);
qman_destroy_fq(fq);
kfree(fq);
return ret;
}
@ -342,8 +341,7 @@ int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
drv_ctx->req_fq = old_fq;
if (kill_fq(qidev, new_fq))
dev_warn(qidev, "New CAAM FQ: %u kill failed\n",
new_fq->fqid);
dev_warn(qidev, "New CAAM FQ kill failed\n");
return ret;
}
@ -373,10 +371,9 @@ int caam_drv_ctx_update(struct caam_drv_ctx *drv_ctx, u32 *sh_desc)
drv_ctx->req_fq = old_fq;
if (kill_fq(qidev, new_fq))
dev_warn(qidev, "New CAAM FQ: %u kill failed\n",
new_fq->fqid);
dev_warn(qidev, "New CAAM FQ kill failed\n");
} else if (kill_fq(qidev, old_fq)) {
dev_warn(qidev, "Old CAAM FQ: %u kill failed\n", old_fq->fqid);
dev_warn(qidev, "Old CAAM FQ kill failed\n");
}
return 0;
@ -392,7 +389,6 @@ struct caam_drv_ctx *caam_drv_ctx_init(struct device *qidev,
dma_addr_t hwdesc;
struct caam_drv_ctx *drv_ctx;
const cpumask_t *cpus = qman_affine_cpus();
static DEFINE_PER_CPU(int, last_cpu);
num_words = desc_len(sh_desc);
if (num_words > MAX_SDLEN) {
@ -511,7 +507,6 @@ int caam_qi_shutdown(struct device *qidev)
if (kill_fq(qidev, per_cpu(pcpu_qipriv.rsp_fq, i)))
dev_err(qidev, "Rsp FQ kill failed, cpu: %d\n", i);
kfree(per_cpu(pcpu_qipriv.rsp_fq, i));
}
/*
@ -646,7 +641,7 @@ static int alloc_rsp_fq_cpu(struct device *qidev, unsigned int cpu)
per_cpu(pcpu_qipriv.rsp_fq, cpu) = fq;
dev_info(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
dev_dbg(qidev, "Allocated response FQ %u for CPU %u", fq->fqid, cpu);
return 0;
}
@ -679,7 +674,7 @@ static int init_cgr(struct device *qidev)
return ret;
}
dev_info(qidev, "Congestion threshold set to %llu\n", val);
dev_dbg(qidev, "Congestion threshold set to %llu\n", val);
return 0;
}
@ -737,6 +732,7 @@ int caam_qi_init(struct platform_device *caam_pdev)
qi_pdev = platform_device_register_full(&qi_pdev_info);
if (IS_ERR(qi_pdev))
return PTR_ERR(qi_pdev);
set_dma_ops(&qi_pdev->dev, get_dma_ops(ctrldev));
ctrlpriv = dev_get_drvdata(ctrldev);
qidev = &qi_pdev->dev;
@ -795,10 +791,8 @@ int caam_qi_init(struct platform_device *caam_pdev)
/* Done with the CGRs; restore the cpus allowed mask */
set_cpus_allowed_ptr(current, &old_cpumask);
#ifdef CONFIG_DEBUG_FS
ctrlpriv->qi_congested = debugfs_create_file("qi_congested", 0444,
ctrlpriv->ctl,
&times_congested,
&caam_fops_u64_ro);
debugfs_create_file("qi_congested", 0444, ctrlpriv->ctl,
&times_congested, &caam_fops_u64_ro);
#endif
dev_info(qidev, "Linux CAAM Queue I/F driver initialised\n");
return 0;

View File

@ -39,6 +39,9 @@
*/
#define MAX_SDLEN ((CAAM_DESC_BYTES_MAX - DESC_JOB_IO_LEN) / CAAM_CMD_SZ)
/* Length of a single buffer in the QI driver memory cache */
#define CAAM_QI_MEMCACHE_SIZE 768
extern bool caam_congested __read_mostly;
/*

View File

@ -293,6 +293,7 @@ struct caam_perfmon {
u32 cha_rev_ls; /* CRNR - CHA Rev No. Least significant half*/
#define CTPR_MS_QI_SHIFT 25
#define CTPR_MS_QI_MASK (0x1ull << CTPR_MS_QI_SHIFT)
#define CTPR_MS_DPAA2 BIT(13)
#define CTPR_MS_VIRT_EN_INCL 0x00000001
#define CTPR_MS_VIRT_EN_POR 0x00000002
#define CTPR_MS_PG_SZ_MASK 0x10

View File

@ -0,0 +1,81 @@
/*
* Copyright 2015-2016 Freescale Semiconductor, Inc.
* Copyright 2017 NXP
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the names of the above-listed copyright holders nor the
* names of any contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
*
* ALTERNATIVELY, this software may be distributed under the terms of the
* GNU General Public License ("GPL") as published by the Free Software
* Foundation, either version 2 of that License or (at your option) any
* later version.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _SG_SW_QM2_H_
#define _SG_SW_QM2_H_
#include "../../../drivers/staging/fsl-mc/include/dpaa2-fd.h"
static inline void dma_to_qm_sg_one(struct dpaa2_sg_entry *qm_sg_ptr,
dma_addr_t dma, u32 len, u16 offset)
{
dpaa2_sg_set_addr(qm_sg_ptr, dma);
dpaa2_sg_set_format(qm_sg_ptr, dpaa2_sg_single);
dpaa2_sg_set_final(qm_sg_ptr, false);
dpaa2_sg_set_len(qm_sg_ptr, len);
dpaa2_sg_set_bpid(qm_sg_ptr, 0);
dpaa2_sg_set_offset(qm_sg_ptr, offset);
}
/*
* convert scatterlist to h/w link table format
* but does not have final bit; instead, returns last entry
*/
static inline struct dpaa2_sg_entry *
sg_to_qm_sg(struct scatterlist *sg, int sg_count,
struct dpaa2_sg_entry *qm_sg_ptr, u16 offset)
{
while (sg_count && sg) {
dma_to_qm_sg_one(qm_sg_ptr, sg_dma_address(sg),
sg_dma_len(sg), offset);
qm_sg_ptr++;
sg = sg_next(sg);
sg_count--;
}
return qm_sg_ptr - 1;
}
/*
* convert scatterlist to h/w link table format
* scatterlist must have been previously dma mapped
*/
static inline void sg_to_qm_sg_last(struct scatterlist *sg, int sg_count,
struct dpaa2_sg_entry *qm_sg_ptr,
u16 offset)
{
qm_sg_ptr = sg_to_qm_sg(sg, sg_count, qm_sg_ptr, offset);
dpaa2_sg_set_final(qm_sg_ptr, true);
}
#endif /* _SG_SW_QM2_H_ */

View File

@ -5,7 +5,13 @@
*
*/
#ifndef _SG_SW_SEC4_H_
#define _SG_SW_SEC4_H_
#include "ctrl.h"
#include "regs.h"
#include "sg_sw_qm2.h"
#include "../../../drivers/staging/fsl-mc/include/dpaa2-fd.h"
struct sec4_sg_entry {
u64 ptr;
@ -19,9 +25,15 @@ struct sec4_sg_entry {
static inline void dma_to_sec4_sg_one(struct sec4_sg_entry *sec4_sg_ptr,
dma_addr_t dma, u32 len, u16 offset)
{
sec4_sg_ptr->ptr = cpu_to_caam_dma64(dma);
sec4_sg_ptr->len = cpu_to_caam32(len);
sec4_sg_ptr->bpid_offset = cpu_to_caam32(offset & SEC4_SG_OFFSET_MASK);
if (caam_dpaa2) {
dma_to_qm_sg_one((struct dpaa2_sg_entry *)sec4_sg_ptr, dma, len,
offset);
} else {
sec4_sg_ptr->ptr = cpu_to_caam_dma64(dma);
sec4_sg_ptr->len = cpu_to_caam32(len);
sec4_sg_ptr->bpid_offset = cpu_to_caam32(offset &
SEC4_SG_OFFSET_MASK);
}
#ifdef DEBUG
print_hex_dump(KERN_ERR, "sec4_sg_ptr@: ",
DUMP_PREFIX_ADDRESS, 16, 4, sec4_sg_ptr,
@ -47,6 +59,14 @@ sg_to_sec4_sg(struct scatterlist *sg, int sg_count,
return sec4_sg_ptr - 1;
}
static inline void sg_to_sec4_set_last(struct sec4_sg_entry *sec4_sg_ptr)
{
if (caam_dpaa2)
dpaa2_sg_set_final((struct dpaa2_sg_entry *)sec4_sg_ptr, true);
else
sec4_sg_ptr->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
}
/*
* convert scatterlist to h/w link table format
* scatterlist must have been previously dma mapped
@ -56,20 +76,7 @@ static inline void sg_to_sec4_sg_last(struct scatterlist *sg, int sg_count,
u16 offset)
{
sec4_sg_ptr = sg_to_sec4_sg(sg, sg_count, sec4_sg_ptr, offset);
sec4_sg_ptr->len |= cpu_to_caam32(SEC4_SG_LEN_FIN);
sg_to_sec4_set_last(sec4_sg_ptr);
}
static inline struct sec4_sg_entry *sg_to_sec4_sg_len(
struct scatterlist *sg, unsigned int total,
struct sec4_sg_entry *sec4_sg_ptr)
{
do {
unsigned int len = min(sg_dma_len(sg), total);
dma_to_sec4_sg_one(sec4_sg_ptr, sg_dma_address(sg), len, 0);
sec4_sg_ptr++;
sg = sg_next(sg);
total -= len;
} while (total);
return sec4_sg_ptr - 1;
}
#endif /* _SG_SW_SEC4_H_ */

View File

@ -268,8 +268,10 @@ static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae)
mcode = &cpt->mcode[cpt->next_mc_idx];
memcpy(mcode->version, (u8 *)fw_entry->data, CPT_UCODE_VERSION_SZ);
mcode->code_size = ntohl(ucode->code_length) * 2;
if (!mcode->code_size)
return -EINVAL;
if (!mcode->code_size) {
ret = -EINVAL;
goto fw_release;
}
mcode->is_ae = is_ae;
mcode->core_mask = 0ULL;
@ -280,7 +282,8 @@ static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae)
&mcode->phys_base, GFP_KERNEL);
if (!mcode->code) {
dev_err(dev, "Unable to allocate space for microcode");
return -ENOMEM;
ret = -ENOMEM;
goto fw_release;
}
memcpy((void *)mcode->code, (void *)(fw_entry->data + sizeof(*ucode)),
@ -302,12 +305,14 @@ static int cpt_ucode_load_fw(struct cpt_device *cpt, const u8 *fw, bool is_ae)
ret = do_cpt_init(cpt, mcode);
if (ret) {
dev_err(dev, "do_cpt_init failed with ret: %d\n", ret);
return ret;
goto fw_release;
}
dev_info(dev, "Microcode Loaded %s\n", mcode->version);
mcode->is_mc_valid = 1;
cpt->next_mc_idx++;
fw_release:
release_firmware(fw_entry);
return ret;

View File

@ -513,8 +513,10 @@ static int nitrox_probe(struct pci_dev *pdev,
pci_set_master(pdev);
ndev = kzalloc(sizeof(*ndev), GFP_KERNEL);
if (!ndev)
if (!ndev) {
err = -ENOMEM;
goto ndev_fail;
}
pci_set_drvdata(pdev, ndev);
ndev->pdev = pdev;

View File

@ -1,25 +1,33 @@
config CRYPTO_DEV_CCP_DD
tristate "Cryptographic Coprocessor device driver"
depends on CRYPTO_DEV_CCP
tristate "Secure Processor device driver"
default m
help
Provides AMD Secure Processor device driver.
If you choose 'M' here, this module will be called ccp.
config CRYPTO_DEV_SP_CCP
bool "Cryptographic Coprocessor device"
default y
depends on CRYPTO_DEV_CCP_DD
select HW_RANDOM
select DMA_ENGINE
select DMADEVICES
select CRYPTO_SHA1
select CRYPTO_SHA256
help
Provides the interface to use the AMD Cryptographic Coprocessor
which can be used to offload encryption operations such as SHA,
AES and more. If you choose 'M' here, this module will be called
ccp.
Provides the support for AMD Cryptographic Coprocessor (CCP) device
which can be used to offload encryption operations such as SHA, AES
and more.
config CRYPTO_DEV_CCP_CRYPTO
tristate "Encryption and hashing offload support"
depends on CRYPTO_DEV_CCP_DD
default m
depends on CRYPTO_DEV_CCP_DD
depends on CRYPTO_DEV_SP_CCP
select CRYPTO_HASH
select CRYPTO_BLKCIPHER
select CRYPTO_AUTHENC
select CRYPTO_RSA
help
Support for using the cryptographic API with the AMD Cryptographic
Coprocessor. This module supports offload of SHA and AES algorithms.

View File

@ -1,12 +1,12 @@
obj-$(CONFIG_CRYPTO_DEV_CCP_DD) += ccp.o
ccp-objs := ccp-dev.o \
ccp-objs := sp-dev.o sp-platform.o
ccp-$(CONFIG_CRYPTO_DEV_SP_CCP) += ccp-dev.o \
ccp-ops.o \
ccp-dev-v3.o \
ccp-dev-v5.o \
ccp-platform.o \
ccp-dmaengine.o \
ccp-debugfs.o
ccp-$(CONFIG_PCI) += ccp-pci.o
ccp-$(CONFIG_PCI) += sp-pci.o
obj-$(CONFIG_CRYPTO_DEV_CCP_CRYPTO) += ccp-crypto.o
ccp-crypto-objs := ccp-crypto-main.o \
@ -15,4 +15,5 @@ ccp-crypto-objs := ccp-crypto-main.o \
ccp-crypto-aes-xts.o \
ccp-crypto-aes-galois.o \
ccp-crypto-des3.o \
ccp-crypto-rsa.o \
ccp-crypto-sha.o

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) AES GCM crypto API support
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
* Copyright (C) 2016,2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
*

View File

@ -1,8 +1,9 @@
/*
* AMD Cryptographic Coprocessor (CCP) AES XTS crypto API support
*
* Copyright (C) 2013 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
* This program is free software; you can redistribute it and/or modify
@ -15,6 +16,7 @@
#include <linux/delay.h>
#include <linux/scatterlist.h>
#include <crypto/aes.h>
#include <crypto/xts.h>
#include <crypto/internal/skcipher.h>
#include <crypto/scatterwalk.h>
@ -37,46 +39,26 @@ struct ccp_unit_size_map {
u32 value;
};
static struct ccp_unit_size_map unit_size_map[] = {
static struct ccp_unit_size_map xts_unit_sizes[] = {
{
.size = 4096,
.value = CCP_XTS_AES_UNIT_SIZE_4096,
},
{
.size = 2048,
.value = CCP_XTS_AES_UNIT_SIZE_2048,
},
{
.size = 1024,
.value = CCP_XTS_AES_UNIT_SIZE_1024,
},
{
.size = 512,
.value = CCP_XTS_AES_UNIT_SIZE_512,
},
{
.size = 256,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 128,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 64,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 32,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
},
{
.size = 16,
.size = 16,
.value = CCP_XTS_AES_UNIT_SIZE_16,
},
{
.size = 1,
.value = CCP_XTS_AES_UNIT_SIZE__LAST,
.size = 512,
.value = CCP_XTS_AES_UNIT_SIZE_512,
},
{
.size = 1024,
.value = CCP_XTS_AES_UNIT_SIZE_1024,
},
{
.size = 2048,
.value = CCP_XTS_AES_UNIT_SIZE_2048,
},
{
.size = 4096,
.value = CCP_XTS_AES_UNIT_SIZE_4096,
},
};
@ -96,15 +78,26 @@ static int ccp_aes_xts_complete(struct crypto_async_request *async_req, int ret)
static int ccp_aes_xts_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int key_len)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(crypto_ablkcipher_tfm(tfm));
struct crypto_tfm *xfm = crypto_ablkcipher_tfm(tfm);
struct ccp_ctx *ctx = crypto_tfm_ctx(xfm);
unsigned int ccpversion = ccp_version();
int ret;
/* Only support 128-bit AES key with a 128-bit Tweak key,
* otherwise use the fallback
ret = xts_check_key(xfm, key, key_len);
if (ret)
return ret;
/* Version 3 devices support 128-bit keys; version 5 devices can
* accommodate 128- and 256-bit keys.
*/
switch (key_len) {
case AES_KEYSIZE_128 * 2:
memcpy(ctx->u.aes.key, key, key_len);
break;
case AES_KEYSIZE_256 * 2:
if (ccpversion > CCP_VERSION(3, 0))
memcpy(ctx->u.aes.key, key, key_len);
break;
}
ctx->u.aes.key_len = key_len / 2;
sg_init_one(&ctx->u.aes.key_sg, ctx->u.aes.key, key_len);
@ -117,6 +110,8 @@ static int ccp_aes_xts_crypt(struct ablkcipher_request *req,
{
struct ccp_ctx *ctx = crypto_tfm_ctx(req->base.tfm);
struct ccp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
unsigned int ccpversion = ccp_version();
unsigned int fallback = 0;
unsigned int unit;
u32 unit_size;
int ret;
@ -130,18 +125,32 @@ static int ccp_aes_xts_crypt(struct ablkcipher_request *req,
if (!req->info)
return -EINVAL;
/* Check conditions under which the CCP can fulfill a request. The
* device can handle input plaintext of a length that is a multiple
* of the unit_size, bug the crypto implementation only supports
* the unit_size being equal to the input length. This limits the
* number of scenarios we can handle.
*/
unit_size = CCP_XTS_AES_UNIT_SIZE__LAST;
if (req->nbytes <= unit_size_map[0].size) {
for (unit = 0; unit < ARRAY_SIZE(unit_size_map); unit++) {
if (!(req->nbytes & (unit_size_map[unit].size - 1))) {
unit_size = unit_size_map[unit].value;
break;
}
for (unit = 0; unit < ARRAY_SIZE(xts_unit_sizes); unit++) {
if (req->nbytes == xts_unit_sizes[unit].size) {
unit_size = unit;
break;
}
}
if ((unit_size == CCP_XTS_AES_UNIT_SIZE__LAST) ||
(ctx->u.aes.key_len != AES_KEYSIZE_128)) {
/* The CCP has restrictions on block sizes. Also, a version 3 device
* only supports AES-128 operations; version 5 CCPs support both
* AES-128 and -256 operations.
*/
if (unit_size == CCP_XTS_AES_UNIT_SIZE__LAST)
fallback = 1;
if ((ccpversion < CCP_VERSION(5, 0)) &&
(ctx->u.aes.key_len != AES_KEYSIZE_128))
fallback = 1;
if ((ctx->u.aes.key_len != AES_KEYSIZE_128) &&
(ctx->u.aes.key_len != AES_KEYSIZE_256))
fallback = 1;
if (fallback) {
SKCIPHER_REQUEST_ON_STACK(subreq, ctx->u.aes.tfm_skcipher);
/* Use the fallback to process the request for any
@ -164,6 +173,7 @@ static int ccp_aes_xts_crypt(struct ablkcipher_request *req,
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
INIT_LIST_HEAD(&rctx->cmd.entry);
rctx->cmd.engine = CCP_ENGINE_XTS_AES_128;
rctx->cmd.u.xts.type = CCP_AES_TYPE_128;
rctx->cmd.u.xts.action = (encrypt) ? CCP_AES_ACTION_ENCRYPT
: CCP_AES_ACTION_DECRYPT;
rctx->cmd.u.xts.unit_size = unit_size;

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) DES3 crypto API support
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
* Copyright (C) 2016,2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <ghook@amd.com>
*

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) crypto API support
*
* Copyright (C) 2013 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
@ -17,6 +17,7 @@
#include <linux/ccp.h>
#include <linux/scatterlist.h>
#include <crypto/internal/hash.h>
#include <crypto/internal/akcipher.h>
#include "ccp-crypto.h"
@ -37,10 +38,15 @@ static unsigned int des3_disable;
module_param(des3_disable, uint, 0444);
MODULE_PARM_DESC(des3_disable, "Disable use of 3DES - any non-zero value");
static unsigned int rsa_disable;
module_param(rsa_disable, uint, 0444);
MODULE_PARM_DESC(rsa_disable, "Disable use of RSA - any non-zero value");
/* List heads for the supported algorithms */
static LIST_HEAD(hash_algs);
static LIST_HEAD(cipher_algs);
static LIST_HEAD(aead_algs);
static LIST_HEAD(akcipher_algs);
/* For any tfm, requests for that tfm must be returned on the order
* received. With multiple queues available, the CCP can process more
@ -358,6 +364,12 @@ static int ccp_register_algs(void)
return ret;
}
if (!rsa_disable) {
ret = ccp_register_rsa_algs(&akcipher_algs);
if (ret)
return ret;
}
return 0;
}
@ -366,6 +378,7 @@ static void ccp_unregister_algs(void)
struct ccp_crypto_ahash_alg *ahash_alg, *ahash_tmp;
struct ccp_crypto_ablkcipher_alg *ablk_alg, *ablk_tmp;
struct ccp_crypto_aead *aead_alg, *aead_tmp;
struct ccp_crypto_akcipher_alg *akc_alg, *akc_tmp;
list_for_each_entry_safe(ahash_alg, ahash_tmp, &hash_algs, entry) {
crypto_unregister_ahash(&ahash_alg->alg);
@ -384,6 +397,12 @@ static void ccp_unregister_algs(void)
list_del(&aead_alg->entry);
kfree(aead_alg);
}
list_for_each_entry_safe(akc_alg, akc_tmp, &akcipher_algs, entry) {
crypto_unregister_akcipher(&akc_alg->alg);
list_del(&akc_alg->entry);
kfree(akc_alg);
}
}
static int ccp_crypto_init(void)

View File

@ -0,0 +1,299 @@
/*
* AMD Cryptographic Coprocessor (CCP) RSA crypto API support
*
* Copyright (C) 2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/sched.h>
#include <linux/scatterlist.h>
#include <linux/crypto.h>
#include <crypto/algapi.h>
#include <crypto/internal/rsa.h>
#include <crypto/internal/akcipher.h>
#include <crypto/akcipher.h>
#include <crypto/scatterwalk.h>
#include "ccp-crypto.h"
static inline struct akcipher_request *akcipher_request_cast(
struct crypto_async_request *req)
{
return container_of(req, struct akcipher_request, base);
}
static inline int ccp_copy_and_save_keypart(u8 **kpbuf, unsigned int *kplen,
const u8 *buf, size_t sz)
{
int nskip;
for (nskip = 0; nskip < sz; nskip++)
if (buf[nskip])
break;
*kplen = sz - nskip;
*kpbuf = kzalloc(*kplen, GFP_KERNEL);
if (!*kpbuf)
return -ENOMEM;
memcpy(*kpbuf, buf + nskip, *kplen);
return 0;
}
static int ccp_rsa_complete(struct crypto_async_request *async_req, int ret)
{
struct akcipher_request *req = akcipher_request_cast(async_req);
struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx(req);
if (ret)
return ret;
req->dst_len = rctx->cmd.u.rsa.key_size >> 3;
return 0;
}
static unsigned int ccp_rsa_maxsize(struct crypto_akcipher *tfm)
{
if (ccp_version() > CCP_VERSION(3, 0))
return CCP5_RSA_MAXMOD;
else
return CCP_RSA_MAXMOD;
}
static int ccp_rsa_crypt(struct akcipher_request *req, bool encrypt)
{
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm);
struct ccp_rsa_req_ctx *rctx = akcipher_request_ctx(req);
int ret = 0;
memset(&rctx->cmd, 0, sizeof(rctx->cmd));
INIT_LIST_HEAD(&rctx->cmd.entry);
rctx->cmd.engine = CCP_ENGINE_RSA;
rctx->cmd.u.rsa.key_size = ctx->u.rsa.key_len; /* in bits */
if (encrypt) {
rctx->cmd.u.rsa.exp = &ctx->u.rsa.e_sg;
rctx->cmd.u.rsa.exp_len = ctx->u.rsa.e_len;
} else {
rctx->cmd.u.rsa.exp = &ctx->u.rsa.d_sg;
rctx->cmd.u.rsa.exp_len = ctx->u.rsa.d_len;
}
rctx->cmd.u.rsa.mod = &ctx->u.rsa.n_sg;
rctx->cmd.u.rsa.mod_len = ctx->u.rsa.n_len;
rctx->cmd.u.rsa.src = req->src;
rctx->cmd.u.rsa.src_len = req->src_len;
rctx->cmd.u.rsa.dst = req->dst;
ret = ccp_crypto_enqueue_request(&req->base, &rctx->cmd);
return ret;
}
static int ccp_rsa_encrypt(struct akcipher_request *req)
{
return ccp_rsa_crypt(req, true);
}
static int ccp_rsa_decrypt(struct akcipher_request *req)
{
return ccp_rsa_crypt(req, false);
}
static int ccp_check_key_length(unsigned int len)
{
/* In bits */
if (len < 8 || len > 4096)
return -EINVAL;
return 0;
}
static void ccp_rsa_free_key_bufs(struct ccp_ctx *ctx)
{
/* Clean up old key data */
kzfree(ctx->u.rsa.e_buf);
ctx->u.rsa.e_buf = NULL;
ctx->u.rsa.e_len = 0;
kzfree(ctx->u.rsa.n_buf);
ctx->u.rsa.n_buf = NULL;
ctx->u.rsa.n_len = 0;
kzfree(ctx->u.rsa.d_buf);
ctx->u.rsa.d_buf = NULL;
ctx->u.rsa.d_len = 0;
}
static int ccp_rsa_setkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen, bool private)
{
struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm);
struct rsa_key raw_key;
int ret;
ccp_rsa_free_key_bufs(ctx);
memset(&raw_key, 0, sizeof(raw_key));
/* Code borrowed from crypto/rsa.c */
if (private)
ret = rsa_parse_priv_key(&raw_key, key, keylen);
else
ret = rsa_parse_pub_key(&raw_key, key, keylen);
if (ret)
goto n_key;
ret = ccp_copy_and_save_keypart(&ctx->u.rsa.n_buf, &ctx->u.rsa.n_len,
raw_key.n, raw_key.n_sz);
if (ret)
goto key_err;
sg_init_one(&ctx->u.rsa.n_sg, ctx->u.rsa.n_buf, ctx->u.rsa.n_len);
ctx->u.rsa.key_len = ctx->u.rsa.n_len << 3; /* convert to bits */
if (ccp_check_key_length(ctx->u.rsa.key_len)) {
ret = -EINVAL;
goto key_err;
}
ret = ccp_copy_and_save_keypart(&ctx->u.rsa.e_buf, &ctx->u.rsa.e_len,
raw_key.e, raw_key.e_sz);
if (ret)
goto key_err;
sg_init_one(&ctx->u.rsa.e_sg, ctx->u.rsa.e_buf, ctx->u.rsa.e_len);
if (private) {
ret = ccp_copy_and_save_keypart(&ctx->u.rsa.d_buf,
&ctx->u.rsa.d_len,
raw_key.d, raw_key.d_sz);
if (ret)
goto key_err;
sg_init_one(&ctx->u.rsa.d_sg,
ctx->u.rsa.d_buf, ctx->u.rsa.d_len);
}
return 0;
key_err:
ccp_rsa_free_key_bufs(ctx);
n_key:
return ret;
}
static int ccp_rsa_setprivkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
return ccp_rsa_setkey(tfm, key, keylen, true);
}
static int ccp_rsa_setpubkey(struct crypto_akcipher *tfm, const void *key,
unsigned int keylen)
{
return ccp_rsa_setkey(tfm, key, keylen, false);
}
static int ccp_rsa_init_tfm(struct crypto_akcipher *tfm)
{
struct ccp_ctx *ctx = akcipher_tfm_ctx(tfm);
akcipher_set_reqsize(tfm, sizeof(struct ccp_rsa_req_ctx));
ctx->complete = ccp_rsa_complete;
return 0;
}
static void ccp_rsa_exit_tfm(struct crypto_akcipher *tfm)
{
struct ccp_ctx *ctx = crypto_tfm_ctx(&tfm->base);
ccp_rsa_free_key_bufs(ctx);
}
static struct akcipher_alg ccp_rsa_defaults = {
.encrypt = ccp_rsa_encrypt,
.decrypt = ccp_rsa_decrypt,
.sign = ccp_rsa_decrypt,
.verify = ccp_rsa_encrypt,
.set_pub_key = ccp_rsa_setpubkey,
.set_priv_key = ccp_rsa_setprivkey,
.max_size = ccp_rsa_maxsize,
.init = ccp_rsa_init_tfm,
.exit = ccp_rsa_exit_tfm,
.base = {
.cra_name = "rsa",
.cra_driver_name = "rsa-ccp",
.cra_priority = CCP_CRA_PRIORITY,
.cra_module = THIS_MODULE,
.cra_ctxsize = 2 * sizeof(struct ccp_ctx),
},
};
struct ccp_rsa_def {
unsigned int version;
const char *name;
const char *driver_name;
unsigned int reqsize;
struct akcipher_alg *alg_defaults;
};
static struct ccp_rsa_def rsa_algs[] = {
{
.version = CCP_VERSION(3, 0),
.name = "rsa",
.driver_name = "rsa-ccp",
.reqsize = sizeof(struct ccp_rsa_req_ctx),
.alg_defaults = &ccp_rsa_defaults,
}
};
int ccp_register_rsa_alg(struct list_head *head, const struct ccp_rsa_def *def)
{
struct ccp_crypto_akcipher_alg *ccp_alg;
struct akcipher_alg *alg;
int ret;
ccp_alg = kzalloc(sizeof(*ccp_alg), GFP_KERNEL);
if (!ccp_alg)
return -ENOMEM;
INIT_LIST_HEAD(&ccp_alg->entry);
alg = &ccp_alg->alg;
*alg = *def->alg_defaults;
snprintf(alg->base.cra_name, CRYPTO_MAX_ALG_NAME, "%s", def->name);
snprintf(alg->base.cra_driver_name, CRYPTO_MAX_ALG_NAME, "%s",
def->driver_name);
ret = crypto_register_akcipher(alg);
if (ret) {
pr_err("%s akcipher algorithm registration error (%d)\n",
alg->base.cra_name, ret);
kfree(ccp_alg);
return ret;
}
list_add(&ccp_alg->entry, head);
return 0;
}
int ccp_register_rsa_algs(struct list_head *head)
{
int i, ret;
unsigned int ccpversion = ccp_version();
/* Register the RSA algorithm in standard mode
* This works for CCP v3 and later
*/
for (i = 0; i < ARRAY_SIZE(rsa_algs); i++) {
if (rsa_algs[i].version > ccpversion)
continue;
ret = ccp_register_rsa_alg(head, &rsa_algs[i]);
if (ret)
return ret;
}
return 0;
}

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) SHA crypto API support
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) crypto API support
*
* Copyright (C) 2013 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
@ -24,6 +24,8 @@
#include <crypto/ctr.h>
#include <crypto/hash.h>
#include <crypto/sha.h>
#include <crypto/akcipher.h>
#include <crypto/internal/rsa.h>
#define CCP_LOG_LEVEL KERN_INFO
@ -58,6 +60,12 @@ struct ccp_crypto_ahash_alg {
struct ahash_alg alg;
};
struct ccp_crypto_akcipher_alg {
struct list_head entry;
struct akcipher_alg alg;
};
static inline struct ccp_crypto_ablkcipher_alg *
ccp_crypto_ablkcipher_alg(struct crypto_tfm *tfm)
{
@ -91,7 +99,7 @@ struct ccp_aes_ctx {
struct scatterlist key_sg;
unsigned int key_len;
u8 key[AES_MAX_KEY_SIZE];
u8 key[AES_MAX_KEY_SIZE * 2];
u8 nonce[CTR_RFC3686_NONCE_SIZE];
@ -227,12 +235,35 @@ struct ccp_sha_exp_ctx {
u8 buf[MAX_SHA_BLOCK_SIZE];
};
/***** RSA related defines *****/
struct ccp_rsa_ctx {
unsigned int key_len; /* in bits */
struct scatterlist e_sg;
u8 *e_buf;
unsigned int e_len;
struct scatterlist n_sg;
u8 *n_buf;
unsigned int n_len;
struct scatterlist d_sg;
u8 *d_buf;
unsigned int d_len;
};
struct ccp_rsa_req_ctx {
struct ccp_cmd cmd;
};
#define CCP_RSA_MAXMOD (4 * 1024 / 8)
#define CCP5_RSA_MAXMOD (16 * 1024 / 8)
/***** Common Context Structure *****/
struct ccp_ctx {
int (*complete)(struct crypto_async_request *req, int ret);
union {
struct ccp_aes_ctx aes;
struct ccp_rsa_ctx rsa;
struct ccp_sha_ctx sha;
struct ccp_des3_ctx des3;
} u;
@ -249,5 +280,6 @@ int ccp_register_aes_xts_algs(struct list_head *head);
int ccp_register_aes_aeads(struct list_head *head);
int ccp_register_sha_algs(struct list_head *head);
int ccp_register_des3_algs(struct list_head *head);
int ccp_register_rsa_algs(struct list_head *head);
#endif

View File

@ -305,19 +305,19 @@ void ccp5_debugfs_setup(struct ccp_device *ccp)
ccp->debugfs_instance = debugfs_create_dir(ccp->name, ccp_debugfs_dir);
if (!ccp->debugfs_instance)
return;
goto err;
debugfs_info = debugfs_create_file("info", 0400,
ccp->debugfs_instance, ccp,
&ccp_debugfs_info_ops);
if (!debugfs_info)
return;
goto err;
debugfs_stats = debugfs_create_file("stats", 0600,
ccp->debugfs_instance, ccp,
&ccp_debugfs_stats_ops);
if (!debugfs_stats)
return;
goto err;
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
@ -327,15 +327,20 @@ void ccp5_debugfs_setup(struct ccp_device *ccp)
debugfs_q_instance =
debugfs_create_dir(name, ccp->debugfs_instance);
if (!debugfs_q_instance)
return;
goto err;
debugfs_q_stats =
debugfs_create_file("stats", 0600,
debugfs_q_instance, cmd_q,
&ccp_debugfs_queue_ops);
if (!debugfs_q_stats)
return;
goto err;
}
return;
err:
debugfs_remove_recursive(ccp->debugfs_instance);
}
void ccp5_debugfs_destroy(void)

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
@ -359,8 +359,7 @@ static void ccp_irq_bh(unsigned long data)
static irqreturn_t ccp_irq_handler(int irq, void *data)
{
struct device *dev = data;
struct ccp_device *ccp = dev_get_drvdata(dev);
struct ccp_device *ccp = (struct ccp_device *)data;
ccp_disable_queue_interrupts(ccp);
if (ccp->use_tasklet)
@ -454,7 +453,7 @@ static int ccp_init(struct ccp_device *ccp)
iowrite32(ccp->qim, ccp->io_regs + IRQ_STATUS_REG);
/* Request an irq */
ret = ccp->get_irq(ccp);
ret = sp_request_ccp_irq(ccp->sp, ccp_irq_handler, ccp->name, ccp);
if (ret) {
dev_err(dev, "unable to allocate an IRQ\n");
goto e_pool;
@ -511,7 +510,7 @@ static int ccp_init(struct ccp_device *ccp)
if (ccp->cmd_q[i].kthread)
kthread_stop(ccp->cmd_q[i].kthread);
ccp->free_irq(ccp);
sp_free_ccp_irq(ccp->sp, ccp);
e_pool:
for (i = 0; i < ccp->cmd_q_count; i++)
@ -550,7 +549,7 @@ static void ccp_destroy(struct ccp_device *ccp)
if (ccp->cmd_q[i].kthread)
kthread_stop(ccp->cmd_q[i].kthread);
ccp->free_irq(ccp);
sp_free_ccp_irq(ccp->sp, ccp);
for (i = 0; i < ccp->cmd_q_count; i++)
dma_pool_destroy(ccp->cmd_q[i].dma_pool);
@ -586,10 +585,17 @@ static const struct ccp_actions ccp3_actions = {
.irqhandler = ccp_irq_handler,
};
const struct ccp_vdata ccpv3_platform = {
.version = CCP_VERSION(3, 0),
.setup = NULL,
.perform = &ccp3_actions,
.offset = 0,
};
const struct ccp_vdata ccpv3 = {
.version = CCP_VERSION(3, 0),
.setup = NULL,
.perform = &ccp3_actions,
.bar = 2,
.offset = 0x20000,
.rsamax = CCP_RSA_MAX_WIDTH,
};

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
* Copyright (C) 2016,2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
*
@ -145,6 +145,7 @@ union ccp_function {
#define CCP_AES_MODE(p) ((p)->aes.mode)
#define CCP_AES_TYPE(p) ((p)->aes.type)
#define CCP_XTS_SIZE(p) ((p)->aes_xts.size)
#define CCP_XTS_TYPE(p) ((p)->aes_xts.type)
#define CCP_XTS_ENCRYPT(p) ((p)->aes_xts.encrypt)
#define CCP_DES3_SIZE(p) ((p)->des3.size)
#define CCP_DES3_ENCRYPT(p) ((p)->des3.encrypt)
@ -344,6 +345,7 @@ static int ccp5_perform_xts_aes(struct ccp_op *op)
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_XTS_TYPE(&function) = op->u.xts.type;
CCP_XTS_ENCRYPT(&function) = op->u.xts.action;
CCP_XTS_SIZE(&function) = op->u.xts.unit_size;
CCP5_CMD_FUNCTION(&desc) = function.raw;
@ -469,7 +471,7 @@ static int ccp5_perform_rsa(struct ccp_op *op)
CCP5_CMD_PROT(&desc) = 0;
function.raw = 0;
CCP_RSA_SIZE(&function) = op->u.rsa.mod_size >> 3;
CCP_RSA_SIZE(&function) = (op->u.rsa.mod_size + 7) >> 3;
CCP5_CMD_FUNCTION(&desc) = function.raw;
CCP5_CMD_LEN(&desc) = op->u.rsa.input_len;
@ -484,10 +486,10 @@ static int ccp5_perform_rsa(struct ccp_op *op)
CCP5_CMD_DST_HI(&desc) = ccp_addr_hi(&op->dst.u.dma);
CCP5_CMD_DST_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
/* Exponent is in LSB memory */
CCP5_CMD_KEY_LO(&desc) = op->sb_key * LSB_ITEM_SIZE;
CCP5_CMD_KEY_HI(&desc) = 0;
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SB;
/* Key (Exponent) is in external memory */
CCP5_CMD_KEY_LO(&desc) = ccp_addr_lo(&op->exp.u.dma);
CCP5_CMD_KEY_HI(&desc) = ccp_addr_hi(&op->exp.u.dma);
CCP5_CMD_KEY_MEM(&desc) = CCP_MEMTYPE_SYSTEM;
return ccp5_do_cmd(&desc, op->cmd_q);
}
@ -769,8 +771,7 @@ static void ccp5_irq_bh(unsigned long data)
static irqreturn_t ccp5_irq_handler(int irq, void *data)
{
struct device *dev = data;
struct ccp_device *ccp = dev_get_drvdata(dev);
struct ccp_device *ccp = (struct ccp_device *)data;
ccp5_disable_queue_interrupts(ccp);
ccp->total_interrupts++;
@ -881,7 +882,7 @@ static int ccp5_init(struct ccp_device *ccp)
dev_dbg(dev, "Requesting an IRQ...\n");
/* Request an irq */
ret = ccp->get_irq(ccp);
ret = sp_request_ccp_irq(ccp->sp, ccp5_irq_handler, ccp->name, ccp);
if (ret) {
dev_err(dev, "unable to allocate an IRQ\n");
goto e_pool;
@ -987,7 +988,7 @@ static int ccp5_init(struct ccp_device *ccp)
kthread_stop(ccp->cmd_q[i].kthread);
e_irq:
ccp->free_irq(ccp);
sp_free_ccp_irq(ccp->sp, ccp);
e_pool:
for (i = 0; i < ccp->cmd_q_count; i++)
@ -1037,7 +1038,7 @@ static void ccp5_destroy(struct ccp_device *ccp)
if (ccp->cmd_q[i].kthread)
kthread_stop(ccp->cmd_q[i].kthread);
ccp->free_irq(ccp);
sp_free_ccp_irq(ccp->sp, ccp);
for (i = 0; i < ccp->cmd_q_count; i++) {
cmd_q = &ccp->cmd_q[i];
@ -1106,15 +1107,14 @@ static const struct ccp_actions ccp5_actions = {
.init = ccp5_init,
.destroy = ccp5_destroy,
.get_free_slots = ccp5_get_free_slots,
.irqhandler = ccp5_irq_handler,
};
const struct ccp_vdata ccpv5a = {
.version = CCP_VERSION(5, 0),
.setup = ccp5_config,
.perform = &ccp5_actions,
.bar = 2,
.offset = 0x0,
.rsamax = CCP5_RSA_MAX_WIDTH,
};
const struct ccp_vdata ccpv5b = {
@ -1122,6 +1122,6 @@ const struct ccp_vdata ccpv5b = {
.dma_chan_attr = DMA_PRIVATE,
.setup = ccp5other_config,
.perform = &ccp5_actions,
.bar = 2,
.offset = 0x0,
.rsamax = CCP5_RSA_MAX_WIDTH,
};

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
@ -11,7 +11,6 @@
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/sched.h>
@ -30,12 +29,6 @@
#include "ccp-dev.h"
MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
MODULE_AUTHOR("Gary R Hook <gary.hook@amd.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.1.0");
MODULE_DESCRIPTION("AMD Cryptographic Coprocessor driver");
struct ccp_tasklet_data {
struct completion completion;
struct ccp_cmd *cmd;
@ -111,13 +104,6 @@ static LIST_HEAD(ccp_units);
static DEFINE_SPINLOCK(ccp_rr_lock);
static struct ccp_device *ccp_rr;
/* Ever-increasing value to produce unique unit numbers */
static atomic_t ccp_unit_ordinal;
static unsigned int ccp_increment_unit_ordinal(void)
{
return atomic_inc_return(&ccp_unit_ordinal);
}
/**
* ccp_add_device - add a CCP device to the list
*
@ -415,6 +401,7 @@ static void ccp_do_cmd_complete(unsigned long data)
struct ccp_cmd *cmd = tdata->cmd;
cmd->callback(cmd->data, cmd->ret);
complete(&tdata->completion);
}
@ -464,14 +451,17 @@ int ccp_cmd_queue_thread(void *data)
*
* @dev: device struct of the CCP
*/
struct ccp_device *ccp_alloc_struct(struct device *dev)
struct ccp_device *ccp_alloc_struct(struct sp_device *sp)
{
struct device *dev = sp->dev;
struct ccp_device *ccp;
ccp = devm_kzalloc(dev, sizeof(*ccp), GFP_KERNEL);
if (!ccp)
return NULL;
ccp->dev = dev;
ccp->sp = sp;
ccp->axcache = sp->axcache;
INIT_LIST_HEAD(&ccp->cmd);
INIT_LIST_HEAD(&ccp->backlog);
@ -486,9 +476,8 @@ struct ccp_device *ccp_alloc_struct(struct device *dev)
init_waitqueue_head(&ccp->sb_queue);
init_waitqueue_head(&ccp->suspend_queue);
ccp->ord = ccp_increment_unit_ordinal();
snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", ccp->ord);
snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", ccp->ord);
snprintf(ccp->name, MAX_CCP_NAME_LEN, "ccp-%u", sp->ord);
snprintf(ccp->rngname, MAX_CCP_NAME_LEN, "ccp-%u-rng", sp->ord);
return ccp;
}
@ -538,55 +527,100 @@ bool ccp_queues_suspended(struct ccp_device *ccp)
return ccp->cmd_q_count == suspended;
}
#endif
static int __init ccp_mod_init(void)
int ccp_dev_suspend(struct sp_device *sp, pm_message_t state)
{
#ifdef CONFIG_X86
int ret;
struct ccp_device *ccp = sp->ccp_data;
unsigned long flags;
unsigned int i;
ret = ccp_pci_init();
if (ret)
return ret;
spin_lock_irqsave(&ccp->cmd_lock, flags);
/* Don't leave the driver loaded if init failed */
if (ccp_present() != 0) {
ccp_pci_exit();
return -ENODEV;
}
ccp->suspending = 1;
/* Wake all the queue kthreads to prepare for suspend */
for (i = 0; i < ccp->cmd_q_count; i++)
wake_up_process(ccp->cmd_q[i].kthread);
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
/* Wait for all queue kthreads to say they're done */
while (!ccp_queues_suspended(ccp))
wait_event_interruptible(ccp->suspend_queue,
ccp_queues_suspended(ccp));
return 0;
#endif
}
#ifdef CONFIG_ARM64
int ret;
int ccp_dev_resume(struct sp_device *sp)
{
struct ccp_device *ccp = sp->ccp_data;
unsigned long flags;
unsigned int i;
ret = ccp_platform_init();
if (ret)
return ret;
spin_lock_irqsave(&ccp->cmd_lock, flags);
/* Don't leave the driver loaded if init failed */
if (ccp_present() != 0) {
ccp_platform_exit();
return -ENODEV;
ccp->suspending = 0;
/* Wake up all the kthreads */
for (i = 0; i < ccp->cmd_q_count; i++) {
ccp->cmd_q[i].suspended = 0;
wake_up_process(ccp->cmd_q[i].kthread);
}
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
return 0;
}
#endif
return -ENODEV;
}
static void __exit ccp_mod_exit(void)
int ccp_dev_init(struct sp_device *sp)
{
#ifdef CONFIG_X86
ccp_pci_exit();
#endif
struct device *dev = sp->dev;
struct ccp_device *ccp;
int ret;
#ifdef CONFIG_ARM64
ccp_platform_exit();
#endif
ret = -ENOMEM;
ccp = ccp_alloc_struct(sp);
if (!ccp)
goto e_err;
sp->ccp_data = ccp;
ccp->vdata = (struct ccp_vdata *)sp->dev_vdata->ccp_vdata;
if (!ccp->vdata || !ccp->vdata->version) {
ret = -ENODEV;
dev_err(dev, "missing driver data\n");
goto e_err;
}
ccp->use_tasklet = sp->use_tasklet;
ccp->io_regs = sp->io_map + ccp->vdata->offset;
if (ccp->vdata->setup)
ccp->vdata->setup(ccp);
ret = ccp->vdata->perform->init(ccp);
if (ret)
goto e_err;
dev_notice(dev, "ccp enabled\n");
return 0;
e_err:
sp->ccp_data = NULL;
dev_notice(dev, "ccp initialization failed\n");
return ret;
}
module_init(ccp_mod_init);
module_exit(ccp_mod_exit);
void ccp_dev_destroy(struct sp_device *sp)
{
struct ccp_device *ccp = sp->ccp_data;
if (!ccp)
return;
ccp->vdata->perform->destroy(ccp);
}

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
@ -27,6 +27,8 @@
#include <linux/irqreturn.h>
#include <linux/dmaengine.h>
#include "sp-dev.h"
#define MAX_CCP_NAME_LEN 16
#define MAX_DMAPOOL_NAME_LEN 32
@ -192,6 +194,7 @@
#define CCP_AES_CTX_SB_COUNT 1
#define CCP_XTS_AES_KEY_SB_COUNT 1
#define CCP5_XTS_AES_KEY_SB_COUNT 2
#define CCP_XTS_AES_CTX_SB_COUNT 1
#define CCP_DES3_KEY_SB_COUNT 1
@ -200,6 +203,7 @@
#define CCP_SHA_SB_COUNT 1
#define CCP_RSA_MAX_WIDTH 4096
#define CCP5_RSA_MAX_WIDTH 16384
#define CCP_PASSTHRU_BLOCKSIZE 256
#define CCP_PASSTHRU_MASKSIZE 32
@ -344,12 +348,11 @@ struct ccp_device {
char rngname[MAX_CCP_NAME_LEN];
struct device *dev;
struct sp_device *sp;
/* Bus specific device information
*/
void *dev_specific;
int (*get_irq)(struct ccp_device *ccp);
void (*free_irq)(struct ccp_device *ccp);
unsigned int qim;
unsigned int irq;
bool use_tasklet;
@ -362,7 +365,6 @@ struct ccp_device {
* them.
*/
struct mutex req_mutex ____cacheline_aligned;
void __iomem *io_map;
void __iomem *io_regs;
/* Master lists that all cmds are queued on. Because there can be
@ -497,6 +499,7 @@ struct ccp_aes_op {
};
struct ccp_xts_aes_op {
enum ccp_aes_type type;
enum ccp_aes_action action;
enum ccp_xts_aes_unit_size unit_size;
};
@ -626,18 +629,12 @@ struct ccp5_desc {
struct dword7 dw7;
};
int ccp_pci_init(void);
void ccp_pci_exit(void);
int ccp_platform_init(void);
void ccp_platform_exit(void);
void ccp_add_device(struct ccp_device *ccp);
void ccp_del_device(struct ccp_device *ccp);
extern void ccp_log_error(struct ccp_device *, int);
struct ccp_device *ccp_alloc_struct(struct device *dev);
struct ccp_device *ccp_alloc_struct(struct sp_device *sp);
bool ccp_queues_suspended(struct ccp_device *ccp);
int ccp_cmd_queue_thread(void *data);
int ccp_trng_read(struct hwrng *rng, void *data, size_t max, bool wait);
@ -669,16 +666,7 @@ struct ccp_actions {
irqreturn_t (*irqhandler)(int, void *);
};
/* Structure to hold CCP version-specific values */
struct ccp_vdata {
const unsigned int version;
const unsigned int dma_chan_attr;
void (*setup)(struct ccp_device *);
const struct ccp_actions *perform;
const unsigned int bar;
const unsigned int offset;
};
extern const struct ccp_vdata ccpv3_platform;
extern const struct ccp_vdata ccpv3;
extern const struct ccp_vdata ccpv5a;
extern const struct ccp_vdata ccpv5b;

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2016 Advanced Micro Devices, Inc.
* Copyright (C) 2016,2017 Advanced Micro Devices, Inc.
*
* Author: Gary R Hook <gary.hook@amd.com>
*

View File

@ -1,7 +1,7 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
* Copyright (C) 2013,2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
@ -168,7 +168,7 @@ static int ccp_init_dm_workarea(struct ccp_dm_workarea *wa,
wa->dma.address = dma_map_single(wa->dev, wa->address, len,
dir);
if (!wa->dma.address)
if (dma_mapping_error(wa->dev, wa->dma.address))
return -ENOMEM;
wa->dma.length = len;
@ -1038,6 +1038,8 @@ static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
struct ccp_op op;
unsigned int unit_size, dm_offset;
bool in_place = false;
unsigned int sb_count;
enum ccp_aes_type aestype;
int ret;
switch (xts->unit_size) {
@ -1061,7 +1063,11 @@ static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
return -EINVAL;
}
if (xts->key_len != AES_KEYSIZE_128)
if (xts->key_len == AES_KEYSIZE_128)
aestype = CCP_AES_TYPE_128;
else if (xts->key_len == AES_KEYSIZE_256)
aestype = CCP_AES_TYPE_256;
else
return -EINVAL;
if (!xts->final && (xts->src_len & (AES_BLOCK_SIZE - 1)))
@ -1083,23 +1089,44 @@ static int ccp_run_xts_aes_cmd(struct ccp_cmd_queue *cmd_q,
op.sb_key = cmd_q->sb_key;
op.sb_ctx = cmd_q->sb_ctx;
op.init = 1;
op.u.xts.type = aestype;
op.u.xts.action = xts->action;
op.u.xts.unit_size = xts->unit_size;
/* All supported key sizes fit in a single (32-byte) SB entry
* and must be in little endian format. Use the 256-bit byte
* swap passthru option to convert from big endian to little
* endian.
/* A version 3 device only supports 128-bit keys, which fits into a
* single SB entry. A version 5 device uses a 512-bit vector, so two
* SB entries.
*/
if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0))
sb_count = CCP_XTS_AES_KEY_SB_COUNT;
else
sb_count = CCP5_XTS_AES_KEY_SB_COUNT;
ret = ccp_init_dm_workarea(&key, cmd_q,
CCP_XTS_AES_KEY_SB_COUNT * CCP_SB_BYTES,
sb_count * CCP_SB_BYTES,
DMA_TO_DEVICE);
if (ret)
return ret;
dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
ccp_set_dm_area(&key, 0, xts->key, dm_offset, xts->key_len);
if (cmd_q->ccp->vdata->version == CCP_VERSION(3, 0)) {
/* All supported key sizes must be in little endian format.
* Use the 256-bit byte swap passthru option to convert from
* big endian to little endian.
*/
dm_offset = CCP_SB_BYTES - AES_KEYSIZE_128;
ccp_set_dm_area(&key, dm_offset, xts->key, 0, xts->key_len);
ccp_set_dm_area(&key, 0, xts->key, xts->key_len, xts->key_len);
} else {
/* Version 5 CCPs use a 512-bit space for the key: each portion
* occupies 256 bits, or one entire slot, and is zero-padded.
*/
unsigned int pad;
dm_offset = CCP_SB_BYTES;
pad = dm_offset - xts->key_len;
ccp_set_dm_area(&key, pad, xts->key, 0, xts->key_len);
ccp_set_dm_area(&key, dm_offset + pad, xts->key, xts->key_len,
xts->key_len);
}
ret = ccp_copy_to_sb(cmd_q, &key, op.jobid, op.sb_key,
CCP_PASSTHRU_BYTESWAP_256BIT);
if (ret) {
@ -1731,42 +1758,53 @@ static int ccp_run_sha_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
{
struct ccp_rsa_engine *rsa = &cmd->u.rsa;
struct ccp_dm_workarea exp, src;
struct ccp_data dst;
struct ccp_dm_workarea exp, src, dst;
struct ccp_op op;
unsigned int sb_count, i_len, o_len;
int ret;
if (rsa->key_size > CCP_RSA_MAX_WIDTH)
/* Check against the maximum allowable size, in bits */
if (rsa->key_size > cmd_q->ccp->vdata->rsamax)
return -EINVAL;
if (!rsa->exp || !rsa->mod || !rsa->src || !rsa->dst)
return -EINVAL;
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
/* The RSA modulus must precede the message being acted upon, so
* it must be copied to a DMA area where the message and the
* modulus can be concatenated. Therefore the input buffer
* length required is twice the output buffer length (which
* must be a multiple of 256-bits).
* must be a multiple of 256-bits). Compute o_len, i_len in bytes.
* Buffer sizes must be a multiple of 32 bytes; rounding up may be
* required.
*/
o_len = ((rsa->key_size + 255) / 256) * 32;
o_len = 32 * ((rsa->key_size + 255) / 256);
i_len = o_len * 2;
sb_count = o_len / CCP_SB_BYTES;
sb_count = 0;
if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
/* sb_count is the number of storage block slots required
* for the modulus.
*/
sb_count = o_len / CCP_SB_BYTES;
op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q,
sb_count);
if (!op.sb_key)
return -EIO;
} else {
/* A version 5 device allows a modulus size that will not fit
* in the LSB, so the command will transfer it from memory.
* Set the sb key to the default, even though it's not used.
*/
op.sb_key = cmd_q->sb_key;
}
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
op.jobid = ccp_gen_jobid(cmd_q->ccp);
op.sb_key = cmd_q->ccp->vdata->perform->sballoc(cmd_q, sb_count);
if (!op.sb_key)
return -EIO;
/* The RSA exponent may span multiple (32-byte) SB entries and must
* be in little endian format. Reverse copy each 32-byte chunk
* of the exponent (En chunk to E0 chunk, E(n-1) chunk to E1 chunk)
* and each byte within that chunk and do not perform any byte swap
* operations on the passthru operation.
/* The RSA exponent must be in little endian format. Reverse its
* byte order.
*/
ret = ccp_init_dm_workarea(&exp, cmd_q, o_len, DMA_TO_DEVICE);
if (ret)
@ -1775,11 +1813,22 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
ret = ccp_reverse_set_dm_area(&exp, 0, rsa->exp, 0, rsa->exp_len);
if (ret)
goto e_exp;
ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
CCP_PASSTHRU_BYTESWAP_NOOP);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_exp;
if (cmd_q->ccp->vdata->version < CCP_VERSION(5, 0)) {
/* Copy the exponent to the local storage block, using
* as many 32-byte blocks as were allocated above. It's
* already little endian, so no further change is required.
*/
ret = ccp_copy_to_sb(cmd_q, &exp, op.jobid, op.sb_key,
CCP_PASSTHRU_BYTESWAP_NOOP);
if (ret) {
cmd->engine_error = cmd_q->cmd_error;
goto e_exp;
}
} else {
/* The exponent can be retrieved from memory via DMA. */
op.exp.u.dma.address = exp.dma.address;
op.exp.u.dma.offset = 0;
}
/* Concatenate the modulus and the message. Both the modulus and
@ -1798,8 +1847,7 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
goto e_src;
/* Prepare the output area for the operation */
ret = ccp_init_data(&dst, cmd_q, rsa->dst, rsa->mod_len,
o_len, DMA_FROM_DEVICE);
ret = ccp_init_dm_workarea(&dst, cmd_q, o_len, DMA_FROM_DEVICE);
if (ret)
goto e_src;
@ -1807,7 +1855,7 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
op.src.u.dma.address = src.dma.address;
op.src.u.dma.offset = 0;
op.src.u.dma.length = i_len;
op.dst.u.dma.address = dst.dm_wa.dma.address;
op.dst.u.dma.address = dst.dma.address;
op.dst.u.dma.offset = 0;
op.dst.u.dma.length = o_len;
@ -1820,10 +1868,10 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
goto e_dst;
}
ccp_reverse_get_dm_area(&dst.dm_wa, 0, rsa->dst, 0, rsa->mod_len);
ccp_reverse_get_dm_area(&dst, 0, rsa->dst, 0, rsa->mod_len);
e_dst:
ccp_free_data(&dst, cmd_q);
ccp_dm_free(&dst);
e_src:
ccp_dm_free(&src);
@ -1832,7 +1880,8 @@ static int ccp_run_rsa_cmd(struct ccp_cmd_queue *cmd_q, struct ccp_cmd *cmd)
ccp_dm_free(&exp);
e_sb:
cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
if (sb_count)
cmd_q->ccp->vdata->perform->sbfree(cmd_q, op.sb_key, sb_count);
return ret;
}
@ -1992,7 +2041,7 @@ static int ccp_run_passthru_nomap_cmd(struct ccp_cmd_queue *cmd_q,
memset(&op, 0, sizeof(op));
op.cmd_q = cmd_q;
op.jobid = ccp_gen_jobid(cmd_q->ccp);
op.jobid = CCP_NEW_JOBID(cmd_q->ccp);
if (pt->bit_mod != CCP_PASSTHRU_BITWISE_NOOP) {
/* Load the mask */

View File

@ -1,356 +0,0 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/dma-mapping.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ccp.h>
#include "ccp-dev.h"
#define MSIX_VECTORS 2
struct ccp_msix {
u32 vector;
char name[16];
};
struct ccp_pci {
int msix_count;
struct ccp_msix msix[MSIX_VECTORS];
};
static int ccp_get_msix_irqs(struct ccp_device *ccp)
{
struct ccp_pci *ccp_pci = ccp->dev_specific;
struct device *dev = ccp->dev;
struct pci_dev *pdev = to_pci_dev(dev);
struct msix_entry msix_entry[MSIX_VECTORS];
unsigned int name_len = sizeof(ccp_pci->msix[0].name) - 1;
int v, ret;
for (v = 0; v < ARRAY_SIZE(msix_entry); v++)
msix_entry[v].entry = v;
ret = pci_enable_msix_range(pdev, msix_entry, 1, v);
if (ret < 0)
return ret;
ccp_pci->msix_count = ret;
for (v = 0; v < ccp_pci->msix_count; v++) {
/* Set the interrupt names and request the irqs */
snprintf(ccp_pci->msix[v].name, name_len, "%s-%u",
ccp->name, v);
ccp_pci->msix[v].vector = msix_entry[v].vector;
ret = request_irq(ccp_pci->msix[v].vector,
ccp->vdata->perform->irqhandler,
0, ccp_pci->msix[v].name, dev);
if (ret) {
dev_notice(dev, "unable to allocate MSI-X IRQ (%d)\n",
ret);
goto e_irq;
}
}
ccp->use_tasklet = true;
return 0;
e_irq:
while (v--)
free_irq(ccp_pci->msix[v].vector, dev);
pci_disable_msix(pdev);
ccp_pci->msix_count = 0;
return ret;
}
static int ccp_get_msi_irq(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
ret = pci_enable_msi(pdev);
if (ret)
return ret;
ccp->irq = pdev->irq;
ret = request_irq(ccp->irq, ccp->vdata->perform->irqhandler, 0,
ccp->name, dev);
if (ret) {
dev_notice(dev, "unable to allocate MSI IRQ (%d)\n", ret);
goto e_msi;
}
ccp->use_tasklet = true;
return 0;
e_msi:
pci_disable_msi(pdev);
return ret;
}
static int ccp_get_irqs(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
int ret;
ret = ccp_get_msix_irqs(ccp);
if (!ret)
return 0;
/* Couldn't get MSI-X vectors, try MSI */
dev_notice(dev, "could not enable MSI-X (%d), trying MSI\n", ret);
ret = ccp_get_msi_irq(ccp);
if (!ret)
return 0;
/* Couldn't get MSI interrupt */
dev_notice(dev, "could not enable MSI (%d)\n", ret);
return ret;
}
static void ccp_free_irqs(struct ccp_device *ccp)
{
struct ccp_pci *ccp_pci = ccp->dev_specific;
struct device *dev = ccp->dev;
struct pci_dev *pdev = to_pci_dev(dev);
if (ccp_pci->msix_count) {
while (ccp_pci->msix_count--)
free_irq(ccp_pci->msix[ccp_pci->msix_count].vector,
dev);
pci_disable_msix(pdev);
} else if (ccp->irq) {
free_irq(ccp->irq, dev);
pci_disable_msi(pdev);
}
ccp->irq = 0;
}
static int ccp_find_mmio_area(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
struct pci_dev *pdev = to_pci_dev(dev);
resource_size_t io_len;
unsigned long io_flags;
io_flags = pci_resource_flags(pdev, ccp->vdata->bar);
io_len = pci_resource_len(pdev, ccp->vdata->bar);
if ((io_flags & IORESOURCE_MEM) &&
(io_len >= (ccp->vdata->offset + 0x800)))
return ccp->vdata->bar;
return -EIO;
}
static int ccp_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct ccp_device *ccp;
struct ccp_pci *ccp_pci;
struct device *dev = &pdev->dev;
unsigned int bar;
int ret;
ret = -ENOMEM;
ccp = ccp_alloc_struct(dev);
if (!ccp)
goto e_err;
ccp_pci = devm_kzalloc(dev, sizeof(*ccp_pci), GFP_KERNEL);
if (!ccp_pci)
goto e_err;
ccp->dev_specific = ccp_pci;
ccp->vdata = (struct ccp_vdata *)id->driver_data;
if (!ccp->vdata || !ccp->vdata->version) {
ret = -ENODEV;
dev_err(dev, "missing driver data\n");
goto e_err;
}
ccp->get_irq = ccp_get_irqs;
ccp->free_irq = ccp_free_irqs;
ret = pci_request_regions(pdev, "ccp");
if (ret) {
dev_err(dev, "pci_request_regions failed (%d)\n", ret);
goto e_err;
}
ret = pci_enable_device(pdev);
if (ret) {
dev_err(dev, "pci_enable_device failed (%d)\n", ret);
goto e_regions;
}
pci_set_master(pdev);
ret = ccp_find_mmio_area(ccp);
if (ret < 0)
goto e_device;
bar = ret;
ret = -EIO;
ccp->io_map = pci_iomap(pdev, bar, 0);
if (!ccp->io_map) {
dev_err(dev, "pci_iomap failed\n");
goto e_device;
}
ccp->io_regs = ccp->io_map + ccp->vdata->offset;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (ret) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "dma_set_mask_and_coherent failed (%d)\n",
ret);
goto e_iomap;
}
}
dev_set_drvdata(dev, ccp);
if (ccp->vdata->setup)
ccp->vdata->setup(ccp);
ret = ccp->vdata->perform->init(ccp);
if (ret)
goto e_iomap;
dev_notice(dev, "enabled\n");
return 0;
e_iomap:
pci_iounmap(pdev, ccp->io_map);
e_device:
pci_disable_device(pdev);
e_regions:
pci_release_regions(pdev);
e_err:
dev_notice(dev, "initialization failed\n");
return ret;
}
static void ccp_pci_remove(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct ccp_device *ccp = dev_get_drvdata(dev);
if (!ccp)
return;
ccp->vdata->perform->destroy(ccp);
pci_iounmap(pdev, ccp->io_map);
pci_disable_device(pdev);
pci_release_regions(pdev);
dev_notice(dev, "disabled\n");
}
#ifdef CONFIG_PM
static int ccp_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct device *dev = &pdev->dev;
struct ccp_device *ccp = dev_get_drvdata(dev);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&ccp->cmd_lock, flags);
ccp->suspending = 1;
/* Wake all the queue kthreads to prepare for suspend */
for (i = 0; i < ccp->cmd_q_count; i++)
wake_up_process(ccp->cmd_q[i].kthread);
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
/* Wait for all queue kthreads to say they're done */
while (!ccp_queues_suspended(ccp))
wait_event_interruptible(ccp->suspend_queue,
ccp_queues_suspended(ccp));
return 0;
}
static int ccp_pci_resume(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct ccp_device *ccp = dev_get_drvdata(dev);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&ccp->cmd_lock, flags);
ccp->suspending = 0;
/* Wake up all the kthreads */
for (i = 0; i < ccp->cmd_q_count; i++) {
ccp->cmd_q[i].suspended = 0;
wake_up_process(ccp->cmd_q[i].kthread);
}
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
return 0;
}
#endif
static const struct pci_device_id ccp_pci_table[] = {
{ PCI_VDEVICE(AMD, 0x1537), (kernel_ulong_t)&ccpv3 },
{ PCI_VDEVICE(AMD, 0x1456), (kernel_ulong_t)&ccpv5a },
{ PCI_VDEVICE(AMD, 0x1468), (kernel_ulong_t)&ccpv5b },
/* Last entry must be zero */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, ccp_pci_table);
static struct pci_driver ccp_pci_driver = {
.name = "ccp",
.id_table = ccp_pci_table,
.probe = ccp_pci_probe,
.remove = ccp_pci_remove,
#ifdef CONFIG_PM
.suspend = ccp_pci_suspend,
.resume = ccp_pci_resume,
#endif
};
int ccp_pci_init(void)
{
return pci_register_driver(&ccp_pci_driver);
}
void ccp_pci_exit(void)
{
pci_unregister_driver(&ccp_pci_driver);
}

View File

@ -1,293 +0,0 @@
/*
* AMD Cryptographic Coprocessor (CCP) driver
*
* Copyright (C) 2014,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/dma-mapping.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ccp.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/acpi.h>
#include "ccp-dev.h"
struct ccp_platform {
int coherent;
};
static const struct acpi_device_id ccp_acpi_match[];
static const struct of_device_id ccp_of_match[];
static struct ccp_vdata *ccp_get_of_version(struct platform_device *pdev)
{
#ifdef CONFIG_OF
const struct of_device_id *match;
match = of_match_node(ccp_of_match, pdev->dev.of_node);
if (match && match->data)
return (struct ccp_vdata *)match->data;
#endif
return NULL;
}
static struct ccp_vdata *ccp_get_acpi_version(struct platform_device *pdev)
{
#ifdef CONFIG_ACPI
const struct acpi_device_id *match;
match = acpi_match_device(ccp_acpi_match, &pdev->dev);
if (match && match->driver_data)
return (struct ccp_vdata *)match->driver_data;
#endif
return NULL;
}
static int ccp_get_irq(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
struct platform_device *pdev = to_platform_device(dev);
int ret;
ret = platform_get_irq(pdev, 0);
if (ret < 0)
return ret;
ccp->irq = ret;
ret = request_irq(ccp->irq, ccp->vdata->perform->irqhandler, 0,
ccp->name, dev);
if (ret) {
dev_notice(dev, "unable to allocate IRQ (%d)\n", ret);
return ret;
}
return 0;
}
static int ccp_get_irqs(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
int ret;
ret = ccp_get_irq(ccp);
if (!ret)
return 0;
/* Couldn't get an interrupt */
dev_notice(dev, "could not enable interrupts (%d)\n", ret);
return ret;
}
static void ccp_free_irqs(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
free_irq(ccp->irq, dev);
}
static struct resource *ccp_find_mmio_area(struct ccp_device *ccp)
{
struct device *dev = ccp->dev;
struct platform_device *pdev = to_platform_device(dev);
struct resource *ior;
ior = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (ior && (resource_size(ior) >= 0x800))
return ior;
return NULL;
}
static int ccp_platform_probe(struct platform_device *pdev)
{
struct ccp_device *ccp;
struct ccp_platform *ccp_platform;
struct device *dev = &pdev->dev;
enum dev_dma_attr attr;
struct resource *ior;
int ret;
ret = -ENOMEM;
ccp = ccp_alloc_struct(dev);
if (!ccp)
goto e_err;
ccp_platform = devm_kzalloc(dev, sizeof(*ccp_platform), GFP_KERNEL);
if (!ccp_platform)
goto e_err;
ccp->dev_specific = ccp_platform;
ccp->vdata = pdev->dev.of_node ? ccp_get_of_version(pdev)
: ccp_get_acpi_version(pdev);
if (!ccp->vdata || !ccp->vdata->version) {
ret = -ENODEV;
dev_err(dev, "missing driver data\n");
goto e_err;
}
ccp->get_irq = ccp_get_irqs;
ccp->free_irq = ccp_free_irqs;
ior = ccp_find_mmio_area(ccp);
ccp->io_map = devm_ioremap_resource(dev, ior);
if (IS_ERR(ccp->io_map)) {
ret = PTR_ERR(ccp->io_map);
goto e_err;
}
ccp->io_regs = ccp->io_map;
attr = device_get_dma_attr(dev);
if (attr == DEV_DMA_NOT_SUPPORTED) {
dev_err(dev, "DMA is not supported");
goto e_err;
}
ccp_platform->coherent = (attr == DEV_DMA_COHERENT);
if (ccp_platform->coherent)
ccp->axcache = CACHE_WB_NO_ALLOC;
else
ccp->axcache = CACHE_NONE;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (ret) {
dev_err(dev, "dma_set_mask_and_coherent failed (%d)\n", ret);
goto e_err;
}
dev_set_drvdata(dev, ccp);
ret = ccp->vdata->perform->init(ccp);
if (ret)
goto e_err;
dev_notice(dev, "enabled\n");
return 0;
e_err:
dev_notice(dev, "initialization failed\n");
return ret;
}
static int ccp_platform_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ccp_device *ccp = dev_get_drvdata(dev);
ccp->vdata->perform->destroy(ccp);
dev_notice(dev, "disabled\n");
return 0;
}
#ifdef CONFIG_PM
static int ccp_platform_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct device *dev = &pdev->dev;
struct ccp_device *ccp = dev_get_drvdata(dev);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&ccp->cmd_lock, flags);
ccp->suspending = 1;
/* Wake all the queue kthreads to prepare for suspend */
for (i = 0; i < ccp->cmd_q_count; i++)
wake_up_process(ccp->cmd_q[i].kthread);
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
/* Wait for all queue kthreads to say they're done */
while (!ccp_queues_suspended(ccp))
wait_event_interruptible(ccp->suspend_queue,
ccp_queues_suspended(ccp));
return 0;
}
static int ccp_platform_resume(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct ccp_device *ccp = dev_get_drvdata(dev);
unsigned long flags;
unsigned int i;
spin_lock_irqsave(&ccp->cmd_lock, flags);
ccp->suspending = 0;
/* Wake up all the kthreads */
for (i = 0; i < ccp->cmd_q_count; i++) {
ccp->cmd_q[i].suspended = 0;
wake_up_process(ccp->cmd_q[i].kthread);
}
spin_unlock_irqrestore(&ccp->cmd_lock, flags);
return 0;
}
#endif
#ifdef CONFIG_ACPI
static const struct acpi_device_id ccp_acpi_match[] = {
{ "AMDI0C00", (kernel_ulong_t)&ccpv3 },
{ },
};
MODULE_DEVICE_TABLE(acpi, ccp_acpi_match);
#endif
#ifdef CONFIG_OF
static const struct of_device_id ccp_of_match[] = {
{ .compatible = "amd,ccp-seattle-v1a",
.data = (const void *)&ccpv3 },
{ },
};
MODULE_DEVICE_TABLE(of, ccp_of_match);
#endif
static struct platform_driver ccp_platform_driver = {
.driver = {
.name = "ccp",
#ifdef CONFIG_ACPI
.acpi_match_table = ccp_acpi_match,
#endif
#ifdef CONFIG_OF
.of_match_table = ccp_of_match,
#endif
},
.probe = ccp_platform_probe,
.remove = ccp_platform_remove,
#ifdef CONFIG_PM
.suspend = ccp_platform_suspend,
.resume = ccp_platform_resume,
#endif
};
int ccp_platform_init(void)
{
return platform_driver_register(&ccp_platform_driver);
}
void ccp_platform_exit(void)
{
platform_driver_unregister(&ccp_platform_driver);
}

277
drivers/crypto/ccp/sp-dev.c Normal file
View File

@ -0,0 +1,277 @@
/*
* AMD Secure Processor driver
*
* Copyright (C) 2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
* Author: Brijesh Singh <brijesh.singh@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/spinlock_types.h>
#include <linux/types.h>
#include <linux/ccp.h>
#include "ccp-dev.h"
#include "sp-dev.h"
MODULE_AUTHOR("Tom Lendacky <thomas.lendacky@amd.com>");
MODULE_AUTHOR("Gary R Hook <gary.hook@amd.com>");
MODULE_LICENSE("GPL");
MODULE_VERSION("1.1.0");
MODULE_DESCRIPTION("AMD Secure Processor driver");
/* List of SPs, SP count, read-write access lock, and access functions
*
* Lock structure: get sp_unit_lock for reading whenever we need to
* examine the SP list.
*/
static DEFINE_RWLOCK(sp_unit_lock);
static LIST_HEAD(sp_units);
/* Ever-increasing value to produce unique unit numbers */
static atomic_t sp_ordinal;
static void sp_add_device(struct sp_device *sp)
{
unsigned long flags;
write_lock_irqsave(&sp_unit_lock, flags);
list_add_tail(&sp->entry, &sp_units);
write_unlock_irqrestore(&sp_unit_lock, flags);
}
static void sp_del_device(struct sp_device *sp)
{
unsigned long flags;
write_lock_irqsave(&sp_unit_lock, flags);
list_del(&sp->entry);
write_unlock_irqrestore(&sp_unit_lock, flags);
}
static irqreturn_t sp_irq_handler(int irq, void *data)
{
struct sp_device *sp = data;
if (sp->ccp_irq_handler)
sp->ccp_irq_handler(irq, sp->ccp_irq_data);
if (sp->psp_irq_handler)
sp->psp_irq_handler(irq, sp->psp_irq_data);
return IRQ_HANDLED;
}
int sp_request_ccp_irq(struct sp_device *sp, irq_handler_t handler,
const char *name, void *data)
{
int ret;
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->psp_vdata) {
/* Need a common routine to manage all interrupts */
sp->ccp_irq_data = data;
sp->ccp_irq_handler = handler;
if (!sp->irq_registered) {
ret = request_irq(sp->ccp_irq, sp_irq_handler, 0,
sp->name, sp);
if (ret)
return ret;
sp->irq_registered = true;
}
} else {
/* Each sub-device can manage it's own interrupt */
ret = request_irq(sp->ccp_irq, handler, 0, name, data);
if (ret)
return ret;
}
return 0;
}
int sp_request_psp_irq(struct sp_device *sp, irq_handler_t handler,
const char *name, void *data)
{
int ret;
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->ccp_vdata) {
/* Need a common routine to manage all interrupts */
sp->psp_irq_data = data;
sp->psp_irq_handler = handler;
if (!sp->irq_registered) {
ret = request_irq(sp->psp_irq, sp_irq_handler, 0,
sp->name, sp);
if (ret)
return ret;
sp->irq_registered = true;
}
} else {
/* Each sub-device can manage it's own interrupt */
ret = request_irq(sp->psp_irq, handler, 0, name, data);
if (ret)
return ret;
}
return 0;
}
void sp_free_ccp_irq(struct sp_device *sp, void *data)
{
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->psp_vdata) {
/* Using common routine to manage all interrupts */
if (!sp->psp_irq_handler) {
/* Nothing else using it, so free it */
free_irq(sp->ccp_irq, sp);
sp->irq_registered = false;
}
sp->ccp_irq_handler = NULL;
sp->ccp_irq_data = NULL;
} else {
/* Each sub-device can manage it's own interrupt */
free_irq(sp->ccp_irq, data);
}
}
void sp_free_psp_irq(struct sp_device *sp, void *data)
{
if ((sp->psp_irq == sp->ccp_irq) && sp->dev_vdata->ccp_vdata) {
/* Using common routine to manage all interrupts */
if (!sp->ccp_irq_handler) {
/* Nothing else using it, so free it */
free_irq(sp->psp_irq, sp);
sp->irq_registered = false;
}
sp->psp_irq_handler = NULL;
sp->psp_irq_data = NULL;
} else {
/* Each sub-device can manage it's own interrupt */
free_irq(sp->psp_irq, data);
}
}
/**
* sp_alloc_struct - allocate and initialize the sp_device struct
*
* @dev: device struct of the SP
*/
struct sp_device *sp_alloc_struct(struct device *dev)
{
struct sp_device *sp;
sp = devm_kzalloc(dev, sizeof(*sp), GFP_KERNEL);
if (!sp)
return NULL;
sp->dev = dev;
sp->ord = atomic_inc_return(&sp_ordinal);
snprintf(sp->name, SP_MAX_NAME_LEN, "sp-%u", sp->ord);
return sp;
}
int sp_init(struct sp_device *sp)
{
sp_add_device(sp);
if (sp->dev_vdata->ccp_vdata)
ccp_dev_init(sp);
return 0;
}
void sp_destroy(struct sp_device *sp)
{
if (sp->dev_vdata->ccp_vdata)
ccp_dev_destroy(sp);
sp_del_device(sp);
}
#ifdef CONFIG_PM
int sp_suspend(struct sp_device *sp, pm_message_t state)
{
int ret;
if (sp->dev_vdata->ccp_vdata) {
ret = ccp_dev_suspend(sp, state);
if (ret)
return ret;
}
return 0;
}
int sp_resume(struct sp_device *sp)
{
int ret;
if (sp->dev_vdata->ccp_vdata) {
ret = ccp_dev_resume(sp);
if (ret)
return ret;
}
return 0;
}
#endif
static int __init sp_mod_init(void)
{
#ifdef CONFIG_X86
int ret;
ret = sp_pci_init();
if (ret)
return ret;
return 0;
#endif
#ifdef CONFIG_ARM64
int ret;
ret = sp_platform_init();
if (ret)
return ret;
return 0;
#endif
return -ENODEV;
}
static void __exit sp_mod_exit(void)
{
#ifdef CONFIG_X86
sp_pci_exit();
#endif
#ifdef CONFIG_ARM64
sp_platform_exit();
#endif
}
module_init(sp_mod_init);
module_exit(sp_mod_exit);

133
drivers/crypto/ccp/sp-dev.h Normal file
View File

@ -0,0 +1,133 @@
/*
* AMD Secure Processor driver
*
* Copyright (C) 2017 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
* Author: Brijesh Singh <brijesh.singh@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#ifndef __SP_DEV_H__
#define __SP_DEV_H__
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/spinlock.h>
#include <linux/mutex.h>
#include <linux/list.h>
#include <linux/wait.h>
#include <linux/dmapool.h>
#include <linux/hw_random.h>
#include <linux/bitops.h>
#include <linux/interrupt.h>
#include <linux/irqreturn.h>
#define SP_MAX_NAME_LEN 32
#define CACHE_NONE 0x00
#define CACHE_WB_NO_ALLOC 0xb7
/* Structure to hold CCP device data */
struct ccp_device;
struct ccp_vdata {
const unsigned int version;
const unsigned int dma_chan_attr;
void (*setup)(struct ccp_device *);
const struct ccp_actions *perform;
const unsigned int offset;
const unsigned int rsamax;
};
/* Structure to hold SP device data */
struct sp_dev_vdata {
const unsigned int bar;
const struct ccp_vdata *ccp_vdata;
void *psp_vdata;
};
struct sp_device {
struct list_head entry;
struct device *dev;
struct sp_dev_vdata *dev_vdata;
unsigned int ord;
char name[SP_MAX_NAME_LEN];
/* Bus specific device information */
void *dev_specific;
/* I/O area used for device communication. */
void __iomem *io_map;
/* DMA caching attribute support */
unsigned int axcache;
bool irq_registered;
bool use_tasklet;
unsigned int ccp_irq;
irq_handler_t ccp_irq_handler;
void *ccp_irq_data;
unsigned int psp_irq;
irq_handler_t psp_irq_handler;
void *psp_irq_data;
void *ccp_data;
void *psp_data;
};
int sp_pci_init(void);
void sp_pci_exit(void);
int sp_platform_init(void);
void sp_platform_exit(void);
struct sp_device *sp_alloc_struct(struct device *dev);
int sp_init(struct sp_device *sp);
void sp_destroy(struct sp_device *sp);
struct sp_device *sp_get_master(void);
int sp_suspend(struct sp_device *sp, pm_message_t state);
int sp_resume(struct sp_device *sp);
int sp_request_ccp_irq(struct sp_device *sp, irq_handler_t handler,
const char *name, void *data);
void sp_free_ccp_irq(struct sp_device *sp, void *data);
int sp_request_psp_irq(struct sp_device *sp, irq_handler_t handler,
const char *name, void *data);
void sp_free_psp_irq(struct sp_device *sp, void *data);
#ifdef CONFIG_CRYPTO_DEV_SP_CCP
int ccp_dev_init(struct sp_device *sp);
void ccp_dev_destroy(struct sp_device *sp);
int ccp_dev_suspend(struct sp_device *sp, pm_message_t state);
int ccp_dev_resume(struct sp_device *sp);
#else /* !CONFIG_CRYPTO_DEV_SP_CCP */
static inline int ccp_dev_init(struct sp_device *sp)
{
return 0;
}
static inline void ccp_dev_destroy(struct sp_device *sp) { }
static inline int ccp_dev_suspend(struct sp_device *sp, pm_message_t state)
{
return 0;
}
static inline int ccp_dev_resume(struct sp_device *sp)
{
return 0;
}
#endif /* CONFIG_CRYPTO_DEV_SP_CCP */
#endif

276
drivers/crypto/ccp/sp-pci.c Normal file
View File

@ -0,0 +1,276 @@
/*
* AMD Secure Processor device driver
*
* Copyright (C) 2013,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
* Author: Gary R Hook <gary.hook@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/pci.h>
#include <linux/pci_ids.h>
#include <linux/dma-mapping.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ccp.h>
#include "ccp-dev.h"
#define MSIX_VECTORS 2
struct sp_pci {
int msix_count;
struct msix_entry msix_entry[MSIX_VECTORS];
};
static int sp_get_msix_irqs(struct sp_device *sp)
{
struct sp_pci *sp_pci = sp->dev_specific;
struct device *dev = sp->dev;
struct pci_dev *pdev = to_pci_dev(dev);
int v, ret;
for (v = 0; v < ARRAY_SIZE(sp_pci->msix_entry); v++)
sp_pci->msix_entry[v].entry = v;
ret = pci_enable_msix_range(pdev, sp_pci->msix_entry, 1, v);
if (ret < 0)
return ret;
sp_pci->msix_count = ret;
sp->use_tasklet = true;
sp->psp_irq = sp_pci->msix_entry[0].vector;
sp->ccp_irq = (sp_pci->msix_count > 1) ? sp_pci->msix_entry[1].vector
: sp_pci->msix_entry[0].vector;
return 0;
}
static int sp_get_msi_irq(struct sp_device *sp)
{
struct device *dev = sp->dev;
struct pci_dev *pdev = to_pci_dev(dev);
int ret;
ret = pci_enable_msi(pdev);
if (ret)
return ret;
sp->ccp_irq = pdev->irq;
sp->psp_irq = pdev->irq;
return 0;
}
static int sp_get_irqs(struct sp_device *sp)
{
struct device *dev = sp->dev;
int ret;
ret = sp_get_msix_irqs(sp);
if (!ret)
return 0;
/* Couldn't get MSI-X vectors, try MSI */
dev_notice(dev, "could not enable MSI-X (%d), trying MSI\n", ret);
ret = sp_get_msi_irq(sp);
if (!ret)
return 0;
/* Couldn't get MSI interrupt */
dev_notice(dev, "could not enable MSI (%d)\n", ret);
return ret;
}
static void sp_free_irqs(struct sp_device *sp)
{
struct sp_pci *sp_pci = sp->dev_specific;
struct device *dev = sp->dev;
struct pci_dev *pdev = to_pci_dev(dev);
if (sp_pci->msix_count)
pci_disable_msix(pdev);
else if (sp->psp_irq)
pci_disable_msi(pdev);
sp->ccp_irq = 0;
sp->psp_irq = 0;
}
static int sp_pci_probe(struct pci_dev *pdev, const struct pci_device_id *id)
{
struct sp_device *sp;
struct sp_pci *sp_pci;
struct device *dev = &pdev->dev;
void __iomem * const *iomap_table;
int bar_mask;
int ret;
ret = -ENOMEM;
sp = sp_alloc_struct(dev);
if (!sp)
goto e_err;
sp_pci = devm_kzalloc(dev, sizeof(*sp_pci), GFP_KERNEL);
if (!sp_pci)
goto e_err;
sp->dev_specific = sp_pci;
sp->dev_vdata = (struct sp_dev_vdata *)id->driver_data;
if (!sp->dev_vdata) {
ret = -ENODEV;
dev_err(dev, "missing driver data\n");
goto e_err;
}
ret = pcim_enable_device(pdev);
if (ret) {
dev_err(dev, "pcim_enable_device failed (%d)\n", ret);
goto e_err;
}
bar_mask = pci_select_bars(pdev, IORESOURCE_MEM);
ret = pcim_iomap_regions(pdev, bar_mask, "ccp");
if (ret) {
dev_err(dev, "pcim_iomap_regions failed (%d)\n", ret);
goto e_err;
}
iomap_table = pcim_iomap_table(pdev);
if (!iomap_table) {
dev_err(dev, "pcim_iomap_table failed\n");
ret = -ENOMEM;
goto e_err;
}
sp->io_map = iomap_table[sp->dev_vdata->bar];
if (!sp->io_map) {
dev_err(dev, "ioremap failed\n");
ret = -ENOMEM;
goto e_err;
}
ret = sp_get_irqs(sp);
if (ret)
goto e_err;
pci_set_master(pdev);
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (ret) {
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32));
if (ret) {
dev_err(dev, "dma_set_mask_and_coherent failed (%d)\n",
ret);
goto e_err;
}
}
dev_set_drvdata(dev, sp);
ret = sp_init(sp);
if (ret)
goto e_err;
dev_notice(dev, "enabled\n");
return 0;
e_err:
dev_notice(dev, "initialization failed\n");
return ret;
}
static void sp_pci_remove(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct sp_device *sp = dev_get_drvdata(dev);
if (!sp)
return;
sp_destroy(sp);
sp_free_irqs(sp);
dev_notice(dev, "disabled\n");
}
#ifdef CONFIG_PM
static int sp_pci_suspend(struct pci_dev *pdev, pm_message_t state)
{
struct device *dev = &pdev->dev;
struct sp_device *sp = dev_get_drvdata(dev);
return sp_suspend(sp, state);
}
static int sp_pci_resume(struct pci_dev *pdev)
{
struct device *dev = &pdev->dev;
struct sp_device *sp = dev_get_drvdata(dev);
return sp_resume(sp);
}
#endif
static const struct sp_dev_vdata dev_vdata[] = {
{
.bar = 2,
#ifdef CONFIG_CRYPTO_DEV_SP_CCP
.ccp_vdata = &ccpv3,
#endif
},
{
.bar = 2,
#ifdef CONFIG_CRYPTO_DEV_SP_CCP
.ccp_vdata = &ccpv5a,
#endif
},
{
.bar = 2,
#ifdef CONFIG_CRYPTO_DEV_SP_CCP
.ccp_vdata = &ccpv5b,
#endif
},
};
static const struct pci_device_id sp_pci_table[] = {
{ PCI_VDEVICE(AMD, 0x1537), (kernel_ulong_t)&dev_vdata[0] },
{ PCI_VDEVICE(AMD, 0x1456), (kernel_ulong_t)&dev_vdata[1] },
{ PCI_VDEVICE(AMD, 0x1468), (kernel_ulong_t)&dev_vdata[2] },
/* Last entry must be zero */
{ 0, }
};
MODULE_DEVICE_TABLE(pci, sp_pci_table);
static struct pci_driver sp_pci_driver = {
.name = "ccp",
.id_table = sp_pci_table,
.probe = sp_pci_probe,
.remove = sp_pci_remove,
#ifdef CONFIG_PM
.suspend = sp_pci_suspend,
.resume = sp_pci_resume,
#endif
};
int sp_pci_init(void)
{
return pci_register_driver(&sp_pci_driver);
}
void sp_pci_exit(void)
{
pci_unregister_driver(&sp_pci_driver);
}

View File

@ -0,0 +1,256 @@
/*
* AMD Secure Processor device driver
*
* Copyright (C) 2014,2016 Advanced Micro Devices, Inc.
*
* Author: Tom Lendacky <thomas.lendacky@amd.com>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/device.h>
#include <linux/platform_device.h>
#include <linux/ioport.h>
#include <linux/dma-mapping.h>
#include <linux/kthread.h>
#include <linux/sched.h>
#include <linux/interrupt.h>
#include <linux/spinlock.h>
#include <linux/delay.h>
#include <linux/ccp.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/acpi.h>
#include "ccp-dev.h"
struct sp_platform {
int coherent;
unsigned int irq_count;
};
static const struct acpi_device_id sp_acpi_match[];
static const struct of_device_id sp_of_match[];
static struct sp_dev_vdata *sp_get_of_version(struct platform_device *pdev)
{
#ifdef CONFIG_OF
const struct of_device_id *match;
match = of_match_node(sp_of_match, pdev->dev.of_node);
if (match && match->data)
return (struct sp_dev_vdata *)match->data;
#endif
return NULL;
}
static struct sp_dev_vdata *sp_get_acpi_version(struct platform_device *pdev)
{
#ifdef CONFIG_ACPI
const struct acpi_device_id *match;
match = acpi_match_device(sp_acpi_match, &pdev->dev);
if (match && match->driver_data)
return (struct sp_dev_vdata *)match->driver_data;
#endif
return NULL;
}
static int sp_get_irqs(struct sp_device *sp)
{
struct sp_platform *sp_platform = sp->dev_specific;
struct device *dev = sp->dev;
struct platform_device *pdev = to_platform_device(dev);
unsigned int i, count;
int ret;
for (i = 0, count = 0; i < pdev->num_resources; i++) {
struct resource *res = &pdev->resource[i];
if (resource_type(res) == IORESOURCE_IRQ)
count++;
}
sp_platform->irq_count = count;
ret = platform_get_irq(pdev, 0);
if (ret < 0) {
dev_notice(dev, "unable to get IRQ (%d)\n", ret);
return ret;
}
sp->psp_irq = ret;
if (count == 1) {
sp->ccp_irq = ret;
} else {
ret = platform_get_irq(pdev, 1);
if (ret < 0) {
dev_notice(dev, "unable to get IRQ (%d)\n", ret);
return ret;
}
sp->ccp_irq = ret;
}
return 0;
}
static int sp_platform_probe(struct platform_device *pdev)
{
struct sp_device *sp;
struct sp_platform *sp_platform;
struct device *dev = &pdev->dev;
enum dev_dma_attr attr;
struct resource *ior;
int ret;
ret = -ENOMEM;
sp = sp_alloc_struct(dev);
if (!sp)
goto e_err;
sp_platform = devm_kzalloc(dev, sizeof(*sp_platform), GFP_KERNEL);
if (!sp_platform)
goto e_err;
sp->dev_specific = sp_platform;
sp->dev_vdata = pdev->dev.of_node ? sp_get_of_version(pdev)
: sp_get_acpi_version(pdev);
if (!sp->dev_vdata) {
ret = -ENODEV;
dev_err(dev, "missing driver data\n");
goto e_err;
}
ior = platform_get_resource(pdev, IORESOURCE_MEM, 0);
sp->io_map = devm_ioremap_resource(dev, ior);
if (IS_ERR(sp->io_map)) {
ret = PTR_ERR(sp->io_map);
goto e_err;
}
attr = device_get_dma_attr(dev);
if (attr == DEV_DMA_NOT_SUPPORTED) {
dev_err(dev, "DMA is not supported");
goto e_err;
}
sp_platform->coherent = (attr == DEV_DMA_COHERENT);
if (sp_platform->coherent)
sp->axcache = CACHE_WB_NO_ALLOC;
else
sp->axcache = CACHE_NONE;
ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(48));
if (ret) {
dev_err(dev, "dma_set_mask_and_coherent failed (%d)\n", ret);
goto e_err;
}
ret = sp_get_irqs(sp);
if (ret)
goto e_err;
dev_set_drvdata(dev, sp);
ret = sp_init(sp);
if (ret)
goto e_err;
dev_notice(dev, "enabled\n");
return 0;
e_err:
dev_notice(dev, "initialization failed\n");
return ret;
}
static int sp_platform_remove(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sp_device *sp = dev_get_drvdata(dev);
sp_destroy(sp);
dev_notice(dev, "disabled\n");
return 0;
}
#ifdef CONFIG_PM
static int sp_platform_suspend(struct platform_device *pdev,
pm_message_t state)
{
struct device *dev = &pdev->dev;
struct sp_device *sp = dev_get_drvdata(dev);
return sp_suspend(sp, state);
}
static int sp_platform_resume(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct sp_device *sp = dev_get_drvdata(dev);
return sp_resume(sp);
}
#endif
static const struct sp_dev_vdata dev_vdata[] = {
{
.bar = 0,
#ifdef CONFIG_CRYPTO_DEV_SP_CCP
.ccp_vdata = &ccpv3_platform,
#endif
},
};
#ifdef CONFIG_ACPI
static const struct acpi_device_id sp_acpi_match[] = {
{ "AMDI0C00", (kernel_ulong_t)&dev_vdata[0] },
{ },
};
MODULE_DEVICE_TABLE(acpi, sp_acpi_match);
#endif
#ifdef CONFIG_OF
static const struct of_device_id sp_of_match[] = {
{ .compatible = "amd,ccp-seattle-v1a",
.data = (const void *)&dev_vdata[0] },
{ },
};
MODULE_DEVICE_TABLE(of, sp_of_match);
#endif
static struct platform_driver sp_platform_driver = {
.driver = {
.name = "ccp",
#ifdef CONFIG_ACPI
.acpi_match_table = sp_acpi_match,
#endif
#ifdef CONFIG_OF
.of_match_table = sp_of_match,
#endif
},
.probe = sp_platform_probe,
.remove = sp_platform_remove,
#ifdef CONFIG_PM
.suspend = sp_platform_suspend,
.resume = sp_platform_resume,
#endif
};
int sp_platform_init(void)
{
return platform_driver_register(&sp_platform_driver);
}
void sp_platform_exit(void)
{
platform_driver_unregister(&sp_platform_driver);
}

Some files were not shown because too many files have changed in this diff Show More