f2fs crypto: use slab caches
This patch integrates the below patch into f2fs. "ext4 crypto: use slab caches Use slab caches the ext4_crypto_ctx and ext4_crypt_info structures for slighly better memory efficiency and debuggability." Signed-off-by: Theodore Ts'o <tytso@mit.edu> Signed-off-by: Jaegeuk Kim <jaegeuk@kernel.org>
This commit is contained in:
parent
06e1bc05ca
commit
8bacf6deb0
|
@ -66,6 +66,9 @@ static DEFINE_SPINLOCK(f2fs_crypto_ctx_lock);
|
|||
struct workqueue_struct *f2fs_read_workqueue;
|
||||
static DEFINE_MUTEX(crypto_init);
|
||||
|
||||
static struct kmem_cache *f2fs_crypto_ctx_cachep;
|
||||
struct kmem_cache *f2fs_crypt_info_cachep;
|
||||
|
||||
/**
|
||||
* f2fs_release_crypto_ctx() - Releases an encryption context
|
||||
* @ctx: The encryption context to release.
|
||||
|
@ -90,7 +93,7 @@ void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
|
|||
if (ctx->flags & F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL) {
|
||||
if (ctx->tfm)
|
||||
crypto_free_tfm(ctx->tfm);
|
||||
kfree(ctx);
|
||||
kmem_cache_free(f2fs_crypto_ctx_cachep, ctx);
|
||||
} else {
|
||||
spin_lock_irqsave(&f2fs_crypto_ctx_lock, flags);
|
||||
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
|
||||
|
@ -98,23 +101,6 @@ void f2fs_release_crypto_ctx(struct f2fs_crypto_ctx *ctx)
|
|||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_alloc_and_init_crypto_ctx() - Allocates and inits an encryption context
|
||||
* @mask: The allocation mask.
|
||||
*
|
||||
* Return: An allocated and initialized encryption context on success. An error
|
||||
* value or NULL otherwise.
|
||||
*/
|
||||
static struct f2fs_crypto_ctx *f2fs_alloc_and_init_crypto_ctx(gfp_t mask)
|
||||
{
|
||||
struct f2fs_crypto_ctx *ctx = kzalloc(sizeof(struct f2fs_crypto_ctx),
|
||||
mask);
|
||||
|
||||
if (!ctx)
|
||||
return ERR_PTR(-ENOMEM);
|
||||
return ctx;
|
||||
}
|
||||
|
||||
/**
|
||||
* f2fs_get_crypto_ctx() - Gets an encryption context
|
||||
* @inode: The inode for which we are doing the crypto
|
||||
|
@ -151,9 +137,9 @@ struct f2fs_crypto_ctx *f2fs_get_crypto_ctx(struct inode *inode)
|
|||
list_del(&ctx->free_list);
|
||||
spin_unlock_irqrestore(&f2fs_crypto_ctx_lock, flags);
|
||||
if (!ctx) {
|
||||
ctx = f2fs_alloc_and_init_crypto_ctx(GFP_NOFS);
|
||||
if (IS_ERR(ctx)) {
|
||||
res = PTR_ERR(ctx);
|
||||
ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_NOFS);
|
||||
if (!ctx) {
|
||||
res = -ENOMEM;
|
||||
goto out;
|
||||
}
|
||||
ctx->flags |= F2FS_CTX_REQUIRES_FREE_ENCRYPT_FL;
|
||||
|
@ -263,7 +249,7 @@ void f2fs_exit_crypto(void)
|
|||
}
|
||||
if (pos->tfm)
|
||||
crypto_free_tfm(pos->tfm);
|
||||
kfree(pos);
|
||||
kmem_cache_free(f2fs_crypto_ctx_cachep, pos);
|
||||
}
|
||||
INIT_LIST_HEAD(&f2fs_free_crypto_ctxs);
|
||||
if (f2fs_bounce_page_pool)
|
||||
|
@ -272,6 +258,12 @@ void f2fs_exit_crypto(void)
|
|||
if (f2fs_read_workqueue)
|
||||
destroy_workqueue(f2fs_read_workqueue);
|
||||
f2fs_read_workqueue = NULL;
|
||||
if (f2fs_crypto_ctx_cachep)
|
||||
kmem_cache_destroy(f2fs_crypto_ctx_cachep);
|
||||
f2fs_crypto_ctx_cachep = NULL;
|
||||
if (f2fs_crypt_info_cachep)
|
||||
kmem_cache_destroy(f2fs_crypt_info_cachep);
|
||||
f2fs_crypt_info_cachep = NULL;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -284,24 +276,32 @@ void f2fs_exit_crypto(void)
|
|||
*/
|
||||
int f2fs_init_crypto(void)
|
||||
{
|
||||
int i, res;
|
||||
int i, res = -ENOMEM;
|
||||
|
||||
mutex_lock(&crypto_init);
|
||||
if (f2fs_read_workqueue)
|
||||
goto already_initialized;
|
||||
|
||||
f2fs_read_workqueue = alloc_workqueue("f2fs_crypto", WQ_HIGHPRI, 0);
|
||||
if (!f2fs_read_workqueue) {
|
||||
res = -ENOMEM;
|
||||
if (!f2fs_read_workqueue)
|
||||
goto fail;
|
||||
|
||||
f2fs_crypto_ctx_cachep = KMEM_CACHE(f2fs_crypto_ctx,
|
||||
SLAB_RECLAIM_ACCOUNT);
|
||||
if (!f2fs_crypto_ctx_cachep)
|
||||
goto fail;
|
||||
|
||||
f2fs_crypt_info_cachep = KMEM_CACHE(f2fs_crypt_info,
|
||||
SLAB_RECLAIM_ACCOUNT);
|
||||
if (!f2fs_crypt_info_cachep)
|
||||
goto fail;
|
||||
}
|
||||
|
||||
for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
|
||||
struct f2fs_crypto_ctx *ctx;
|
||||
|
||||
ctx = f2fs_alloc_and_init_crypto_ctx(GFP_KERNEL);
|
||||
if (IS_ERR(ctx)) {
|
||||
res = PTR_ERR(ctx);
|
||||
ctx = kmem_cache_zalloc(f2fs_crypto_ctx_cachep, GFP_KERNEL);
|
||||
if (!ctx) {
|
||||
res = -ENOMEM;
|
||||
goto fail;
|
||||
}
|
||||
list_add(&ctx->free_list, &f2fs_free_crypto_ctxs);
|
||||
|
|
|
@ -99,7 +99,7 @@ void f2fs_free_encryption_info(struct inode *inode)
|
|||
key_put(ci->ci_keyring_key);
|
||||
crypto_free_ablkcipher(ci->ci_ctfm);
|
||||
memzero_explicit(&ci->ci_raw, sizeof(ci->ci_raw));
|
||||
kfree(ci);
|
||||
kmem_cache_free(f2fs_crypt_info_cachep, ci);
|
||||
fi->i_crypt_info = NULL;
|
||||
}
|
||||
|
||||
|
@ -137,7 +137,7 @@ int _f2fs_get_encryption_info(struct inode *inode)
|
|||
return -EINVAL;
|
||||
res = 0;
|
||||
|
||||
crypt_info = kmalloc(sizeof(struct f2fs_crypt_info), GFP_NOFS);
|
||||
crypt_info = kmem_cache_alloc(f2fs_crypt_info_cachep, GFP_NOFS);
|
||||
if (!crypt_info)
|
||||
return -ENOMEM;
|
||||
|
||||
|
@ -187,7 +187,7 @@ int _f2fs_get_encryption_info(struct inode *inode)
|
|||
if (res < 0) {
|
||||
if (res == -ENOKEY)
|
||||
res = 0;
|
||||
kfree(crypt_info);
|
||||
kmem_cache_free(f2fs_crypt_info_cachep, crypt_info);
|
||||
} else {
|
||||
fi->i_crypt_info = crypt_info;
|
||||
crypt_info->ci_keyring_key = keyring_key;
|
||||
|
|
|
@ -2004,6 +2004,7 @@ int f2fs_process_policy(const struct f2fs_encryption_policy *, struct inode *);
|
|||
int f2fs_get_policy(struct inode *, struct f2fs_encryption_policy *);
|
||||
|
||||
/* crypt.c */
|
||||
extern struct kmem_cache *f2fs_crypt_info_cachep;
|
||||
extern struct workqueue_struct *f2fs_read_workqueue;
|
||||
bool f2fs_valid_contents_enc_mode(uint32_t);
|
||||
uint32_t f2fs_validate_encryption_key_size(uint32_t, uint32_t);
|
||||
|
|
Loading…
Reference in New Issue