crypto: arm64/chacha20 - implement NEON version based on SSE3 code

This is a straight port to arm64/NEON of the x86 SSE3 implementation
of the ChaCha20 stream cipher.

Signed-off-by: Ard Biesheuvel <ard.biesheuvel@linaro.org>
Signed-off-by: Herbert Xu <herbert@gondor.apana.org.au>
This commit is contained in:
Ard Biesheuvel 2016-12-08 14:28:58 +00:00 committed by Herbert Xu
parent 02608e02fb
commit 8621caa0d4
4 changed files with 620 additions and 0 deletions

View File

@ -72,4 +72,10 @@ config CRYPTO_CRC32_ARM64
depends on ARM64 depends on ARM64
select CRYPTO_HASH select CRYPTO_HASH
config CRYPTO_CHACHA20_NEON
tristate "NEON accelerated ChaCha20 symmetric cipher"
depends on KERNEL_MODE_NEON
select CRYPTO_BLKCIPHER
select CRYPTO_CHACHA20
endif endif

View File

@ -41,6 +41,9 @@ sha256-arm64-y := sha256-glue.o sha256-core.o
obj-$(CONFIG_CRYPTO_SHA512_ARM64) += sha512-arm64.o obj-$(CONFIG_CRYPTO_SHA512_ARM64) += sha512-arm64.o
sha512-arm64-y := sha512-glue.o sha512-core.o sha512-arm64-y := sha512-glue.o sha512-core.o
obj-$(CONFIG_CRYPTO_CHACHA20_NEON) += chacha20-neon.o
chacha20-neon-y := chacha20-neon-core.o chacha20-neon-glue.o
AFLAGS_aes-ce.o := -DINTERLEAVE=4 AFLAGS_aes-ce.o := -DINTERLEAVE=4
AFLAGS_aes-neon.o := -DINTERLEAVE=4 AFLAGS_aes-neon.o := -DINTERLEAVE=4

View File

@ -0,0 +1,480 @@
/*
* ChaCha20 256-bit cipher algorithm, RFC7539, arm64 NEON functions
*
* Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Based on:
* ChaCha20 256-bit cipher algorithm, RFC7539, x64 SSSE3 functions
*
* Copyright (C) 2015 Martin Willi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <linux/linkage.h>
.text
.align 6
ENTRY(chacha20_block_xor_neon)
// x0: Input state matrix, s
// x1: 1 data block output, o
// x2: 1 data block input, i
//
// This function encrypts one ChaCha20 block by loading the state matrix
// in four NEON registers. It performs matrix operation on four words in
// parallel, but requires shuffling to rearrange the words after each
// round.
//
// x0..3 = s0..3
ld1 {v0.4s-v3.4s}, [x0]
ld1 {v8.4s-v11.4s}, [x0]
mov x3, #10
.Ldoubleround:
// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
add v0.4s, v0.4s, v1.4s
eor v3.16b, v3.16b, v0.16b
rev32 v3.8h, v3.8h
// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
add v2.4s, v2.4s, v3.4s
eor v4.16b, v1.16b, v2.16b
shl v1.4s, v4.4s, #12
sri v1.4s, v4.4s, #20
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
add v0.4s, v0.4s, v1.4s
eor v4.16b, v3.16b, v0.16b
shl v3.4s, v4.4s, #8
sri v3.4s, v4.4s, #24
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
add v2.4s, v2.4s, v3.4s
eor v4.16b, v1.16b, v2.16b
shl v1.4s, v4.4s, #7
sri v1.4s, v4.4s, #25
// x1 = shuffle32(x1, MASK(0, 3, 2, 1))
ext v1.16b, v1.16b, v1.16b, #4
// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
ext v2.16b, v2.16b, v2.16b, #8
// x3 = shuffle32(x3, MASK(2, 1, 0, 3))
ext v3.16b, v3.16b, v3.16b, #12
// x0 += x1, x3 = rotl32(x3 ^ x0, 16)
add v0.4s, v0.4s, v1.4s
eor v3.16b, v3.16b, v0.16b
rev32 v3.8h, v3.8h
// x2 += x3, x1 = rotl32(x1 ^ x2, 12)
add v2.4s, v2.4s, v3.4s
eor v4.16b, v1.16b, v2.16b
shl v1.4s, v4.4s, #12
sri v1.4s, v4.4s, #20
// x0 += x1, x3 = rotl32(x3 ^ x0, 8)
add v0.4s, v0.4s, v1.4s
eor v4.16b, v3.16b, v0.16b
shl v3.4s, v4.4s, #8
sri v3.4s, v4.4s, #24
// x2 += x3, x1 = rotl32(x1 ^ x2, 7)
add v2.4s, v2.4s, v3.4s
eor v4.16b, v1.16b, v2.16b
shl v1.4s, v4.4s, #7
sri v1.4s, v4.4s, #25
// x1 = shuffle32(x1, MASK(2, 1, 0, 3))
ext v1.16b, v1.16b, v1.16b, #12
// x2 = shuffle32(x2, MASK(1, 0, 3, 2))
ext v2.16b, v2.16b, v2.16b, #8
// x3 = shuffle32(x3, MASK(0, 3, 2, 1))
ext v3.16b, v3.16b, v3.16b, #4
subs x3, x3, #1
b.ne .Ldoubleround
ld1 {v4.16b-v7.16b}, [x2]
// o0 = i0 ^ (x0 + s0)
add v0.4s, v0.4s, v8.4s
eor v0.16b, v0.16b, v4.16b
// o1 = i1 ^ (x1 + s1)
add v1.4s, v1.4s, v9.4s
eor v1.16b, v1.16b, v5.16b
// o2 = i2 ^ (x2 + s2)
add v2.4s, v2.4s, v10.4s
eor v2.16b, v2.16b, v6.16b
// o3 = i3 ^ (x3 + s3)
add v3.4s, v3.4s, v11.4s
eor v3.16b, v3.16b, v7.16b
st1 {v0.16b-v3.16b}, [x1]
ret
ENDPROC(chacha20_block_xor_neon)
.align 6
ENTRY(chacha20_4block_xor_neon)
// x0: Input state matrix, s
// x1: 4 data blocks output, o
// x2: 4 data blocks input, i
//
// This function encrypts four consecutive ChaCha20 blocks by loading
// the state matrix in NEON registers four times. The algorithm performs
// each operation on the corresponding word of each state matrix, hence
// requires no word shuffling. For final XORing step we transpose the
// matrix by interleaving 32- and then 64-bit words, which allows us to
// do XOR in NEON registers.
//
adr x3, CTRINC
ld1 {v16.4s}, [x3]
// x0..15[0-3] = s0..3[0..3]
mov x4, x0
ld4r { v0.4s- v3.4s}, [x4], #16
ld4r { v4.4s- v7.4s}, [x4], #16
ld4r { v8.4s-v11.4s}, [x4], #16
ld4r {v12.4s-v15.4s}, [x4]
// x12 += counter values 0-3
add v12.4s, v12.4s, v16.4s
mov x3, #10
.Ldoubleround4:
// x0 += x4, x12 = rotl32(x12 ^ x0, 16)
// x1 += x5, x13 = rotl32(x13 ^ x1, 16)
// x2 += x6, x14 = rotl32(x14 ^ x2, 16)
// x3 += x7, x15 = rotl32(x15 ^ x3, 16)
add v0.4s, v0.4s, v4.4s
add v1.4s, v1.4s, v5.4s
add v2.4s, v2.4s, v6.4s
add v3.4s, v3.4s, v7.4s
eor v12.16b, v12.16b, v0.16b
eor v13.16b, v13.16b, v1.16b
eor v14.16b, v14.16b, v2.16b
eor v15.16b, v15.16b, v3.16b
rev32 v12.8h, v12.8h
rev32 v13.8h, v13.8h
rev32 v14.8h, v14.8h
rev32 v15.8h, v15.8h
// x8 += x12, x4 = rotl32(x4 ^ x8, 12)
// x9 += x13, x5 = rotl32(x5 ^ x9, 12)
// x10 += x14, x6 = rotl32(x6 ^ x10, 12)
// x11 += x15, x7 = rotl32(x7 ^ x11, 12)
add v8.4s, v8.4s, v12.4s
add v9.4s, v9.4s, v13.4s
add v10.4s, v10.4s, v14.4s
add v11.4s, v11.4s, v15.4s
eor v17.16b, v4.16b, v8.16b
eor v18.16b, v5.16b, v9.16b
eor v19.16b, v6.16b, v10.16b
eor v20.16b, v7.16b, v11.16b
shl v4.4s, v17.4s, #12
shl v5.4s, v18.4s, #12
shl v6.4s, v19.4s, #12
shl v7.4s, v20.4s, #12
sri v4.4s, v17.4s, #20
sri v5.4s, v18.4s, #20
sri v6.4s, v19.4s, #20
sri v7.4s, v20.4s, #20
// x0 += x4, x12 = rotl32(x12 ^ x0, 8)
// x1 += x5, x13 = rotl32(x13 ^ x1, 8)
// x2 += x6, x14 = rotl32(x14 ^ x2, 8)
// x3 += x7, x15 = rotl32(x15 ^ x3, 8)
add v0.4s, v0.4s, v4.4s
add v1.4s, v1.4s, v5.4s
add v2.4s, v2.4s, v6.4s
add v3.4s, v3.4s, v7.4s
eor v17.16b, v12.16b, v0.16b
eor v18.16b, v13.16b, v1.16b
eor v19.16b, v14.16b, v2.16b
eor v20.16b, v15.16b, v3.16b
shl v12.4s, v17.4s, #8
shl v13.4s, v18.4s, #8
shl v14.4s, v19.4s, #8
shl v15.4s, v20.4s, #8
sri v12.4s, v17.4s, #24
sri v13.4s, v18.4s, #24
sri v14.4s, v19.4s, #24
sri v15.4s, v20.4s, #24
// x8 += x12, x4 = rotl32(x4 ^ x8, 7)
// x9 += x13, x5 = rotl32(x5 ^ x9, 7)
// x10 += x14, x6 = rotl32(x6 ^ x10, 7)
// x11 += x15, x7 = rotl32(x7 ^ x11, 7)
add v8.4s, v8.4s, v12.4s
add v9.4s, v9.4s, v13.4s
add v10.4s, v10.4s, v14.4s
add v11.4s, v11.4s, v15.4s
eor v17.16b, v4.16b, v8.16b
eor v18.16b, v5.16b, v9.16b
eor v19.16b, v6.16b, v10.16b
eor v20.16b, v7.16b, v11.16b
shl v4.4s, v17.4s, #7
shl v5.4s, v18.4s, #7
shl v6.4s, v19.4s, #7
shl v7.4s, v20.4s, #7
sri v4.4s, v17.4s, #25
sri v5.4s, v18.4s, #25
sri v6.4s, v19.4s, #25
sri v7.4s, v20.4s, #25
// x0 += x5, x15 = rotl32(x15 ^ x0, 16)
// x1 += x6, x12 = rotl32(x12 ^ x1, 16)
// x2 += x7, x13 = rotl32(x13 ^ x2, 16)
// x3 += x4, x14 = rotl32(x14 ^ x3, 16)
add v0.4s, v0.4s, v5.4s
add v1.4s, v1.4s, v6.4s
add v2.4s, v2.4s, v7.4s
add v3.4s, v3.4s, v4.4s
eor v15.16b, v15.16b, v0.16b
eor v12.16b, v12.16b, v1.16b
eor v13.16b, v13.16b, v2.16b
eor v14.16b, v14.16b, v3.16b
rev32 v15.8h, v15.8h
rev32 v12.8h, v12.8h
rev32 v13.8h, v13.8h
rev32 v14.8h, v14.8h
// x10 += x15, x5 = rotl32(x5 ^ x10, 12)
// x11 += x12, x6 = rotl32(x6 ^ x11, 12)
// x8 += x13, x7 = rotl32(x7 ^ x8, 12)
// x9 += x14, x4 = rotl32(x4 ^ x9, 12)
add v10.4s, v10.4s, v15.4s
add v11.4s, v11.4s, v12.4s
add v8.4s, v8.4s, v13.4s
add v9.4s, v9.4s, v14.4s
eor v17.16b, v5.16b, v10.16b
eor v18.16b, v6.16b, v11.16b
eor v19.16b, v7.16b, v8.16b
eor v20.16b, v4.16b, v9.16b
shl v5.4s, v17.4s, #12
shl v6.4s, v18.4s, #12
shl v7.4s, v19.4s, #12
shl v4.4s, v20.4s, #12
sri v5.4s, v17.4s, #20
sri v6.4s, v18.4s, #20
sri v7.4s, v19.4s, #20
sri v4.4s, v20.4s, #20
// x0 += x5, x15 = rotl32(x15 ^ x0, 8)
// x1 += x6, x12 = rotl32(x12 ^ x1, 8)
// x2 += x7, x13 = rotl32(x13 ^ x2, 8)
// x3 += x4, x14 = rotl32(x14 ^ x3, 8)
add v0.4s, v0.4s, v5.4s
add v1.4s, v1.4s, v6.4s
add v2.4s, v2.4s, v7.4s
add v3.4s, v3.4s, v4.4s
eor v17.16b, v15.16b, v0.16b
eor v18.16b, v12.16b, v1.16b
eor v19.16b, v13.16b, v2.16b
eor v20.16b, v14.16b, v3.16b
shl v15.4s, v17.4s, #8
shl v12.4s, v18.4s, #8
shl v13.4s, v19.4s, #8
shl v14.4s, v20.4s, #8
sri v15.4s, v17.4s, #24
sri v12.4s, v18.4s, #24
sri v13.4s, v19.4s, #24
sri v14.4s, v20.4s, #24
// x10 += x15, x5 = rotl32(x5 ^ x10, 7)
// x11 += x12, x6 = rotl32(x6 ^ x11, 7)
// x8 += x13, x7 = rotl32(x7 ^ x8, 7)
// x9 += x14, x4 = rotl32(x4 ^ x9, 7)
add v10.4s, v10.4s, v15.4s
add v11.4s, v11.4s, v12.4s
add v8.4s, v8.4s, v13.4s
add v9.4s, v9.4s, v14.4s
eor v17.16b, v5.16b, v10.16b
eor v18.16b, v6.16b, v11.16b
eor v19.16b, v7.16b, v8.16b
eor v20.16b, v4.16b, v9.16b
shl v5.4s, v17.4s, #7
shl v6.4s, v18.4s, #7
shl v7.4s, v19.4s, #7
shl v4.4s, v20.4s, #7
sri v5.4s, v17.4s, #25
sri v6.4s, v18.4s, #25
sri v7.4s, v19.4s, #25
sri v4.4s, v20.4s, #25
subs x3, x3, #1
b.ne .Ldoubleround4
// x0[0-3] += s0[0]
// x1[0-3] += s0[1]
// x2[0-3] += s0[2]
// x3[0-3] += s0[3]
ld4r {v17.4s-v20.4s}, [x0], #16
add v0.4s, v0.4s, v17.4s
add v1.4s, v1.4s, v18.4s
add v2.4s, v2.4s, v19.4s
add v3.4s, v3.4s, v20.4s
// x4[0-3] += s1[0]
// x5[0-3] += s1[1]
// x6[0-3] += s1[2]
// x7[0-3] += s1[3]
ld4r {v21.4s-v24.4s}, [x0], #16
add v4.4s, v4.4s, v21.4s
add v5.4s, v5.4s, v22.4s
add v6.4s, v6.4s, v23.4s
add v7.4s, v7.4s, v24.4s
// x8[0-3] += s2[0]
// x9[0-3] += s2[1]
// x10[0-3] += s2[2]
// x11[0-3] += s2[3]
ld4r {v17.4s-v20.4s}, [x0], #16
add v8.4s, v8.4s, v17.4s
add v9.4s, v9.4s, v18.4s
add v10.4s, v10.4s, v19.4s
add v11.4s, v11.4s, v20.4s
// x12[0-3] += s3[0]
// x13[0-3] += s3[1]
// x14[0-3] += s3[2]
// x15[0-3] += s3[3]
ld4r {v21.4s-v24.4s}, [x0]
add v12.4s, v12.4s, v21.4s
add v13.4s, v13.4s, v22.4s
add v14.4s, v14.4s, v23.4s
add v15.4s, v15.4s, v24.4s
// x12 += counter values 0-3
add v12.4s, v12.4s, v16.4s
ld1 {v16.16b-v19.16b}, [x2], #64
ld1 {v20.16b-v23.16b}, [x2], #64
// interleave 32-bit words in state n, n+1
zip1 v24.4s, v0.4s, v1.4s
zip1 v25.4s, v2.4s, v3.4s
zip1 v26.4s, v4.4s, v5.4s
zip1 v27.4s, v6.4s, v7.4s
zip1 v28.4s, v8.4s, v9.4s
zip1 v29.4s, v10.4s, v11.4s
zip1 v30.4s, v12.4s, v13.4s
zip1 v31.4s, v14.4s, v15.4s
zip2 v1.4s, v0.4s, v1.4s
zip2 v3.4s, v2.4s, v3.4s
zip2 v5.4s, v4.4s, v5.4s
zip2 v7.4s, v6.4s, v7.4s
zip2 v9.4s, v8.4s, v9.4s
zip2 v11.4s, v10.4s, v11.4s
zip2 v13.4s, v12.4s, v13.4s
zip2 v15.4s, v14.4s, v15.4s
mov v0.16b, v24.16b
mov v2.16b, v25.16b
mov v4.16b, v26.16b
mov v6.16b, v27.16b
mov v8.16b, v28.16b
mov v10.16b, v29.16b
mov v12.16b, v30.16b
mov v14.16b, v31.16b
// interleave 64-bit words in state n, n+2
zip1 v24.2d, v0.2d, v2.2d
zip1 v25.2d, v1.2d, v3.2d
zip1 v26.2d, v4.2d, v6.2d
zip1 v27.2d, v5.2d, v7.2d
zip1 v28.2d, v8.2d, v10.2d
zip1 v29.2d, v9.2d, v11.2d
zip1 v30.2d, v12.2d, v14.2d
zip1 v31.2d, v13.2d, v15.2d
zip2 v2.2d, v0.2d, v2.2d
zip2 v3.2d, v1.2d, v3.2d
zip2 v6.2d, v4.2d, v6.2d
zip2 v7.2d, v5.2d, v7.2d
zip2 v10.2d, v8.2d, v10.2d
zip2 v11.2d, v9.2d, v11.2d
zip2 v14.2d, v12.2d, v14.2d
zip2 v15.2d, v13.2d, v15.2d
mov v0.16b, v24.16b
mov v1.16b, v25.16b
mov v4.16b, v26.16b
mov v5.16b, v27.16b
mov v8.16b, v28.16b
mov v9.16b, v29.16b
mov v12.16b, v30.16b
mov v13.16b, v31.16b
ld1 {v24.16b-v27.16b}, [x2], #64
ld1 {v28.16b-v31.16b}, [x2]
// xor with corresponding input, write to output
eor v16.16b, v16.16b, v0.16b
eor v17.16b, v17.16b, v4.16b
eor v18.16b, v18.16b, v8.16b
eor v19.16b, v19.16b, v12.16b
st1 {v16.16b-v19.16b}, [x1], #64
eor v20.16b, v20.16b, v2.16b
eor v21.16b, v21.16b, v6.16b
eor v22.16b, v22.16b, v10.16b
eor v23.16b, v23.16b, v14.16b
st1 {v20.16b-v23.16b}, [x1], #64
eor v24.16b, v24.16b, v1.16b
eor v25.16b, v25.16b, v5.16b
eor v26.16b, v26.16b, v9.16b
eor v27.16b, v27.16b, v13.16b
st1 {v24.16b-v27.16b}, [x1], #64
eor v28.16b, v28.16b, v3.16b
eor v29.16b, v29.16b, v7.16b
eor v30.16b, v30.16b, v11.16b
eor v31.16b, v31.16b, v15.16b
st1 {v28.16b-v31.16b}, [x1]
ret
ENDPROC(chacha20_4block_xor_neon)
CTRINC: .word 0, 1, 2, 3

View File

@ -0,0 +1,131 @@
/*
* ChaCha20 256-bit cipher algorithm, RFC7539, arm64 NEON functions
*
* Copyright (C) 2016 Linaro, Ltd. <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* Based on:
* ChaCha20 256-bit cipher algorithm, RFC7539, SIMD glue code
*
* Copyright (C) 2015 Martin Willi
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*/
#include <crypto/algapi.h>
#include <crypto/chacha20.h>
#include <linux/crypto.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <asm/neon.h>
asmlinkage void chacha20_block_xor_neon(u32 *state, u8 *dst, const u8 *src);
asmlinkage void chacha20_4block_xor_neon(u32 *state, u8 *dst, const u8 *src);
static void chacha20_dosimd(u32 *state, u8 *dst, const u8 *src,
unsigned int bytes)
{
u8 buf[CHACHA20_BLOCK_SIZE];
while (bytes >= CHACHA20_BLOCK_SIZE * 4) {
chacha20_4block_xor_neon(state, dst, src);
bytes -= CHACHA20_BLOCK_SIZE * 4;
src += CHACHA20_BLOCK_SIZE * 4;
dst += CHACHA20_BLOCK_SIZE * 4;
state[12] += 4;
}
while (bytes >= CHACHA20_BLOCK_SIZE) {
chacha20_block_xor_neon(state, dst, src);
bytes -= CHACHA20_BLOCK_SIZE;
src += CHACHA20_BLOCK_SIZE;
dst += CHACHA20_BLOCK_SIZE;
state[12]++;
}
if (bytes) {
memcpy(buf, src, bytes);
chacha20_block_xor_neon(state, buf, buf);
memcpy(dst, buf, bytes);
}
}
static int chacha20_simd(struct blkcipher_desc *desc, struct scatterlist *dst,
struct scatterlist *src, unsigned int nbytes)
{
struct blkcipher_walk walk;
u32 state[16];
int err;
if (nbytes <= CHACHA20_BLOCK_SIZE)
return crypto_chacha20_crypt(desc, dst, src, nbytes);
blkcipher_walk_init(&walk, dst, src, nbytes);
err = blkcipher_walk_virt_block(desc, &walk, CHACHA20_BLOCK_SIZE);
crypto_chacha20_init(state, crypto_blkcipher_ctx(desc->tfm), walk.iv);
kernel_neon_begin();
while (walk.nbytes >= CHACHA20_BLOCK_SIZE) {
chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
rounddown(walk.nbytes, CHACHA20_BLOCK_SIZE));
err = blkcipher_walk_done(desc, &walk,
walk.nbytes % CHACHA20_BLOCK_SIZE);
}
if (walk.nbytes) {
chacha20_dosimd(state, walk.dst.virt.addr, walk.src.virt.addr,
walk.nbytes);
err = blkcipher_walk_done(desc, &walk, 0);
}
kernel_neon_end();
return err;
}
static struct crypto_alg alg = {
.cra_name = "chacha20",
.cra_driver_name = "chacha20-neon",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
.cra_blocksize = 1,
.cra_type = &crypto_blkcipher_type,
.cra_ctxsize = sizeof(struct chacha20_ctx),
.cra_alignmask = sizeof(u32) - 1,
.cra_module = THIS_MODULE,
.cra_u = {
.blkcipher = {
.min_keysize = CHACHA20_KEY_SIZE,
.max_keysize = CHACHA20_KEY_SIZE,
.ivsize = CHACHA20_IV_SIZE,
.geniv = "seqiv",
.setkey = crypto_chacha20_setkey,
.encrypt = chacha20_simd,
.decrypt = chacha20_simd,
},
},
};
static int __init chacha20_simd_mod_init(void)
{
return crypto_register_alg(&alg);
}
static void __exit chacha20_simd_mod_fini(void)
{
crypto_unregister_alg(&alg);
}
module_init(chacha20_simd_mod_init);
module_exit(chacha20_simd_mod_fini);
MODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>");
MODULE_LICENSE("GPL v2");
MODULE_ALIAS_CRYPTO("chacha20");