f2fs crypto: use slab caches

This patch integrates the below patch into f2fs.

"ext4 crypto: use slab caches

Use slab caches the ext4_crypto_ctx and ext4_crypt_info structures for
slighly better memory efficiency and debuggability."

Signed-off-by: Theodore Ts'o <tytso@mit.edu>
Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This commit is contained in:
Jaegeuk Kim 2015-05-12 13:26:54 -07:00
parent 06e1bc05ca
commit 8bacf6deb0
3 changed files with 33 additions and 32 deletions

View File

@ -66,6 +66,9 @@ static DEFINE_SPINLOCK(f2fs_crypto_ctx_lock);
struct workqueue_struct *f2fs_read_workqueue; struct workqueue_struct *f2fs_read_workqueue;
static DEFINE_MUTEX(crypto_init); static DEFINE_MUTEX(crypto_init);
static struct kmem_cache *f2fs_crypto_ctx_cachep;
struct kmem_cache *f2fs_crypt_info_cachep;
/** /**
* f2fs_release_crypto_ctx() - Releases an encryption context * f2fs_release_crypto_ctx() - Releases an encryption context
* @ctx: The encryption context to release. * @ctx: The encryption context to release.
@ -90,7 +93,7 @@ void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) { if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
if (ctx->tfm) if (ctx->tfm)
crypto_free_tfm(ctx->tfm); crypto_free_tfm(ctx->tfm);
kfree(ctx); kmem_cache_free(f2fs_crypto_ctx_cachep, ctx);
} else { } else {
spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags); spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs); list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
@ -98,23 +101,6 @@ void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
} }
} }
/**
* f2fs_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
* @mask: The allocation mask.
*
* Return: An allocated and initialized encryption context on success. An error
* value or NULL otherwise.
*/
static struct f2fs_crypto_ctx *f2fs_alloc_and_init_crypto_ctx(gfp_t mask)
{
struct f2fs_crypto_ctx *ctx = kzalloc(sizeof(struct f2fs_crypto_ctx),
mask);
if (!ctx)
return ERR_PTR(-ENOMEM);
return ctx;
}
/** /**
* f2fs_get_crypto_ctx() - Gets an encryption context * f2fs_get_crypto_ctx() - Gets an encryption context
* @inode: The inode for which we are doing the crypto * @inode: The inode for which we are doing the crypto
@ -151,9 +137,9 @@ struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *inode)
list_del(&ctx->free_list); list_del(&ctx->free_list);
spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags); spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
if (!ctx) { if (!ctx) {
ctx = f2fs_alloc_and_init_crypto_ctx(GFP_NOFS); ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_NOFS);
if (IS_ERR(ctx)) { if (!ctx) {
res = PTR_ERR(ctx); res = -ENOMEM;
goto out; goto out;
} }
ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL; ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
@ -263,7 +249,7 @@ void f2fs_exit_crypto(void)
} }
if (pos->tfm) if (pos->tfm)
crypto_free_tfm(pos->tfm); crypto_free_tfm(pos->tfm);
kfree(pos); kmem_cache_free(f2fs_crypto_ctx_cachep, pos);
} }
INIT_LIST_HEAD(&f2fs_free_crypto_ctxs); INIT_LIST_HEAD(&f2fs_free_crypto_ctxs);
if (f2fs_bounce_page_pool) if (f2fs_bounce_page_pool)
@ -272,6 +258,12 @@ void f2fs_exit_crypto(void)
if (f2fs_read_workqueue) if (f2fs_read_workqueue)
destroy_workqueue(f2fs_read_workqueue); destroy_workqueue(f2fs_read_workqueue);
f2fs_read_workqueue = NULL; f2fs_read_workqueue = NULL;
if (f2fs_crypto_ctx_cachep)
kmem_cache_destroy(f2fs_crypto_ctx_cachep);
f2fs_crypto_ctx_cachep = NULL;
if (f2fs_crypt_info_cachep)
kmem_cache_destroy(f2fs_crypt_info_cachep);
f2fs_crypt_info_cachep = NULL;
} }
/** /**
@ -284,24 +276,32 @@ void f2fs_exit_crypto(void)
*/ */
int f2fs_init_crypto(void) int f2fs_init_crypto(void)
{ {
int i, res; int i, res = -ENOMEM;
mutex_lock(&crypto_init); mutex_lock(&crypto_init);
if (f2fs_read_workqueue) if (f2fs_read_workqueue)
goto already_initialized; goto already_initialized;
f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0); f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0);
if (!f2fs_read_workqueue) { if (!f2fs_read_workqueue)
res = -ENOMEM; goto fail;
f2fs_crypto_ctx_cachep = KMEM_CACHE(f2fs_crypto_ctx,
SLAB_RECLAIM_ACCOUNT);
if (!f2fs_crypto_ctx_cachep)
goto fail;
f2fs_crypt_info_cachep = KMEM_CACHE(f2fs_crypt_info,
SLAB_RECLAIM_ACCOUNT);
if (!f2fs_crypt_info_cachep)
goto fail; goto fail;
}
for (i = 0; i < num_prealloc_crypto_ctxs; i++) { for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
struct f2fs_crypto_ctx *ctx; struct f2fs_crypto_ctx *ctx;
ctx = f2fs_alloc_and_init_crypto_ctx(GFP_KERNEL); ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_KERNEL);
if (IS_ERR(ctx)) { if (!ctx) {
res = PTR_ERR(ctx); res = -ENOMEM;
goto fail; goto fail;
} }
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs); list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);

View File

@ -99,7 +99,7 @@ void f2fs_free_encryption_info(struct inode *inode)
key_put(ci->ci_keyring_key); key_put(ci->ci_keyring_key);
crypto_free_ablkcipher(ci->ci_ctfm); crypto_free_ablkcipher(ci->ci_ctfm);
memzero_explicit(&ci->ci_raw, sizeof(ci->ci_raw)); memzero_explicit(&ci->ci_raw, sizeof(ci->ci_raw));
kfree(ci); kmem_cache_free(f2fs_crypt_info_cachep, ci);
fi->i_crypt_info = NULL; fi->i_crypt_info = NULL;
} }
@ -137,7 +137,7 @@ int _f2fs_get_encryption_info(struct inode *inode)
return -EINVAL; return -EINVAL;
res = 0; res = 0;
crypt_info = kmalloc(sizeof(struct f2fs_crypt_info), GFP_NOFS); crypt_info = kmem_cache_alloc(f2fs_crypt_info_cachep, GFP_NOFS);
if (!crypt_info) if (!crypt_info)
return -ENOMEM; return -ENOMEM;
@ -187,7 +187,7 @@ int _f2fs_get_encryption_info(struct inode *inode)
if (res < 0) { if (res < 0) {
if (res == -ENOKEY) if (res == -ENOKEY)
res = 0; res = 0;
kfree(crypt_info); kmem_cache_free(f2fs_crypt_info_cachep, crypt_info);
} else { } else {
fi->i_crypt_info = crypt_info; fi->i_crypt_info = crypt_info;
crypt_info->ci_keyring_key = keyring_key; crypt_info->ci_keyring_key = keyring_key;

View File

@ -2004,6 +2004,7 @@ int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *); int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
/* crypt.c */ /* crypt.c */
extern struct kmem_cache *f2fs_crypt_info_cachep;
extern struct workqueue_struct *f2fs_read_workqueue; extern struct workqueue_struct *f2fs_read_workqueue;
bool f2fs_valid_contents_enc_mode(uint32_t); bool f2fs_valid_contents_enc_mode(uint32_t);
uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t); uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);